
Verification of Safety-Critical Systems: A Case
Study Report on Using Modern Model Checking
Tools
Antti Jääskeläinen1, Mika Katara1, Shmuel Katz2, and Heikki
Virtanen1

1 Department of Software Systems, Tampere University of Technology
PO Box 553, 33101 Tampere, Finland
{antti.m.jaaskelainen,mika.katara,heikki.virtanen}@tut.fi

2 Department of Computer Science
Technion – Israel Institute of Technology
Haifa 32000, Israel
katz@cs.technion.ac.il

Abstract
Formal methods are making their way into the development of safety-critical systems. In this
paper, we describe a case study where a simple 2oo3 voting scheme for a shutdown system was
verified using two bounded model checking tools, CBMC and EBMC. The system represents
Systematic Capability level 3 according to IEC 61508 ed2.0. The verification process was based
on requirements and pseudo code, and involved verifying C and Verilog code implementing the
pseudo code. The results suggest that the tools were suitable for the task, but require considerable
training to reach productive use for code embedded in industrial equipment. We also identified
some issues in the development process that could be streamlined with the use of more formal
verification methods. Towards the end of the paper, we discuss the issues we found and how to
address them in a practical setting.

1998 ACM Subject Classification D.2.4 Software/Program Verification

Keywords and phrases Functional safety, SIL-3, model checking, tools

Digital Object Identifier 10.4230/OASIcs.SSV.2011.44

1 Introduction

Companies developing safety-critical systems must balance between safety requirements
imposed by standards and productivity requirements. On the one hand, the higher the safety
integrity requirements, the more time and effort are needed for validation and verification
activities. On the other hand, companies producing less safety-critical systems often face
fierce competition and are required to put more emphasis on the overall efficiency of the
development process.

Certification is another driving force in the field. Many companies are trying to get their
products certified in order to help marketing efforts. The new machinery directive in the
EU, for instance, is still based on self-declaration in the case of most type of machines; the
manufacturer labels the product with the “CE” marking without formal type examination.
However, certification by an independent assessment organization may still be required by
customers and/or for marketing reasons. It is also seen as an important step if an accident
should occur and investigation of the development practices takes place.

© Antti Jääskeläinen, Mika Katara, Shmuel Katz, and Heikki Virtanen;
licensed under Creative Commons License NC-ND

6th International Workshop on Systems Software Verification (SSV’11).
Editors: Jörg Brauer, Marco Roveri, Hendrik Tews; pp. 44–56

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62917131?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/OASIcs.SSV.2011.44
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

A. Jääskeläinen, M. Katara, S. Katz, and H. Virtanen 45

IEC 61508 [15] is a basic standard on functional safety; a new edition 2 of the standard was
released in April 2010. The standard classifies safety-critical systems into four Safety Integrity
Levels (SILs), SIL 4 corresponding to the most critical and SIL 1 the least critical type of
system. The standard presents methods used for the verification and validation of safety-
critical hardware and software. For each SIL level, there is a set of Highly Recommended,
Recommended and Not Recommended methods. In addition, for the use of some methods
the standard does not indicate any recommendation on certain SIL levels.

Systems can be composed of elements and subsystems having a predetermined Systematic
Capability (SC) on the scale 1-4 corresponding to the SIL level of the whole system. For
example, SIL 3 level systems can be composed of elements having SC 3 or 4 when used
according to the instructions given in the elements’ safety manuals. IEC 61508 is not
harmonized, i.e. it does not fulfill the requirements of the European directives as such, but is
often referred to by other, harmonized, standards (such as EN ISO 13849-1 and EN 62061)
in relation to requirements imposed on the development of safety-critical systems.

Formal methods are considered an important technology in the development of safety-
critical systems. While the scalability and usability of tools still pose challenges in the
development of non-safety-critical systems, safety-critical systems are somewhat different
in this respect. On higher SIL/SC levels there are fewer productivity constraints and
perhaps more time to learn new techniques that can help in validation and verification efforts.
Moreover, safety-critical systems should be kept rather simple in order to limit the needed
verification and validation activities. Thus, in spite of the scalability problems, it it often
feasible to prove correct at least some parts of the system using formal methods. Moreover,
formal methods are well represented in the IEC 61508 standard for developing high SIL level
systems. They can also be used on lower SIL levels to replace some less formal techniques,
such as certain types of testing.

Nevertheless, there have been major impediments in using formal methods. Performance
of the old tools and the computing power available was too limited in order to solve real
life problems. Moreover, special expertise was required to use the tools. Nowadays, there is
evidence in the literature that new tools can solve practical problems given the increased
computing resources available. Unfortunately, however, there is still lack of user experience
reports that would discuss the required expertise to use the modern tools.

Towards these ends, we describe a case study where we experimented with a formal
verification technology in an industrial case study. The case study subject was a simple 2oo3
(2-out-of-3) voting scheme used for redundancy in a SC 3 level shutdown system. The system
development is being done according to the IEC 61508 standard and certification is being
conducted by an independent organization.

In the case study we treat a typical industrial development where pseudo-code (or
programming language code in, e.g., C) is first written and shown correct relative to
requirements of the module under development. This is then handed off to a separate
development team as the basis of a hardware or firmware design in a low-level hardware
design language such as Verilog or VHDL. This too must be shown correct relative to (often
more detailed) requirements. The main practical tasks are (1) to ensure that the high- and
low-level properties checked actually express the needed requirements and are easy to write,
(2) to facilitate verifying the pseudo-code level relative to the properties, and (3) to similarly
show that the chip design satisfies the needed properties, while showing consistency with the
upper level solution.

For verification we used two bounded model checking tools, CBMC and EBMC [6]. Model
checking as a technology does not require as high a level of expertise as, for instance, theorem

SSV’11

46 Verification of Safety-Critical Systems

proving. Moreover, these tools were easily available and supported the input formats we
were able to work with. In addition, they support the existing development process and no
major changes in the work flow are required.

While the standard does not require the use of formal verification in the case of this
particular system, formal verification can complement less formal verification methods, such
as testing and simulation, and somewhat ease the certification process. Moreover, if the
development process could be changed in the future to better take advantage of the formal
verification technology, some of the less formal techniques could possibly be replaced with it.

Since the verified system is very simple, the focus of this paper is on reporting experiences
in using the verification tools in the particular industrial context of safety-critical systems
development rather than in the verification technology itself. The results of the case study
suggest that while suitable tools might be hard to find, together with the process changes,
they could provide better evidence for the correctness of the system. Should it be possible
to replace some informal techniques with more formal ones, productivity gains could also
be achieved. Nevertheless, the efficient use of model checking tools requires expertise, so
considerable training may be needed in order to equip the developers with the skills necessary
to use such tools.

The structure of the paper is as follows: In Section 2 we present the background of the
tools used in the case study and discuss related work on how formal methods and related
tools are used in various tasks in software and hardware development. Section 3 introduces
the case study. Due to confidentiality restrictions, some details of the shutdown system have
been omitted. Finally, the lessons learned from the case study are discussed in Section 4.

2 Model Checking Safety-Critical Systems

In this section, we first introduce the basic concepts related to model checking in general
and bounded model checking in particular. Then we move on to discuss related work on
how formal methods and related tools are used in various tasks in software and hardware
development.

2.1 Model Checking and Bounded Model Checking
Model checking [8] is a formal verification technique in which all possible execution paths
of a model of a system or component are checked for a given property, where the model
must have a finite number of possible states (although there can be infinite computations).
The property to be checked is generally given in some form of temporal logic [18]. This
allows expressing assertions about the final values of a module, invariants that should be true
also at intermediate stages, as well as assertions about, e.g., responsiveness of a system to
requests or stimuli. The model of the system is called a Kripke structure, and is a graph with
nodes that each represent a state of the system, and directed edges where each represents an
operation that moves the system from the source state to the target.

The main problem with model checking is that the number of states in a system can
become unmanageably large. Thus model checking techniques are intended to overcome
this difficulty. Among the classic approaches are representing the states symbolically in
data structures known as binary decision diagrams (BDD’s), and creating smaller "abstract"
models that combine many states into one (so that if the smaller model is shown correct for
a desired property, the original model is also guaranteed to be correct).

Model checking tools originally had their own notations for expressing the models, e.g.,
in the SMV model checking tool [7]. The tool and its notation were used either to show that

A. Jääskeläinen, M. Katara, S. Katz, and H. Virtanen 47

a design of a key algorithm was correct, or code was translated to the notation of the tool
involved [11].

More recently, tools have been developed to directly take as input the code of the
component to be checked (e.g., in C or Java), and to use assert statements to indicate
at what point an assertion should be correct. In addition, the underlying technology of
model checkers has changed: today it is common to translate both the model (or code) and
the assertions to a complex boolean formula, and use a SAT (satisfiability) solver [19] or
extended techniques called SMT [20] to determine whether the formula can be made true
for some assignment of values to the variables in it. In fact, the formula constructed is
equivalent to encoding the execution of the model, and asserting the negation of the property
we want. Thus finding a set of values for the variables in the formula is equivalent to finding
a counterexample for the property, because it represents a computation of the system that
does not satisfy the desired property.

Both in order to create smaller models, and to ensure that any counterexample execution
paths are as short as possible, bounded model checking has been used. In this approach,
a bound is put on the length (number of states) of paths that will be checked. Thus for
some n, all possible paths of length up to n are checked. If a counterexample is found, it
can be analyzed to detect the bug. While if none exists for paths up to n, the bound can be
increased, until a bound longer that any path in the program is reached, or the user decides
that longer paths can be ignored.

Modules to ensure safety-critical properties of industrial software often regulate control
or repeatedly test whether shut-down is necessary. Such modules are generally limited in
their state-space, and each round of application is bounded in length. Thus bounded model
checking is appropriate, and often can achieve full verification. Full model checkers, such
as SATabs are appropriate for larger programs, but, as noted on the home webpage of that
tool [23], can only automatically check for restricted properties such as array bounds, buffer
overflows, or built-in exceptions, because of the needed abstraction step in going from code
to a model.

In this work we show a case study where the computations are of a fixed length at each
activation of the module investigated, so many of the more complex issues are irrelevant. We
investigate whether tools for bounded model checking are sufficiently robust and user-friendly
to be practically used to verify and increase the reliability of software or firmware embedded
in industrial equipment.

In this case study, we used two bounded model checkers, namely CBMC and EBMC
[6]. The former enables software model checking and supports ANSI-C and C++ as input
languages. The tool performs verification by first unwinding the code loops and then passing
the results in an equational form to a decision procedure (e.g., a SAT solver). In many cases,
the tool can check that enough unwinding is performed, and thus the complete state space
is considered in the analysis (sound verification). If the formula that encodes the program
unwindings is satisfiable, i.e., contains an invalid program path, then the tool will produce
a counterexample. There are also command-line options to limit the number of times the
loops are unwound or the number of program steps to be processed, and to stop checking
that enough unwinding is done; this allows using the tool for bug hunting in cases where no
useful bound exists and properties cannot be proven correct. On the other hand, EBMC is
a tool for hardware verification supporting input in Verilog and related formats. However,
VHDL is not among the supported input formats. Both tools are available in binary format
for Windows, Linux and MacOS.

SSV’11

48 Verification of Safety-Critical Systems

2.2 Related Work
In the following, we describe some application examples of formal verification techniques
in relation to software and hardware development. It is worth paying attention to the way
model checking is used and what kind of impact it has for the development process and
overall quality.

Björkman et al. [4] verified stepwise shutdown logic in the nuclear domain and used
model checking in the traditional way: the design was converted to a dedicated verification
model and the requirements in the specification were translated into logical formulae. They
used a model checking tool for proving that the verification model satisfies the formulae.
Obviously, this use of model checking is rather demanding and laborious because of the model
transformations needed, but it has some advantages as well. Already while constructing
formal models, many omissions and contradictions become clearly visible, and larger systems
can be verified because irrelevant details can be omitted from the abstract verification model.

The cited experiment shows the most valuable benefit of formal methods too. Because
all of the modeled behavior is fully covered, no issue can hide itself in the verification model.
However, the proof is valid only if the abstract verification model corresponds to the design
and the formulae cover all of the requirements. One of today’s research challenge is to find
new ways of applying formal methods so that the artifacts used in proofs would be more
closely related to the specification, design and implementation languages used in mainstream
software and hardware development; this would reduce the need for error-prone manual
transformations.

Even though formal methods may not be applicable always as such, they can still be
helpful. For example, testing can benefit from their use. Angeletti et al. [1] reported
an experiment in the railway domain where bounded model checking was used to semi-
automatically generate test cases in order to gain full coverage requested by the EN 50128
guidelines for the software development of safety-critical systems at SIL 4 level.

In the experiment, the C code was augmented with failing assertions and the CBMC
tool was used to compute the values of input parameters for each assertion to be reached.
Obviously, the mere values of input parameters are not enough for defining test cases; in
order to be useful, the test case must contain checks against the expected outputs. In our case
study, such checks were encoded directly as conditions in assertions and verified on the fly.
Unfortunately, the paper by Angeletti et al. does not state directly how the expected values
were obtained and why on-the-fly verification was not used. A system of a few thousand
lines of C code may be too large to be model checked, so the approach we used in our case
study may not have been applicable as such, and unlike in our approach, test cases can be
used to verify and validate the SUT in binary form without the source code.

In theory, any model having operational semantics can be verified by means of model
checking and state transition systems can be used to model many other aspects of the systems
than behavior in normal conditions. For example, there is a special Statecharts variant called
Safecharts for modeling safety issues and their relations to functional properties [9].

In Safecharts there are special states for normal and defunct states for the components of
the system and transitions between them. Events associated with those transitions model
the breakdowns and reparations of the components. When these special states and events
are synchronized with the states and actions of the functional layer, the behavior of the
system can be modeled and formally verified, not only in normal operation, but in those
situations in which parts of the system do not function properly [12]. This is very useful
if the system cannot reach a safe stable state without controlled operations. In aerospace
and nuclear domains this requirement is obvious, but also in the case of complex and big

A. Jääskeläinen, M. Katara, S. Katz, and H. Virtanen 49

machines there might be a need to shutdown slowly to prevent further breakdowns.
In addition to facilitating testing, formal verification can significantly reduce the need

for testing. Kaivola et al. [16] used formal verification as the primary validation vehicle for
the execution cluster of the Intel Core i7 processor and dropped most of the usual RTL
(Register Transfer Language) simulations and all coverage driven simulation validation. They
concluded that verification required approximately the same amount of work as traditional
pre-silicon testing. Although not zero, the number of bugs that escaped to silicon was lower
than for any other cluster.

In addition to describing how formal verification could replace testing, Kaivola et al.
sketch some prerequisites for verification to be applicable in practice. In contexts where
model checking can replace simulation-based testing, it can be seen as a clever and effective
way of conducting exhaustive simulation.

Nevertheless, even a company like Intel has taken quite some time to introduce formal
verification into the development process. Most likely the story began in 1994 when the
Pentium FDIV bug was found [22] and seven years later they reported that they had verified
the Pentium 4 floating-point divider [17]. As a pioneer in the field, Intel has made enormous
investments in formal verification and for others, effort is likely far more moderate. Still,
it may take considerable effort to establish the confidence needed to be able to supercede
existing verification methods with more formal ones. However, they can used to complement
the existing ones and provide diversity when needed.

The systems in the examples discussed above have very high integrity requirements and
two of them are also large from the verification point of view. For example, the execution
cluster of i7 is responsible for the functional behavior of all of the more than 2700 distinct
microinstructions. The majority of safety-critical systems are much smaller and may not have
such high integrity requirements. Nonetheless, formal methods can be a feasible alternative
for the quality assurance of those because small verification problems are not as laborious to
solve as it is generally thought and even small systems can have peculiar and critical faults,
which can be almost impossible to find by other means.

3 Case Study

We now present our case study on using model checking to verify a simple element in a
safety-critical system. In more detail, the goal was to use model checking tools to verify the
implementation of the 2oo3 voting scheme in a SC 3 level shutdown system. This voting
scheme (also known as triple-modular redundancy) is very popular in safety-critical systems
because it provides a good compromise between safety and availability. Since availability is
an important factor in industrial systems, such compromises are often searched for.

There are three distinct modules which receive the same input (from one, two or three
different sensors) and shutdown is started when at least two out of three modules suggest it.
In this case, the design follows the idle current design, i.e. the output is active when there
is no need to shutdown the system. When at least two out of three inputs are active, the
output is also active. If only one or zero inputs are active or the power is lost, the output
should indicate a need to start the shutdown procedure. In practice, each input is a Boolean
value, one indicating a normal situation and zero indicating the need to shutdown the system.
If two or three of the input values equal zero, the voter unit outputs value zero and the
shutdown procedure begins. If only one input equals zero, the process can continue (with a
possible log message indicating some potential problem in the corresponding module). Thus,
the system is able to mask a fault in one of the modules, allowing the system to continue its

SSV’11

50 Verification of Safety-Critical Systems

operation. The interested reader is referred to [24, p. 132] for more elaborate discussion on
this voting scheme.

3.1 Working with the Pseudo Code

In this case the development process is such that the basic requirements are refined first
and then translated into pseudo code. Typically, the pseudo code is augmented with a short
textual description that may specify some basic properties of the solution depicted as pseudo
code. The pseudo code is then implemented with a suitable concrete language; VHDL in
case a programmable hardware solution is preferred. The tests for the implementation are
derived from the requirements, which are managed in a requirements management tool.

The first stage of the case study was to verify the pseudo code. The tool used for formal
verification was CBMC (version 3.9) and for that purpose the pseudo code was manually
translated into C code. Since the implementation of the voting scheme with Boolean values
is very simple, manual translation was considered adequate in this particular case. Moreover,
because of the simplicity of the code, it was possible to derive eight test cases (23) that
covered all possible input and output combinations.

The test cases were encoded as assertions in the C code and verified with the tool. This
process also revealed that the property specified in conjunction with the associated pseudo
code was somewhat vague and incomplete; the informal description didn’t cover all the
input/output combinations. We think that this represents a typical case of specifying simple
designs: even though the requirements should be explicit and complete, it is very easy to
ignore some details since the design is considered obvious.

The C code used with CBMC is listed in Figure 1. There are three parameters, cor-
responding to three inputs to the system; the OCHY_Voter_State variable is the output.
The actual voting is implemented in the statement where OCHY_Voter_State gets assigned
a value. The assertions corresponding to the eight test cases follow the assignment. The
structure of the assertions was chosen to support understandability in the absence of the
implication operator; another possibility would have been to use not and or operators to
substitute for implication (and give the original form with the implication operator in a
comment above the assertion, for instance). The current form also shows the locality of
assertions in C.

3.2 Working with the VHDL Code

The second stage was to verify the actual implementation of the pseudo code in VHDL.
Ideally, the verification tool should accept VHDL as input language, but for practical reasons
we chose EBMC (version 4.1). Since EBMC uses Verilog as its input language, we first
translated the VHDL code to Verilog using a VHDL to Verilog RTL translator tool [10]
(version 2.0). The verification process was not as straightforward as in the case of the C code.
We struggled with the syntax and the use of the tool since the information available with the
installation package and on the tool website [6] was more limited than in case of CBMC. A
significant practical difference with the tools was that the assertions were considered global
in EBMC and local in CBMC. This made the reuse of assertions developed for the C code
impossible.

Figure 2 shows how the voting is implemented in the Verilog code. The always block gets
executed on the rising edge of either the clock or the reset signal. If the reset is active (zero),
then the output is zero. Otherwise the voting occurs. Interestingly, the implementation

A. Jääskeläinen, M. Katara, S. Katz, and H. Virtanen 51

#include<assert.h>
void foo(int OCHY_comparator_state_ICH1,

int OCHY_comparator_state_ICH2,
int OCHY_comparator_state_ICH3) {

int OCHY_Voter_State = 0;

OCHY_Voter_State =
(OCHY_comparator_state_ICH1 || OCHY_comparator_state_ICH2) &&
(OCHY_comparator_state_ICH1 || OCHY_comparator_state_ICH3) &&
(OCHY_comparator_state_ICH2 || OCHY_comparator_state_ICH3);

if ((OCHY_comparator_state_ICH1 == 1) && (OCHY_comparator_state_ICH2 == 1)
&& (OCHY_comparator_state_ICH3 == 1)) { assert(OCHY_Voter_State == 1);

}
if ((OCHY_comparator_state_ICH1 == 1) && (OCHY_comparator_state_ICH2 == 1)
&& (OCHY_comparator_state_ICH3 == 0)) { assert(OCHY_Voter_State == 1);

}
if ((OCHY_comparator_state_ICH1 == 1) && (OCHY_comparator_state_ICH2 == 0)
&& (OCHY_comparator_state_ICH3 == 1)) { assert(OCHY_Voter_State == 1);

}
if ((OCHY_comparator_state_ICH1 == 0) && (OCHY_comparator_state_ICH2 == 1)
&& (OCHY_comparator_state_ICH3 == 1)) { assert(OCHY_Voter_State == 1);

}
if ((OCHY_comparator_state_ICH1 == 1) && (OCHY_comparator_state_ICH2 == 0)
&& (OCHY_comparator_state_ICH3 == 0)) { assert(OCHY_Voter_State == 0);

}
if ((OCHY_comparator_state_ICH1 == 0) && (OCHY_comparator_state_ICH2 == 1)
&& (OCHY_comparator_state_ICH3 == 0)) { assert(OCHY_Voter_State == 0);

}
if ((OCHY_comparator_state_ICH1 == 0) && (OCHY_comparator_state_ICH2 == 0)
&& (OCHY_comparator_state_ICH3 == 1)) { assert(OCHY_Voter_State == 0);

}
if ((OCHY_comparator_state_ICH1 == 0) && (OCHY_comparator_state_ICH2 == 0)
&& (OCHY_comparator_state_ICH3 == 0)) { assert(OCHY_Voter_State == 0);

}}

Figure 1 The C code and the eight assertions verified with CBMC.

in VHDL did not directly correspond to the original pseudo code, but had && (and) in the
innermost level and || (or) in the outermost level.

The code shown is generated by the translator tool from the original VHDL source. In
practice, with the active low reset signal, it would make more sense to use a falling edge
instead of rising edge to trigger the code block. However, the block gets triggered with the
next rising edge of the clock signal in any case, so this did not affect the verification task.

The code shown in Figure 3 shows a part that was added to the Verilog code only for the
purposes of verification. There are now three new registers: voter_state_check_in_pos,
voter_state_check_in_neg, and voter_state_ check. The value one of the first register
should imply a voting result one. Correspondingly, the value one of the second register should

SSV’11

52 Verification of Safety-Critical Systems

always @(posedge clk or posedge rst_n) begin
if(rst_n == 1’b 0) begin

voter_state_i <= 1’b 0;
end else begin

if((ICH1_comparator_state_och_in == 1’b 1 &&
ICH2_comparator_state_och_in == 1’b 1) ||

(ICH1_comparator_state_och_in == 1’b 1 &&
ICH3_comparator_state_och_in == 1’b 1) ||

(ICH2_comparator_state_och_in == 1’b 1 &&
ICH3_comparator_state_och_in == 1’b 1))

begin
voter_state_i <= 1’b 1;

end
else begin

voter_state_i <= 1’b 0;
end

end
end

Figure 2 The implementation of the voting code after VHDL to Verilog translation.

reg voter_state_check_in_pos;
reg voter_state_check_in_neg;
reg voter_state_check;

initial begin
voter_state_check_in_pos = 0;
voter_state_check_in_neg = 0;
voter_state_check = 1;

end

Figure 3 The added verification code in Verilog – part 1.

imply a voting result zero. The value of the third register should always be one if the system
is working correctly. Since registers in Verilog have unknown initial values by default, the
new registers are assigned initial values in the initial block.

Figure 4 shows the actual assertion block that gets triggered similarly to the original
voting block. If the reset is not active and at least two of the inputs are one, the first new
register gets value one. Correspondingly, if the reset is not active and at least two of the
inputs are zero, the second new register gets value one. The third new variable gets assigned
a value indicating whether the value of the first new register implies the voting result and
the value of the second one implies the negation of the voting result.

One should note that the assignments are non-blocking, i.e. the right-hand side of each
of the assignments is evaluated first. The assignment to the left-hand side is delayed until all
the evaluations have been done.

The structure of the code block enables adding and removing “test cases” (input com-
binations in the context of the corresponding expected output value) from the statements
and the expression 1’b 0 ensures that the assertions work also without any “test cases”. We

A. Jääskeläinen, M. Katara, S. Katz, and H. Virtanen 53

always @(posedge clk or posedge rst_n) begin
voter_state_check_in_pos <= rst_n & (1’b 0

| (ICH1_comparator_state_och_in & ICH2_comparator_state_och_in)
| (ICH1_comparator_state_och_in & ICH3_comparator_state_och_in)
| (ICH2_comparator_state_och_in & ICH3_comparator_state_och_in)
);

voter_state_check_in_neg <= rst_n & (1’b 0
| (!ICH1_comparator_state_och_in & !ICH2_comparator_state_och_in)
| (!ICH1_comparator_state_och_in & !ICH3_comparator_state_och_in)
| (!ICH2_comparator_state_och_in & !ICH3_comparator_state_och_in)
);

voter_state_check <= (!voter_state_check_in_pos | voter_state_i) &
(!voter_state_check_in_neg | !voter_state_i);

assert (voter_state_check);
end

Figure 4 The added verification code in Verilog – part 2 (please note the use of bitwise operators).

think that this is a robust, easy-to-use and reusable solution, since it allows extending the
assertions with new properties incrementally. However, since the code in this case study is
simple, the benefits are not so visible here.

The solution can be extended into more complex systems. For each bit of output two new
registers and assignments to them are added, as well as corresponding terms to the expression
of the final assignment. For each bit of input a new term is added to the relevant bitwise
conjunctions of the assigned expressions for each expected output value. The assignment
for an expected output value is placed into an always block corresponding to the situations
where the value of the output may change in the code to be tested. However, this method is
limited to stateless systems; a system with internal memory cannot be handled in such a
straightforward manner.

One practical problem related to the inexperience of the person using the bounded model
checking tools was that it was seemingly easy to verify properties that did not correspond to
the actual requirement. For this reason we used a fault seeding technique where we introduced
errors to the properties and checked whether it was possible to verify the erroneous properties.
If not, we also checked that the counterexample provided by the tool corresponded to the
seeded error. In practice, the errors seeded were more or less random changes made to the
properties, i.e. we did not follow any systematic pattern. We think that this is a useful and
practical technique for engineers without much experience in using model checking tools
since it can be used to help determine whether a specification actually captures the desired
intention, as is done with tests of vacuity [3, 2], where it is determined whether a subproperty
is actually needed in the specification. This allows, for example, showing that an implication
is true “by default” because the left side is always false.

All the assertions shown in the figures were verified with the tools. The bound value
we used with EBMC was relative low, though. Once we became familiar with the tool, we
noticed that the bound given to the tool as a command line option made a big practical
difference. First, in some cases, it was possible to find problems in the assertions only when
the value of the bound was high enough. This should be taken into account when using the
fault seeding technique. Second, while the execution time of the tool with low bound values
was reasonable (bound value 1000 corresponded roughly to 10 seconds in verification time

SSV’11

54 Verification of Safety-Critical Systems

with a regular laptop computer), the execution took much more time with higher bound
values due to the state space explosion. We also ran into some warning messaging concerning
solver inconsistencies and one segmentation fault. Nevertheless, the tools were considered a
good choice for the purposes of this small case study. However, especially the EBMC tool
would be much more appealing from the practical point of view if a proper user manual and
documentation were available.

Regarding future work, creating the test code as used in the case study can be cumbersome
if inputs and outputs are numerous. More complicated inputs and outputs such as integers
have to be handled bit by bit, which causes even more work. However, since the test code
is very regular, it could be generated automatically with a suitable assisting tool. The
registers and assignments can be created based on a list of outputs, with those of more
complex types converted to a number of single-bit outputs. The expressions for the expected
value assignments can be similarly created based on a listing of input combinations with
the corresponding outputs, which may be given for example as a CSV (Comma Separated
Values) file. In this way test cases can be converted into assertions in the code with little
effort using Excel sheets created by test engineers, for instance.

4 Discussion

Even though our case study was small-scale in terms of the code checked, it helped us to
identify some potential problems and partial solutions in the context of using model checking
techniques to verify safety-critical systems. In more detail, the analysis of the results of the
case study led to the following recommendations.

First, formal verification is seen useful at least in simple cases like the one studied. It
was possible to develop a generic assertion mechanism for the code translated from VHDL to
Verilog, which should be reusable in the verification of similar designs and further supported
by assisting tools. Training would still be needed, though, in order to get engineers to use
the tools.

While reusing assertions is seen to be beneficial, understanding how to develop effective
assertions would need further training in the next step after basic training, unless this is
solved by assisting tools. We think that starting with simple “test cases” before moving
towards verifying more complicated properties can help in this process. In addition, we
recommend using the fault seeding technique where errors are introduced to the properties
for the purposes of checking whether it is possible to verify the erroneous properties; in our
case this helped us to catch errors in the assertions.

Second, the tools used in this study worked well, but their scalability is still unknown. It
would also be better if the VHDL code could be checked directly without the translation
process to Verilog, unless a (certified) translator that could be trusted is found.

Third, the design flow in this particular case could be improved by specifying the properties
associated with the requirements more precisely. This would allow detecting errors and
inconsistencies already in the requirements capturing phase, as this phase is widely recognized
to be critical. In an ideal case, the same properties could be translated into assertions used in
the formal verification of the VHDL code. These kinds of properties and assertions could be
reused in the case of modifications in a regression testing fashion; they could ease the burden
of reverification needed in case of modifications that affect many elements. In addition, there
might be some generic high level properties and assertions that could be used by different
projects as sanity checks for a set of implementations sharing commonalities.

Fourth, experimenting first with tiny systems is highly recommended. Model checking

A. Jääskeläinen, M. Katara, S. Katz, and H. Virtanen 55

suffers from the state explosion problem like any other formal verification technique and
with bigger systems more expertise is required to specify the system and requirements in
a way that can be handled with the computing resources available. Moreover, complex
specifications are more error prone to write and harder to check.

One practical problem related to the tools might be to find a suitable formal verification
tool. Formal verification tools capable of analyzing VHDL exist, such as [13, 5]. Due to high
license costs, however, it might be more economical to buy formal verification as a service
(see, for instance [21]), if a company has only a limited need for such a tool. This option
would also require less training. Another tool-related issue is certification: in principle, the
software tools used in developing safety-critical systems should be certified by independent
bodies [14, p. 83]. While certification is commonly used for compilers, we are not aware
of any certified formal verification tool; this might become an issue in the future on high
SIL/SC levels.

To conclude, the practical case study as well as the review of the related work show
that model checking is a useful technique in the development of safety-critical systems.
While there still are many problems to be solved, the tools are getting more scalable and
user-friendly. In particular, it would be essential to provide tools that can work directly on
the pseudo or source code used in the development and that require only basic training to be
useful. Moreover, the whole development process could be streamlined with the support of
such tools. While the standards regulating the development practices in the safety-critical
domain are recommending the use of formal verification tools, the biggest problem seems to
be related to training, and methodological introduction into the development process that
could be eased with the help of simple assisting tools that, for instance, use input formats
familiar to the users.

Acknowledgements
Funding from Tekes and the companies participating in the Ohjelmaturva project is gratefully
acknowledged. The authors would also like to thank the anonymous reviewers for their
helpful comments.

References
1 Angeletti, D., Giunchiglia, E., Narizzano, M., Puddu, A., Sabina, S.: Using bounded

model checking for coverage analysis of safety-critical software in an industrial set-
ting. J. Autom. Reason. 45, 397–414 (December 2010), http://dx.doi.org/10.1007/
s10817-010-9172-3

2 Ball, T., Kupferman, O.: Vacuity in testing. In: Beckert, B., Hähnle, R. (eds.) Tests and
Proofs, pp. 4–17. LNCS 4966, Springer Berlin / Heidelberg (2008)

3 Beer, I., Ben-David, S., Eisner, C., Rodeh, Y.: Efficient detection of vacuity in ACTL
formulas. Formal Methods in System Design 18, 141–162 (2001)

4 Björkman, K., Frits, J., Valkonen, J., Lahtinen, J., Heljanko, K., Hämäläinen, J.J.: Verific-
ation of safety logic designs by model checking. In: Sixth American Nuclear Society Inter-
national Topical Meeting on Nuclear Plant Instrumentation, Control, and Human-Machine
Interface Technologies, NPIC&HMIT (2009)

5 Cadence: Incisive Formal Verifier datasheet. http://www.cadence.com/rl/Resources/
datasheets/IncisiveFV_ds.pdf, cited March 2011

6 CBMC, EBMC: Homepage. http://www.cprover.org, cited March 2011
7 Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: NuSMV: a new Symbolic Model

Verifier. In: CAV’99. pp. 495–499. LNCS 1633, Springer (1999), http://nusmv.itc.it

SSV’11

http://dx.doi.org/10.1007/s10817-010-9172-3
http://dx.doi.org/10.1007/s10817-010-9172-3
http://www.cadence.com/rl/Resources/datasheets/IncisiveFV_ds.pdf
http://www.cadence.com/rl/Resources/datasheets/IncisiveFV_ds.pdf
http://www.cprover.org

56 Verification of Safety-Critical Systems

8 Clarke, Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge,
MA (1999)

9 Dammag, H., Nissanke, N.: Safecharts for specifying and designing safety critical systems.
In: In Symposium on Reliable Distributed Systems. pp. 78–87 (1999)

10 Gonzales, M.: VHDL to Verilog RTL translator v2.0. http://www.ocean-logic.com/
downloads.htm, cited March 2011

11 Hatcliff, J., Dwyer, M.: Using the Bandera Tool Set to model-check properties of concurrent
Java software. In: Larsen, K.G., Nielsen, M. (eds.) Proc. 12th Int. Conf. on Concurrency
Theory, CONCUR’01. pp. 39–58. LNCS 2154, Springer-Verlag (2001)

12 Hsiung, P.A., Chen, Y.R., Lin, Y.H.: Model checking safety-critical systems using sa-
fecharts. IEEE Transactions on Computers 56, 692–705 (2007)

13 IBM: IBM RuleBase homepage. http://www.research.ibm.com/haifa/projects/
verification/RB_Homepage/, cited March 2011

14 International Electrotechnical Commission: IEC 61508-7, Functional safety of electric-
al/electronic/programmable electronic safety-related systems, part 7 (2010), ed2.0

15 International Electrotechnical Commission: IEC 61508, Functional safety of electrical/elec-
tronic/programmable electronic safety-related systems (2010), ed2.0

16 Kaivola, R., Ghughal, R., Narasimhan, N., Telfer, A., Whittemore, J., Pandav, S.,
Slobodova, A., Taylor, C., Frolov, V., Reeber, E., Naik, A.: Replacing testing with formal
verification in Intelő Core™ i7 processor execution engine validation. In: CAV 2009. LNCS
5643, Springer (2009)

17 Kaivola, R., Kohatsu, K.R.: Proof engineering in the large: Formal verification of Pentium
4 floating-point divider. In: Margaria, T., Melham, T.F. (eds.) CHARME. pp. 196–211.
LNCS 2144, Springer (2001)

18 Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems: Specific-
ation. Springer-Verlag (1991)

19 Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an
efficient SAT solver. In: Proc. of the 38th Design Automation Conference, DAC’01. pp.
530–535 (2001)

20 de Moura, L., Bjorner, N.: Z3: An efficient SMT solver. In: Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS). pp. 337–340. LNCS
4963 (2008)

21 NoBug: Homepage. http://nobug.ro, cited March 2011
22 Pentium FDIV bug. http://en.wikipedia.org/wiki/Pentium_FDIV_bug
23 SATabs: Homepage. http://www.cprover.org/satabs/, cited July 2011
24 Storey, N.: Safety Critical Computer Systems. Addison-Wesley (1996)

http://www.ocean-logic.com/downloads.htm
http://www.ocean-logic.com/downloads.htm
http://www.research.ibm.com/haifa/projects/verification/RB_Homepage/
http://www.research.ibm.com/haifa/projects/verification/RB_Homepage/
http://nobug.ro
http://en.wikipedia.org/wiki/Pentium_FDIV_bug
http://www.cprover.org/satabs/

	Introduction
	Model Checking Safety-Critical Systems
	Model Checking and Bounded Model Checking
	Related Work

	Case Study
	Working with the Pseudo Code
	Working with the VHDL Code

	Discussion

