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Abstract
Discrete event simulation (DES) is a widely-used operational research methodology facilitating
the analysis of complex real-world systems. Although, generally speaking, simplicity is greatly
desirable in DES modelling applications, in many cases the nature of the underlying system
results in simulation models which are large in scale, complex, and expensive to run. As such,
the careful design and analysis of simulation experiments is essential to ensure valid and efficient
inference concerning DES model performance measures. It is envisaged that empirical Bayes
(EB) methods, which enable data to be pooled across a set of populations to support inference of
the parameters of a single population, may be of use within this context. Despite this potential,
EB has so far been neglected within the DES literature. This paper presents a preliminary com-
putational investigation into the efficacy of EB procedures in the estimation of DES performance
measures. The results of this investigation, and their significance, are explored. Additionally,
likely directions for future research are also addressed.
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1 Introduction and Motivation

Discrete event simulation (DES) is a powerful and flexible methodology, widely utilized in OR
applications for the design, analysis and improvement of complex, dynamic and stochastic
real-world systems. At its core, DES involves abstracting the fundamental structure of the
system of interest and using this information to construct a computer model of the system.
A process of experimentation is conducted with the computer model in order to gain insight
into and understanding of the performance of the real system. One of the key advantages of
discrete event simulation is its ability to incorporate a “realistic” level of system complexity
into the analysis process, when compared with the more rigid assumptions of alternative
modeling techniques; indeed, DES is frequently referred to as a “method of last resort” [9].
Whilst the benefits of simple models are well understood and widely disseminated (see, for
example, [11, 13]), there are many instances when the nature of the underlying system being
studied necessitates the use of simulation models which are large-scale, structurally complex,
difficult to interpret and computationally expensive to run. As such, the careful design
and analysis of simulation experiments is necessary to ensure valid and efficient inference
concerning model performance [8].
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Empirical Bayes (EB) procedures offer a structured and theoretically sound framework for
the pooling of data obtained across a set of populations to support inference concerning
the parameters of an individual population. This often enables more efficient inference in
situations which feature a repeated structure, providing that sufficient “similarity” exists
between component populations. (For a general EB reference, see [2]). It seems intuitively
reasonable that such an approach may be of benefit in simulation model experimentation,
owing to the underlying similarity between simulation model configurations. In light of the
computational expense involved in executing simulation models (touched on above), such
increased efficiency in estimation would likely prove highly advantageous in practice. Yet, in
spite of this apparent potential, EB has so far been neglected within the simulation literature.

This paper presents the results of a preliminary computational investigation into the use of
EB procedures in the estimation of DES model performance measures. It begins, in Section
2, with the presentation and brief derivation of the EB procedures which are to be applied.
Then, in Section 3, the DES model selected for testing is introduced, the reasons behind this
choice outlined and certain theoretical results regarding performance measures of interest
are presented. After this, in Section 4, the experimental design of the study is described,
before the results are summarised in Section 5. The paper concludes, in Section 6, with some
discussion of how this research area might be further explored in the future.

2 Introducing the Empirical Bayes Procedures

Empirical Bayes procedures feature a hierarchical model structure, identical to that of
a traditional Bayesian analysis. As such, we typically have a situation in which model
parameters are themselves represented by probability distributions, termed “prior” distri-
butions. In a Bayesian analysis, the prior distribution would be subjectively determined,
usually elicited from subject matter experts. However, in an empirical Bayes setting the
data themselves determine the prior distribution. As mentioned in the previous section,
EB methods are well-suited to applications featuring a large number of “similar” popula-
tions or processes. In this situation, the data obtained from each of the populations are
pooled and used to provide inference on a general prior distribution. This general prior
distribution is then combined with the individual samples from each of the populations
using standard Bayesian updating to obtain a “posterior” distribution specific to each of the
populations. (For a detailed overview of the above theory and terminology, please refer to [2].)

EB methods have a long history, with their roots in actuarial work on credibility theory,
the first major publication by Robbins [12] in 1955 and a series of landmark papers in the
1970’s by Efron and Morris [4, 5, 6] (see [10] for a more detailed account of their develop-
ment). However, recent years have seen a huge upsurge in the volume of EB publications.
This is due predominantly to scientific advances such as microarray technology, facilitating
high-throughput biological screening and generating massive datasets that demand a fresh
approach to statistical analysis [3]. A frequent feature of such datasets is their large number
of populations, contrasted with relatively few observations from each. Such structures, as
mentioned before, are ideally suited to an empirical Bayes analysis. Indeed, many successful
applications have been published; a recent survey being [1]. Not surprisingly, this renewed
interest has led to methodological and theoretical developments, as well as applications.

Here, however, we focus on some specific results which show particular promise in terms of
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their potential applicability within the context of DES model analysis. The empirical Bayes
estimator shall employ is the “double-shrinkage” estimator presented in article [15]. This
estimator assumes a normal/lognormal model of the data and its derivation is presented in
the following subsections.

2.1 Assumptions
For i = 1, 2, . . . , p, we assume:

Xi|θi, σ2
i

ind∼ N(θi, σ2
i ) (1)

θi
iid∼ N(µ, τ2) (2)

log σ2
i

iid∼ N(µυ, τ2
υ ) (3)

log(S2
i /σ

2
i ) iid∼ N(m,σ2

ch) (4)

where m = E[log(χ2
d)] = ψ(d2 )− log(d2 ) and σ2

ch = V ar[log(χ2
d)] = ψ′(d2 ), with d denoting the

degrees of freedom. Initially, we suppose that hyperparameters µ, τ2, µυ and τ2
υ are known.

2.2 Derivation
Given a sample of n observations, xi, from sampling distribution (1) for population i, the
prior distribution (2) on θi, and, for the moment, the additional assumption that σ2

i is known,
a standard application of Bayes rule yields:

θi|xi, σ2
i ∼ N(Mix̄i + (1−Mi)µ,Miσ

2
i ), (5)

where Mi = τ2/(τ2 + σ2
i /n) and x̄i = 1

n

∑
j xij , for the posterior distribution of θi.

In such a case, we would use the posterior mean:

θ̂i = Mix̄i + (1−Mi)µ, (6)

as a point estimator of θi.

However, the true population variances σ2
i for i = 1, 2, . . . , p are unknown, and as with [15]

we adopt a lognormal prior (3) for σ2
i , with the additional assumption (4) that S2

i /σ
2
i is

also lognormally distributed (with parameters selected to coincide with those of χ2
d/d, the

standard distributional assumption regarding the quantity S2
i /σ

2
i ).

From (4), it follows that:

logS2
i | log σ2

i ∼ N(m+ log σ2
i , σ

2
ch), (7)

and combining (3) and (7) using Bayes rule yields:

log σ2
i | logS2

i ∼ N(Mυ(logS2
i −m) + (1−Mυ)µυ,Mυσ

2
ch), (8)
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where Mυ = τ2
υ/(τ2

υ + σ2
ch).

As in [15], we estimate this quantity using:

σ̂2
i = exp(Mυ(logS2

i −m) + (1−Mυ)µυ). (9)

Thus, assuming known hyperparameters, we have the estimator:

θ̂i = Mix̄+ (1−Mi)µ, (10)

with Mi = τ2/(τ2 + σ̂2
i /n), where σ̂2

i is as given by equation (9) above.

2.3 Estimation of Hyperparameters
All that remains is the estimation of the hyperparameters µ, τ2, µυ and τ2

υ . As with [15], we
adopt the following estimators.

For µυ and τ2
υ , we have:

µ̂υ = 1
p

∑
i

(logS2
i −m) and τ̂2

υ = (1
p

∑
i

(logS2
i −m)2 − σ2

ch − µ̂2
υ)+,

from which we obtain:

M̂υ = τ̂2
υ

τ̂2
υ + σ2

ch

and σ̂EB,i = exp(M̂υ(logS2
i −m) + (1− M̂υ).

To estimate µ and τ2, we use:

µ̂ =
∑
i(x̄i/σ̂EB,i)∑
i(1/σ̂EB,i)

and τ̂2 = (
∑
i(x̄i − µ̂)2

p
)+.

Thus, the ‘double-shrinkage’ empirical Bayes point estimator is given as:

θ̂EB,i = M̂EB,ix̄i + (1− M̂EB,i)µ̂, (11)

where MEB,i = τ̂2/(τ̂2 + σ̂2
EB,i/n), and µ̂, τ̂2 and σ̂2

EB,i are as given above.

3 Introducing the DES Test Model

The purpose of this study is to evaluate the application of the EB methodology to the estim-
ation of DES model performance measures. Having already introduced the EB procedures
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which are to be evaluated, this section aims to discuss an appropriate DES model upon which
to test the EB procedures.

The model to be used is a computer-based implementation of an M/M/1 queuing model.
This simple model consists of a single-server queuing system with exponentially distributed
inter-arrival and service times and a first in - first out (FIFO) queuing discipline.

Simple “artificial” DES models such as this are frequently used in research for the evaluation
of DES model analysis techniques [7]. These test models offer the key advantage that theor-
etical values are available for many performance measures of interest, and this knowledge
greatly facilitates the testing of output analysis methods. One criticism which can be leveled
at this approach is that such models bear little resemblance to the majority of DES models
encountered in practice (those being significantly more complex). In light of this point, it
is helpful to highlight the exploratory nature of the study; it should be emphasized that
much of the value of this investigation lies in the issues it raises and the directions for further
research which surface. This discussion is taken up again in Section 6 after the results are
presented.

For now, some relevant queuing model theory and results, extracted from [14] and used in
later sections of the paper, are presented.

3.1 M/M/1 Theory
As discussed above, an appropriate choice of DES test model for this investigation appears
to be an M/M/1 model with a first in - first out queuing discipline. In this case, there
are only two additional model parameters which may be varied, the arrival rate, denoted
by λ, and the service rate, denoted by µ. In order to simplify our analysis, we note that
these parameters may be combined to give a single parameter, namely the traffic intensity,
which uniquely specifies a particular M/M/1 configuration. The traffic intensity parameter,
denoted by ρ, is given by ρ = λ

µ . We note that in future discussions, the particular M/M/1
configuration will be specified solely by reference to the traffic intensity, ρ.

Our performance measure of interest will be the steady-state (or long-run) expected time
in system, which we denote by W . The exact value of this quantity for any M/M/1 model
is given as a simple function of the arrival (λ) and service rate (µ) parameters, W = 1

µ−λ .
This enables us to calculate the steady-state expected time in system exactly for any given
M/M/1 model configuration.

4 Experimental Design

The aim of this section is to provide an overview of the experimental design employed during
the computational testing. Although the key points will be presented, a more comprehensive
picture of the research design may be obtained from visiting the following web address:
http://personal.strath.ac.uk/shona.blair/research/SCOR2012/

Initially, it is important to mention that in this experiment, the performance of the EB
estimator, θ̂EB,i , (as given by (11) in Section 2), is evaluated relative to that of the standard
estimator of a population mean, the sample mean X̄i. The sample mean is most prevalent
point estimator of DES performance measures [9]; it offers the advantage of being easily
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interpretable and constitutes a convenient standard by which other methods may be compared.

In order to estimate the steady-state time in system, the test model had to be executed and
time in system data collected. The relevant details concerning this stage of the experimenta-
tion are as follows:

Traffic intensities: a mesh with lower limit ρ = 0.02, upper limit ρ = 0.9 and step-size
ρ = 0.02 was used in the experiment. This resulted in 45 model configurations and gave
a nice, fine grid.
Number of replications: 200, 000 independent replications were made at each traffic
intensity configuration to ensure sufficient data was collected.
Warm-up period: a warm-up of 500 customers was used, ensuring that the model was
in steady-state prior to data collection.
Run-length: a run-length of 600 customers was used. The relatively short run-length
(in comparison to the warm-up period) ensured the experiment reflected possible real-life
data collection constraints.

This scheme yields a 200, 000 by 45 data matrix, where each data value represents an aver-
age time in system based on the first 100 customers after the aforementioned warm-up period.

Having obtained the necessary M/M/1 time in system data, we now discuss how this data
can be used to calculate both EB and standard estimates. In the standard setting, we simply
collect a batch of data from each traffic intensity configuration and calculate the sample
mean to make inference regarding the true population mean. The only decision to be made
concerns the size of the batch of data. In the empirical Bayes setting, however, data obtained
from other model configurations can be pooled to support inference of the population mean
of a given configuration. Thus immediate decisions need to be made concerning the size of
the batches to be used and the pooling strategy to be employed.

To gain as much insight as possible, a range of batch sizes were explored, from 3 to 20. This
enabled us to understand how the batch size affected the performance of the estimation
technique. Additionally, in terms of the pooling strategy employed, a simple two sample t-test
was conducted systematically for each pair of traffic intensity configurations to test for ho-
mogeneity. This approach was adopted as it avoids subjective decisions, based on theoretical
knowledge of the system, biasing the results of the study. A range of significance levels, from
0.05, 0.1, 0.15, ..., 0.95, were used to explore the relationship between pooling strategy and EB
performance. This design resulted in 342 possible combinations of batch size and significance
level, each of which was evaluated in the course of the computational testing. For each of
these batch size / significance level combinations, the large volume of M/M/1 data collected
permitted the calculation of 10, 000 pairs (both EB and standard) of estimates for each of
the 45 traffic intensities. It is thus convenient to consider two 10, 000 by 45 matrices (one
for each estimator) associated with each of the 342 batch size / significance level combinations.

To assess the performance of each estimator, the estimated values were subtracted from the
true values, the errors squared, and the averages calculated over the 45 traffic intensities.
This created, for each estimator, 10, 000 mean squared error (MSE) values. These were
averaged, to remove the issue of stochastic variability, and the square root was taken to
obtain the root mean squared error (rMSE) for each estimator. In order to gauge the relative
efficacy, the ratio of the EB rMSE over the standard rMSE was taken as our critical statistical
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metric of interest. Finally, note that both the M/M/1 model and the EB and standard data
analysis procedures were implemented in Matlab R2011a and run on a standard desktop PC
(Intel Core-i5, 3GHz, 8GB RAM).

5 Summary and Discussion of Experimental Results

This section of the paper briefly presents and discusses the key results obtained from the
aforementioned program of experimentation. As in the previous section, we begin by noting
that a comprehensive set of numerical results and a detailed analysis may be found at the
same web address. As mentioned in the previous section, the key statistical metric of interest
is the ratio of the rMSE of the EB estimator to the rMSE of the standard estimator. The
value of this quantity for each combination of batch size and significance level can found in
Table 1 of Appendix A, which has been illustrated in Figure 1.

Figure 1 Ratio of EB rMSE to standard rMSE: This depicts the relative performance of the
estimators, and how this varies with batch size and significance level. The plane at ratio= 1 enables
us to easily identify areas where the EB estimator outperforms the standard estimator.

From examination of Table 1, the most favourable value of this ratio (0.8852) was obtained
using a batch size of 3 and a significance level of 0.4, whilst the least favourable (1.6980)
occurred for batch size 5 and a significance level of 0.05. Additionally, it appears that the
optimal significance level, in terms of EB performance, is 0.4. As such, Figure 2 illustrates
the relative EB performance for this significance level over varying batch size.

6 Conclusion and Future Research

As may be seen from the results illustrated in the previous section, quantifiable benefit can
be achieved from the application of EB procedures to DES performance measure estimation.

SCOR’12
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Figure 2 rMSE ratio over varying batch size for optimal significance level.

This is a positive outcome to our pilot study which goes a significant way towards establishing
the feasibility of the application of empirical Bayes to DES model performance measure
estimation. However, it is also apparent that the batch size used and the pooling strategy
adopted are critical to the realization of this benefit. In this study, the decision as to whether
or not to pool model configurations was made on the outcome of a simple two sample t-test.
Although there are many more options for statistical tests of homogeneity, little in the way
of formal guidance exists specifically concerning empirical Bayes pooling strategies. More
exploration should be done on this subject with the aim of providing statistical indicators to
guide practitioners in how to apply this method.

DES models exhibit great variety, differing vastly in characteristics such as purpose, struc-
ture, scale, nature of input parameters and nature of output distributions. This complexity
increases the challenges involved in attempting to apply empirical Bayes to model analysis
and in attempting to provide detailed guidelines enabling practitioners to make use of this
methodology. A comprehensive study evaluating the benefits of EB in relation to more
“realistic” DES models forms part of our ongoing research.
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A Detailed Results

Table 1 rMSE ratios for 342 combinations: EB outperforming standard highlighted.

Batch Significance Level

Size 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

3 1.2616 1.2425 1.1975 1.0992 0.9934 0.9226 0.8887 0.8852 0.8939 0.9085
4 1.4835 1.3842 1.1791 1.0449 0.9616 0.9177 0.9026 0.9044 0.9134 0.9242
5 1.6980 1.3588 1.1560 1.0339 0.9666 0.9334 0.9215 0.9227 0.9290 0.9382
6 1.6748 1.3238 1.1351 1.0287 0.9711 0.9447 0.9346 0.9352 0.9393 0.9481
7 1.6339 1.2898 1.1187 1.0255 0.9782 0.9555 0.9471 0.9472 0.9506 0.9575
8 1.5932 1.2686 1.1127 1.0302 0.9877 0.9670 0.9585 0.9580 0.9602 0.9657
9 1.5593 1.2473 1.1020 1.0265 0.9891 0.9715 0.9635 0.9629 0.9651 0.9695
10 1.5176 1.2244 1.0913 1.0243 0.9907 0.9751 0.9682 0.9674 0.9697 0.9742
11 1.4973 1.2189 1.0944 1.0311 0.9990 0.9839 0.9763 0.9739 0.9755 0.9790
12 1.4691 1.2055 1.0893 1.0323 1.0019 0.9867 0.9801 0.9780 0.9790 0.9824
13 1.4381 1.1922 1.0863 1.0312 1.0032 0.9897 0.9842 0.9825 0.9826 0.9849
14 1.4411 1.1983 1.0938 1.0391 1.0126 0.9970 0.9900 0.9872 0.9870 0.9883
15 1.4262 1.1947 1.0946 1.0444 1.0166 1.0018 0.9939 0.9906 0.9904 0.9924
16 1.4135 1.1900 1.0945 1.0439 1.0179 1.0042 0.9976 0.9942 0.9932 0.9936
17 1.4074 1.1910 1.0972 1.0492 1.0239 1.0092 1.0015 0.9971 0.9961 0.9961
18 1.3900 1.1816 1.0937 1.0476 1.0231 1.0094 1.0009 0.9986 0.9965 0.9971
19 1.3735 1.1769 1.0912 1.0484 1.0249 1.0119 1.0043 0.9997 0.9979 0.9985
20 1.3641 1.1718 1.0913 1.0496 1.0269 1.0131 1.0057 1.0013 0.9992 0.9996

Batch Significance Level

Size 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

3 0.9216 0.9359 0.9509 0.9651 0.9774 0.9878 0.9954 0.9993 1.0000
4 0.9368 0.9499 0.9618 0.9735 0.9838 0.9921 0.9975 0.9999 1.0000
5 0.9490 0.9591 0.9698 0.9803 0.9886 0.9947 0.9989 1.0000 1.0000
6 0.9569 0.9669 0.9761 0.9849 0.9915 0.9966 0.9993 1.0000 1.0000
7 0.9657 0.9737 0.9812 0.9885 0.9945 0.9983 0.9997 1.0000 1.0000
8 0.9718 0.9788 0.9861 0.9922 0.9967 0.9990 0.9999 1.0000 1.0000
9 0.9754 0.9820 0.9886 0.9937 0.9974 0.9995 0.9999 1.0000 1.0000
10 0.9788 0.9845 0.9907 0.9953 0.9981 0.9994 1.0000 1.0000 1.0000
11 0.9831 0.9884 0.9925 0.9964 0.9990 0.9999 1.0000 1.0000 1.0000
12 0.9859 0.9906 0.9945 0.9975 0.9995 0.9999 1.0000 1.0000 1.0000
13 0.9878 0.9928 0.9961 0.9985 0.9997 1.0000 1.0000 1.0000 1.0000
14 0.9913 0.9946 0.9974 0.9991 0.9999 0.9999 1.0000 1.0000 1.0000
15 0.9939 0.9962 0.9983 0.9996 0.9999 1.0001 1.0000 1.0000 1.0000
16 0.9950 0.9972 0.9991 0.9999 1.0000 1.0001 1.0000 1.0000 1.0000
17 0.9976 0.9995 1.0003 1.0002 1.0000 1.0000 1.0000 1.0000 1.0000
18 0.9979 0.9991 0.9997 1.0001 1.0000 1.0000 1.0000 1.0000 1.0000
19 1.0001 1.0006 1.0002 1.0000 1.0001 1.0000 1.0000 1.0000 1.0000
20 0.9996 1.0002 1.0002 1.0001 1.0000 1.0000 1.0000 1.0000 1.0000
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