
Deciding Confluence of Ground Term Rewrite
Systems in Cubic Time∗

Bertram Felgenhauer1

1 Institute of Computer Science, University of Innsbruck, Austria
bertram.felgenhauer@uibk.ac.at

Abstract
It is well known that the confluence property of ground term rewrite systems (ground TRSs) is
decidable in polynomial time. For an efficient implementation, the degree of this polynomial is
of great interest. The best complexity bound in the literature is given by Comon, Godoy and
Nieuwenhuis (2001), who describe an O(n5) algorithm, where n is the size of the ground TRS.
In this paper we improve this bound to O(n3). The algorithm has been implemented in the
confluence tool CSI.

1998 ACM Subject Classification F.4.2 Grammars and Other Rewriting Systems – Decision
problems

Keywords and phrases confluence, term rewriting, decidability, ground terms

Digital Object Identifier 10.4230/LIPIcs.RTA.2012.165

Category Regular Research Paper

1 Introduction

It is well known that confluence of ground TRSs can be decided in polynomial time. In this
paper, we are interested in the degree of the associated polynomial.

To derive a polynomial time decision procedure for confluence of ground TRSs, Comon
et al. [3] use an approach based on a transformation by Plaisted [9] that flattens the TRS.
Then they test deep joinability of sides of rules. The authors sketch an implementation
with complexity O(n5), where n is the size of the given TRS. Tiwari [10] and Godoy et
al. [6] base their approach on a rewrite closure that constructs tree transducers—the given
TRS R is converted into two TRSs F and B such that F and B−1 are left-flat, right-
constant, F is terminating, and →∗R =→∗F · →∗B. They then consider top-stabilizable terms
to derive conditions for confluence. Tiwari obtains a bound of O(n9) (but a more careful
implementation would end up with O(n6)), while Godoy et al. obtain a bound of O(n6). The
algorithm of [3] is limited to ground TRSs, but [10] extends the algorithm to certain shallow,
linear systems, and [5] treats shallow, linear systems in full generality.1 In these extensions,
however, the exponent depends on the maximum arity of the function symbols of the given
TRS. In our work we combine ideas from [3, 10, 6] in order to improve the complexity bound
to O(n3). The key ingredients are a Plaisted-style rewrite closure, which results in TRSs
F and B of only quadratic size, and top-stabilizability, which is cheaper to test than deep
joinability.

∗ This research is supported by FWF (Austrian Science Fund) project P22467.
1 The same claim can be found in [6]. However, rule splitting, a key step in the proof of their Lemma 3.1,

only works if left-hand side and right-hand side variables are disjoint for every rule.

© Bertram Felgenhauer;
licensed under Creative Commons License NC-ND

23rd International Conference on Rewriting Techniques and Applications (RTA’12).
Editor: A. Tiwari; pp. 165–175

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62917003?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.RTA.2012.165
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/dagpub/978-3-939897-38-5
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


166 Deciding Confluence of Ground Term Rewrite Systems in Cubic Time

The remainder of this paper is structured as follows: After some preliminaries in Section 2
we describe the confluence check in Section 3. Some experimental results are presented in
Section 4. Finally we conclude in Section 5.

2 Preliminaries

A signature is a set of function symbols F = F (0)∪F (1)∪ . . . , where F (i) is the set of function
symbols of arity i, and the sets (F (i))i∈N are pairwise disjoint. The ground terms T (F) over
F are constructed inductively in the usual way: If t1, . . . , tn ∈ T (F) and f ∈ F (n), then
f(t1, . . . , tn) ∈ T (F). A position p of a term is a sequence of natural numbers addressing a
subterm t|p. Replacement of subterms t[u]p, and the size of terms |t| have their standard
definitions [2]. A term t together with a position p defines a context C[·] = t[·]p. Contexts
can be instantiated, C[s] = t[s]p. The elements of F (0) ⊆ F are called constants. A term is
flat if it is either a constant or a function symbol applied to constants.

A set R ⊆ T (F)2 of rules is a ground term rewrite system (TRS). If (`, r) ∈ R, we also
write `→ r ∈ R and sometimes ` ≈ r ∈ R. By R−, R±, |R|, ‖R‖ we denote R−1 (where we
view R as a relation on ground terms), R∪R−1, the number of rules in R, and the total size
of the rules,

∑
`→r∈R(|`|+ |r|), respectively. Any ground TRS R induces a rewrite relation

→R on ground terms: s→R t if there is a context C[·] such that C[`] = s and C[r] = t for
some `→ r ∈ R. Properties like flatness extend to rules and TRSs. For example, a rule is
left-flat if its left-hand side is flat; a TRS is left-flat if all its rules are.

Given a rewrite relation →, we write →∗ and ↔ for its reflexive, transitive closure and
its symmetric closure, respectively. A rewrite relation → is confluent if ∗← ·→∗ ⊆ →∗ · ∗←.
It is terminating if there are no infinite rewrite sequences t0 → t1 → t2 → . . . . Two terms s

and t are convertible if s↔∗ t. They are joinable, denoted by s ↓ t, if s→∗ · ∗←.
In the complexity analysis we make use of the fact that systems of Horn clauses can

be solved linear time, see Dowling and Gallier [4]. We work with propositional variables.
For each variable A, there is a positive atom A and a negative atom ¬A. A Horn clause
is a disjunction of atoms, with at most one positive atom. Horn clauses can be written
as implications—the clause ¬A ∨ ¬B ∨ C is equivalent to A ∧B → C. This implication is
equivalent to the following inference rule:

A B
C

3 Testing Confluence

We are given a finite ground TRS R0 over a finite signature F . We may assume without
loss of generality that R0 is curried, with a binary function symbol ◦ (representing function
application) and no other non-constant function symbols. To curry an arbitrary ground TRS
R, one introduces a fresh binary function symbol ◦ and replaces all function applications
f(t1, . . . , tn) by (. . . ((f ◦ t1) ◦ t2) . . . ) ◦ tn. The original function symbols become constants
in the curried TRS. It is well-known that currying preserves (non-)confluence (e.g., [7]) and
can be performed in linear time, increasing the size ‖R‖ of the TRS by a constant factor.

Furthermore we assume that F is minimal, i.e., only function symbols occurring in R0
are elements of F . We can make this assumption because (non-)confluence is preserved
under signature extension (this follows from the modularity of confluence, [11]). Let K be a
countably infinite set of fresh constants (disjoint from F (0)), and let u, v, w denote elements



B. Felgenhauer 167

of F (0) ∪K. We call u → v a C-rule (constant rule), and u ◦ v → w a D-rule (decreasing
rule).

The construction proceeds in four phases: First the TRS is flattened preserving confluence
and non-confluence, then we determine its rewrite closure and congruence closure, and finally
these closures are used for testing confluence of the flattened TRS.

I Example 3.1. We will decide confluence of R = {a → b, a → f(a), b → f(f(b))} and
R′ = R ∪ {f(f(f(b))) → b}. We start with the curried ground TRSs R0 = {a → b, a →
f ◦ a, b→ f ◦ (f ◦ b)} and R′0 = R0 ∪ {f ◦ (f ◦ (f ◦ b))→ b}.

3.1 Flattening
First, we flatten the TRS R0, as follows. We start with (R0,∅) and exhaustively apply the
rules

(R[u ◦ v], E) `ext (R[w], E ∪ {u ◦ v ≈ w})
(R[t], E ∪ {t ≈ u}) `simp (R[u], E ∪ {t ≈ u}),

where w ∈ K is fresh in `ext, and R[·] is a context of R, i.e., a context `[·] (or r[·]) of a side
of a rule `→ r in R, so that R[u] is obtained by replacing `→ r by `[u]→ r (or `→ r[u])
in R. After each `ext step, we apply `simp as often as possible before using `ext again.

In the resulting pair (R, E), R consists solely of C-rules (since otherwise, `ext would be
applicable), and E consists of D-rules. Furthermore, →R0 is confluent, if and only if →E±∪R
is, since every deduction step preserves and reflects the confluence property (cf. Lemma 3.2).
Because `simp is applied eagerly, no two left-hand sides in E are equal, and therefore E
is confluent (it is orthogonal). Note that as a result, every distinct subterm occurring in
R is represented by exactly one constant from F (0) ∪ K. This is similar in spirit to the
Nelson-Oppen congruence closure algorithm [8].

I Lemma 3.2. If (R, E) `ext (R′, E ′) or (R, E) `simp (R′, E ′) then →E±∪R is confluent if
and only if →E′±∪R′ is.

Proof. The rule `ext can be split into two steps, first adding the rule u ◦ v ≈ w to E followed
by applying `simp. The first step preserves confluence since any application of the new E-rule
can be undone using the corresponding E−-rule and vice versa, and since w is fresh, no rule
other than w ≈ u ◦ v can affect a subterm containing w.

For `simp, we prove that →E±∪R[t] ⊆ →∗E±∪R[u] and →E±∪R[u] ⊆ →∗E±∪R[t]. There are
two cases. (i) If a left-hand side of a rule is changed, i.e., `[t] → r ∈ R[t] is changed to
`[u]→ r ∈ R[u], then observing that s[`[t]]→E s[`[u]]→R[u] s[r] (simulating →`[t]→r using
rules from E± ∪R[u]) and s[`[u]]→E− s[`[t]]→R[t] s[r] (simulating →`[u]→r using rules from
E± ∪R[t]) establishes the claim, since all other rules are contained in both R[u] and R[t].
(ii) If a right-hand side is changed, ` → r[t] ∈ R[t], ` → r[u] ∈ R[u], then the simulations
s[`]→R[t] s[r[t]]→E s[r[u]] and s[`]→R[u] s[r[u]]→E− s[r[t]] prove the claim. J

Let the result of flattening be (R1, E), over an extended signature, where F (0) includes
the fresh constants added by `ext. Flattening is straightforward to implement by a bottom-up
traversal of the sides of the TRS, replacing subterms of the shape u ◦ v by constants, and
maintaining a lookup table of which such terms have been seen before. This takes time
O(‖R0‖ log(‖R0‖)) (the log(‖R0‖) factor accounts for the lookup table operations), and we
have ‖E‖ = O(‖R0‖), ‖R1‖ = O(|R0|), i.e., the total size of the TRSs R1 and E is at most
linear in that of R0.

RTA’12



168 Deciding Confluence of Ground Term Rewrite Systems in Cubic Time

I Example 3.3 (continued from Example 3.1). We introduce fresh constants fa, fb, ffb and fffb
for f ◦ a, f ◦ b, f ◦ fb and f ◦ ffb, respectively. The resulting TRSs are (R1, E) = ({a→ fa, a→
b, b→ ffb}, {f◦a ≈ fa, f◦b ≈ fb, f◦fb ≈ ffb}) and (R′1, E ′) = (R1∪{fffb→ b}, E∪{f◦ffb ≈ fffb).

3.2 Rewrite Closure
In this step, we are given a pair (R1, E), where R1 is a system of C-rules and E is a system
of D-rules. We want to obtain another pair (R2, E), where s→∗E±∪R2

t iff s→∗E±∪R1
t, such

that every rewrite sequence in (R1, E) can be transformed into a rewrite sequence in (R2, E)
of a special shape (cf. Lemma 3.4). The inference rules in Figure 1 define a relation u v

on constants. We will see in a moment that u v iff u→∗E±∪R1
v.

u→ v ∈ R1
u v base u ∈ F (0)

u u refl u v v  w
u w trans

u1  v1 u2  v2 {u1 ◦ u2 ≈ u, v1 ◦ v2 ≈ v} ⊆ E
u v

comp

Figure 1 Inference Rules for Rewrite Closure
The result of the rewrite closure step is (R2, E), where R2 = {u→ v | u v}.

I Lemma 3.4. s→∗E±∪R1
t if and only if s→∗E∪R2

· →∗E−∪R2
t.

Proof. Because of (base), we have R1 ⊆ R2, so that →∗E±∪R1
⊆ →∗E±∪R2

. On the other
hand, all rules in Figure 1 are compatible with the requirement that →∗E±∪R2

⊆ →∗E±∪R1
.

Therefore, the reachability relation is preserved, i.e., →∗E±∪R1
=→∗E±∪R2

.
First we show that for u, v ∈ F (0), u v (and therefore u→R2 v) whenever u→∗E±∪R2

v.
Assume that we have u→∗E±∪R2

v but not u v. Let u = t0 → · · · → tn = v be the shortest
sequence of (E± ∪R2) steps from u to v, and pick u and v such that n is minimal. If n = 0
then u = v, and u v by (refl). If n = 1 then u→ v ∈ R2 since E only contains D-rules. If
ti ∈ F (0) for any 0 < i < n, then u ti  v by minimality of u→∗E±∪R2

v, and u v by
transitivity (trans). In the remaining case, we have ti = ui ◦ vi for all 0 < i < n, and hence
u1 →∗E±∪R2

un−1 and v1 →∗E±∪R2
vn−1 since any root step would have a constant from F (0)

as source or target. But these two rewrite sequences have length at most n− 2, and therefore
u1  un−1 and v1  vn−1, implying u v by the (comp) rule. In all cases we found that
u v, a contradiction.

Now let s →∗E±∪R1
t. Then s →∗E±∪R2

t. Assume that this rewrite sequence is not of
the shape s→∗E∪R2

· →∗E−∪R2
t, but has a minimal number of inversions between E and E−

steps (an inversion is any pair of an E step following an E− step, not necessarily directly).
Then it has a subsequence of the shape s′ →p,E− s′′ →∗R2

t′′ →q,E t′, starting with an E−
step at p and a final E step at q. The cases p < q or p > q are impossible, because E contains
only D-rules and R2 only C-rules (applying C-rules does not change the set of positions of a
term).

If p = q then s′′|pi →∗R2
t′′|qi for i ∈ {1, 2}, collecting all R2 steps at positions below

p from s′′ →∗E±∪R2
t′′. By (refl) and (trans) this implies s′′|pi  t′′|qi for i ∈ {1, 2}.

Consequently, we have s′|p  t′|p by (comp). Hence we can delete the two E± steps and
the collected R2 steps, and replace them by an R2 step using the rule s′|p → t′|p. This
decreases the number of inversions between E and E− steps, contradicting our minimality
assumption. Otherwise, if p ‖ q, then we can reorder the rewrite sequence s′ →∗E±∪R2

t′

as s′ →∗>q,R2
· →q,E · →∗R2

· →p,E− · →∗>p,R2
t′, commuting mutually parallel rewrite



B. Felgenhauer 169

rewrite-closure(n, E ,R): Compute rewrite closure.
(Assumes that F (0) = {1, . . . , n}, which can be achieved as part of the flattening step).
1. By scanning E once, compute arrays l and r such that l[u] = {(v, w) | u ◦ v → w ∈ E}

and r[v] = {(u, w) | u ◦ v → w ∈ E}.
2. Let R′ = ∅ ⊆ {1, . . . , n}2 (represented by an array).
3. Process (refl): Call add(u, u) for 1 ≤ u ≤ n.
4. Process (base): Call add(u, v) for u→ v ∈ R.

add(u, v): Add u→ v to R′ and process implied (trans) and (comp) rules.
1. If u→ v ∈ R′, return immediately.
2. Let R′ = R′ ∪ {u→ b}.
3. Process (trans): For all w ∈ {1, . . . , n},

if w → u ∈ R′, call add(w, v).
if v → w ∈ R′, call add(u, w).

4. Process (comp):
For all (u2, ur) ∈ l[u] and (v2, vr) ∈ l[v], if u2 → v2 ∈ R′, call add(ur, vr).
For all (u1, ur) ∈ r[u] and (v1, vr) ∈ r[v], if u1 → v1 ∈ R′, call add(ur, vr).

Figure 2 Algorithm for Rewrite Closure

steps. This reduces the number of inversions between E and E− steps, and again we reach a
contradiction. J

The size of R2 is bounded by |F (0)|2 = O(‖R0‖2). We can view the inference rules in
Figure 1 as a system of Horn clauses with atoms of the form u v (u, v ∈ F (0)). This system
can be solved in time proportional to the total size of the clauses [4], finding a minimal
solution for the relation  . There are |R1| instances of (base), |F (0)| instances of (refl),
|F (0)|3 instances of (trans) and at most |F (0)|2 instances of (comp), noting that u1, u2 are
determined by u and v1, v2 are determined by v. Therefore, we can compute R2 in time
O(‖R0‖3).
I Remark. In our implementation, we do not generate these Horn clauses explicitly. Instead,
whenever we make a new inference u v, we check all possible rules that involve u v as a
premise. The result is a neat incremental algorithm (see Figure 2). From an abstract point
of view, however, this is no different than solving the Horn clauses as stated above. This
remark also applies to inference rules presented later.

I Example 3.5 (continued from Example 3.3). We present R2 and R′2 as tables, where
non-empty entries correspond to the rules contained in each TRS. For example, fa→ b ∈ R′2
but fa→ b /∈ R2. The letters indicate the inference rule used to derive the entry, while the
superscripts indicate stage numbers—each inference uses only premises that have smaller
stage numbers.

R2 =

f a fa b fb ffb
f r0

a r0 b0 b0 t2 t1

fa r0 c1 c3

b r0 b0

fb r0

ffb r0

R′2 =

f a fa b fb ffb fffb
f r0

a r0 b0 b0 t2 t1 t3

fa r0 t3 c1 t3 t2

b r0 t4 b0 t4

fb t2 r0 t2 c1

ffb t4 c3 r0 c3

fffb b0 t4 t1 r0

RTA’12



170 Deciding Confluence of Ground Term Rewrite Systems in Cubic Time

3.3 Congruence Closure
We are also interested in the congruence closure of (R1, E), because it allows us to decide
when two terms are convertible. We calculate the congruence closure as the rewrite closure
of (R±1 , E) and call it (C, E). This step also takes O(‖R0‖3) time. By Lemma 3.4 we have

s↔∗E±∪R1
t ⇐⇒ s→∗E±∪R±1 t ⇐⇒ s→∗E∪C · →∗E−∪C t ⇐⇒ s ↓E∪C t.

Note that C is symmetric and therefore, →E−∪C = E∪C←.

I Remark. There are far more efficient methods for calculating the congruence closure (an
almost linear time algorithm can be found in [2]), but the simple reduction to the rewrite
closure is sufficient for our purposes, since the total asymptotic running time is unchanged.

I Example 3.6 (continued from Example 3.5). Since C is an equivalence relation, we just give
its equivalence classes: [f]C = {f} and [a]C = {a, fa, b, fb, ffb}. For C′, we obtain [f]C′ = [f]C
and [a]C′ = [a]C ∪ {fffb}. Note that C and C′ are the symmetric, transitive closures of R2 and
R′2, respectively. This holds in general.

3.4 Confluence Conditions
So far we have flattened the TRS R0 and computed its rewrite and congruence closures,
enabling us to check reachability and convertibility of any given terms efficiently. In this
section we use these tools to decide confluence of R0.

We closely follow the approach in [10] and [6], which is based on the analysis of two
convertible terms s, t and their normal forms with respect to a system of so-called forward
rules of a rewrite closure. In our approach, these correspond to the system E ∪R2. However,
→E∪R2 is typically non-terminating, and we cannot use this idea directly. This problem
is easy to overcome though. We define A;B = {` → r | ` → m ∈ A and m → r ∈ B} and
→A/B = →∗B · →A · →∗B. Note that →E/R2 is terminating. We will use →E/R2 in place of
the forward reduction. This choice is justified by Lemma 3.8 below. We will abuse notation
slightly and speak of E/R2 normal forms.

I Lemma 3.7. Let S be a transitive, reflexive (as a relation) set of C-rules and E a set of
D-rules. Then →∗E∪S =→∗S · →∗E;S and →∗E−∪S =→∗S;E− · →

∗
S .

Proof. We first show that →∗E∪S = →∗S · →∗E;S . Start with a rewrite sequence s →∗E∪S t.
Whenever an S step is followed by another S step at the same position, we can combine
them using transitivity of S. Note that since E only contains D-rules, no intermediate E step
can overlap with either of the S steps. Once there are no more S steps that can be combined
this way, we replace each E step that is followed by an S step at the same position by the
corresponding E ;S step. If there is no following S step, we add an identity S step (which
exists by reflexivity of S) first. It is easy to verify that the final rewrite sequence is of the
desired shape.

For →∗E−∪S =→∗S;E− · →
∗
S it suffices to note that by reversing the rewrite sequences this

is equivalent to→∗E∪S− =→∗S− ·→
∗
E;S− . Since S

− is transitive and reflexive if S is, the claim
reduces to the previous one. J

I Lemma 3.8.
1. If s→∗E±∪R1

t then s→∗E/R2
· →∗R2;E− · →

∗
R2

t.
2. If s↔∗E±∪R1

t then s→∗C · →∗E;C · ∗
E;C← · ∗C← t.



B. Felgenhauer 171

Proof. 1. Assume that s →∗E±∪R1
t. By Lemma 3.4, this is equivalent to s →∗E∪R2

· →∗E−∪R2
t, or s →∗E/R2

· →∗E−∪R2
t, which according to Lemma 3.7 is equivalent to

s→∗E/R2
· →∗R2;E− · →

∗
R2

t, noting that R−2 is both reflexive and transitive by construction.
2. Assume that s↔∗E±∪R1

t, i.e., s→E±∪R±1 t. Again by Lemma 3.4, this is equivalent to
s→∗E∪C · ∗

E∪C← t. Since C is reflexive and transitive, the claim follows from Lemma 3.7. J

Let us assume that R1 ∪ E± is confluent, and that we have two convertible terms s and t.
There are corresponding E/R2 normal forms s′ and t′ for s and t, respectively. Now s′ and
t′ are convertible, so that by Lemma 3.8(2), for some term r,

s′ →∗C · →∗E;C r ∗
E;C← · ∗C← t′. (1)

Furthermore, by confluence and Lemma 3.8(1), noting that the choice of s′ and t′ forces the
→∗E/R2

sequences to be empty, it follows that for their common reduct r′,

s′ →∗R2;E− · →
∗
R2

r′ ∗
R2
← · ∗

R2;E−← t′. (2)

To capture the conditions on s′ and t′ (which are E/R2 normal forms), we adapt the notion
of top-stabilizable terms and constants from [6] to our purposes.

I Definition 3.9. A term u ◦ v with u, v ∈ F (0) is top-stabilizable if there exists an E/R2
normal form s such that s→∗C · →∗E;C u ◦ v. A constant u ∈ F (0) is top-stabilizable if there
exist v, w ∈ F (0) such that u→C;E− v ◦ w and v ◦ w is top-stabilizable.

The equations (1,2) define two rewrite sequences from r to r′ that consist solely of C- and
inverse D-steps (note that we consider the rewrite sequences from (1) in reverse). This means
that no rewrite step occurs below a preceding rewrite step. In fact all rewrite steps modify a
leaf of a term. Therefore we may assume without loss of generality that r ∈ F (0). Looking
at the surrounding rewrite steps in equation (1), we distinguish three cases depending on
whether the sequence of E ; C steps is empty or not.

1. s′ →∗C∪E s1 ◦ s2 →E;C r E;C← t1 ◦ t2
∗

C∪E← t′. In this case s1 ◦ s2, t1 ◦ t2 must be
top-stabilizable. Furthermore, for i ∈ {1, 2}, the terms si and ti are convertible via ri, so
that si ↓C∪E ti by Lemma 3.8.

2. s′ →∗C∪E s1 ◦ s2 →E;C t′ ∈ F (0). (Note that we use the fact that C is an equivalence
relation: s1 ◦ s2 →E;C · ∗C← t′ implies s1 ◦ s2 →E;C t′ if t′ ∈ F (0).) Then there must be
t1, t2 ∈ F (0) such that t′ →R2;E− t1 ◦ t2, and si ↓C∪E ti for i ∈ {1, 2}. This case also
covers s′ E;C← t1 ◦ t2

∗
C∪E← t′ by symmetry.

3. F (0) 3 s′ →C t′ ∈ F (0). Then s′ ↓E−∪R2 t′, with common reduct r′.

Hence we have found the following necessary conditions for confluence of R1 ∪ E±:

I Definition 3.10. The confluence conditions for confluence of R2 ∪ E± are as follows.
1. If s1 ◦ s2 and t1 ◦ t2 are top-stabilizable for constants s1, s2, t1, t2 ∈ F (0) such that

s1 ◦ s2 →E;C r E;C← t1 ◦ t2 then si ↓C∪E ti for i ∈ {1, 2}.
2. If s1 ◦ s2 →E;C t′ for s1, s2, t′ ∈ F (0) and top-stabilizable s1 ◦ s2, then there must be

t1, t2 ∈ F (0) such that t′ →R2;E− t1 ◦ t2, and si ↓C∪E ti for i ∈ {1, 2}.
3. If F (0) 3 s′ →C t′ ∈ F (0) then s′ ↓E−∪R2 t′.

I Lemma 3.11. The confluence conditions are necessary and sufficient for confluence of
R1 ∪ E±.

RTA’12



172 Deciding Confluence of Ground Term Rewrite Systems in Cubic Time

Proof. Necessity has already been shown above. For sufficiency, assume that the confluence
conditions are satisfied and there are convertible terms s and t with no common reduct.
Then any corresponding E/R2 normal forms do not have a common reduct either. Let s′ and
t′ be convertible E/R2 normal forms with no common reduct such that |s′|+ |t′| is minimal.
Recall that →∗E±∪R1

=→∗E±∪R2
so that R1 ∪E± joinability and R2 ∪E± joinability coincide.

The same holds for convertibility. We will simply use the terms “joinable” and “convertible”
for both R1 ∪ E± and R2 ∪ E±. We distinguish three cases.
1. If s′, t′ ∈ F (0), then by Lemma 3.8(2), s′ →C t′ (since s′, t′ are E ; C normal forms and C

is an equivalence relation) and we obtain a joining sequence from the third confluence
condition, contradicting the non-joinability of s′ and t′.

2. If s′ = s′1 ◦ s′2 /∈ F (0) and t′ ∈ F (0), then by Lemma 3.8(2) there is a rewrite sequence
s′ →∗C∪E s1 ◦ s2 →E;C t′ (again using that t′ is an E ; C normal form and that C is an
equivalence relation). By the second confluence condition we obtain a term t1 ◦ t2 such
that t′ →R2;E− t1 ◦ t2, and ti and si are convertible for i ∈ {1, 2}. Therefore, t1 and s′1
are convertible. Furthermore, since |t1| + |s′1| < |t′| + |s′|, this implies that t1 and s′1
are joinable. Analogously, t2 and s′2 are also joinable, and therefore s′ is joinable with
t1 ◦ t2 R2;E−← t′, contradicting our assumptions.
The case that s′ ∈ F (0) and t′ /∈ F (0) is handled symmetrically.

3. If s′ = s′1 ◦ s′2 /∈ F (0) and t′ = t′1 ◦ t′2 /∈ F (0), then by Lemma 3.8(2), s′ →∗E∪C r ∗
E∪C← t′.

If r = r1 ◦ r2 is not a constant, then s′1 and t′1 are convertible via r1 and likewise s′2 and
t′2 are convertible via r2. However, one of these pairs cannot be joinable, and we obtain a
smaller counterexample to confluence, a contradiction. Therefore, r must be a constant.
Using Lemma 3.8(2) we obtain a rewrite proof s′ →∗C∪E s1◦s2 →E;C r E;C← t1◦t2

∗
C∪E← t′.

From the first confluence condition, we conclude that s1 and t1 are convertible and
therefore also s′1 and t′1. By minimality of |s′|+ |t′|, s′1 and t′1 must be joinable. Likewise,
s′2 and t′2 must also be joinable, from which we conclude that s′ = s′1 ◦ s′2 and t′ = t′1 ◦ t′2
are joinable as well, a contradiction.

This completes the proof. J

3.5 Computation of Confluence Conditions
The computation consists of two major steps: First we compute all top-stabilizable constants
and terms of the form u ◦ v. Then we check the three confluence conditions.

In order to compute the top-stabilizable constants and terms, we first need to find
the E/R2 normal forms of the shape u ◦ v—denoted by NF(u ◦ v). We can compute the
complement of that set, i.e., the E/R2 reducible terms of that shape using the following
inference rules.

u ◦ v ≈ w ∈ E
¬NF(u ◦ v) base

{u1 → v1, u2 → v2} ⊆ R2 ¬NF(v1 ◦ v2)
¬NF(u1 ◦ u2)

comp

To obtain a cubic time algorithm, note that thanks to transitivity of R2, inferences made
by (comp) need not be processed—if ¬NF(w1 ◦ w2) implies ¬NF(v1 ◦ v2) by (comp) and
¬NF(v1 ◦ v2) implies ¬NF(u1 ◦ u2) by (comp) then ¬NF(w1 ◦ w2) implies ¬NF(u1 ◦ u2) by
(comp) as well. Therefore we simply consider each E rule (there are O(‖R0‖) of these) in
turn, and then make the corresponding inferences by the (comp) rule in O(‖R0‖2) time, for
a total of O(‖R0‖3).

Let us turn to top-stabilizable terms and constants now. First note that any constant
is an E/R2 normal form. The top-stabilizable constants and terms can be found using
another incremental computation. Every E/R2 normal form is top-stabilizable. If u ◦ v is



B. Felgenhauer 173

top-stabilizable and u ◦ v →E/C w, then w is a top-stabilizable constant, and u′ ◦ v and u ◦ v′

are top-stabilizable terms whenever u→C u′, v →C v′. For any top-stabilizable constant w,
w ◦ v, u ◦w for constants u, v are also top-stabilizable. Consequently, we obtain the following
inference rules, where TS(u) and TS(v ◦ w) assert that u and v ◦ w are top-stabilizable,
respectively, and (i, i′) ∈ {(1, 2), (2, 1)}.

u1 ◦ u2 ∈ NF(E/R2)
TS(u1 ◦ u2) nf

u1 ◦ u2 ≈ u ∈ E TS(u1 ◦ u2)
TS(u)

ts0
TS(ui)

TS(u1 ◦ u2)
tsi

u→ v ∈ C TS(v)
TS(u)

comp0
ui → vi ∈ C ui′ = vi′ TS(v1 ◦ v2)

TS(u1 ◦ u2)
compi

There are O(‖R0‖2) instances of (nf), (ts{1,2}) and (comp0), and O(‖R0‖3) instances of (ts0)
and (comp{1,2}). Again these inference rules have the shape of Horn clauses and can be
processed in time proportional to their total size, which is O(‖R0‖3).

I Example 3.12 (continued from Example 3.6). For R we have ¬NF = {f ◦b, f ◦ fa, f ◦ fb, f ◦a}.
Indeed f ◦ ffb is an E/R2 normal form since using R2 it can only be rewritten to itself
and it is not the left-hand side of any E rule. On the other hand, for R′ we obtain
¬NF′ = ¬NF ∪ {f ◦ ffb, f ◦ fffb}. Note that normal forms also include terms like f ◦ f or fa ◦ a
that have no correspondence in the original TRS.

In the R case, all terms of the form u ◦ v are top-stabilizable and so are all constants
except for f. For R′, only the normal forms are top-stabilizable.

With this pre-computation done, checking the confluence conditions becomes a straight-
forward matter. The only tricky part is checking joinability of constants in the third
condition. This relation can be computed in a way strikingly similar to the rewrite closure
from Section 3.2, using the following inference rules for computing ↓ = ↓E−∪R2 on constants:

u ∈ F (0)

u ↓ u
refl

{u1 ◦ u2 ≈ u, v1 ◦ v2 ≈ v} ⊆ E u1 ↓ v1 u2 ↓ v2
u ↓ v

comp

u→ v ∈ R2 v ↓ w

u ↓ w
trans1

u ↓ v w → v ∈ R2
u ↓ w

transr

As with the previous inference rules, this is a system of Horn clauses. There are O(‖E‖2) =
O(‖R0‖2) instances of (comp), O(‖R0‖) instances of (refl) and O(‖R0‖3) instances of
(transl,r). Therefore, computing ↓ can be done in O(‖R0‖3) time.

I Example 3.13 (continued from Example 3.12). The joinability relations R and R′ are given
below. As in Example 3.5, the letters and superscripts indicate the rule being used to derive
the entry and computation stage.

↓ =

f a fa b fb ffb
f r0

a r0 t1
l t1

l t1
l t1

l

fa t1
r r0 t1

l t1
l t1

l

b t1
r t1

r r0 t1
l

fb t1
r t1

r r0

ffb t1
r t1

r t1
r r0

↓′ =

f a fa b fb ffb fffb
f r0

a r0 t1
l t1

l t1
l t1

l t1
l

fa t1
r r0 t1

l c2 c2 c2

b t1
r t1

r r0 t1
r c3 c3

fb t1
r c2 t1

l r0 c2 c4

ffb t1
r c2 c3 c2 r0 c3

fffb t1
r c2 c3 c4 c3 r0

It is now easy to verify that R violates the third confluence condition (fb →C ffb but not
fb ↓ ffb), and therefore is not confluent. The other two confluence conditions are satisfied.
R′, on the other hand, satisfies all confluence conditions and is, therefore, confluent.

RTA’12



174 Deciding Confluence of Ground Term Rewrite Systems in Cubic Time

Table 1 Confluence of Ground Cops.

Cop 21 33 34 38 39 40 80 81 84 114 115 116
CR × X X × × X × X X X X X

Table 2 Runtimes for Rn.

system R100 R200 R400 R800 R1600 R3200

time (s) 0.2 (×) 0.2 (×) 1.3 (×) 19.2 (×) 254.3 (×) 2321 (×)

system R101 R201 R401 R801 R1601 R3201

time (s) 0.2 (X) 0.2 (X) 2.3 (X) 30.1 (X) 427.4 (X) 3919 (X)

Putting everything together, we obtain the following theorem.

I Theorem 3.14. The confluence of a ground TRS R can be decided in cubic time.

Proof. Let n = ‖R‖. We follow the process outlined above. First we curry R in linear time,
obtainingR0 with ‖R0‖ = O(n). Then we flattenR0, obtaining (R1, E) with ‖E‖ = O(n) and
‖R1‖ = O(n) in time O(n log(n)). In the next step we compute the rewrite and congruence
closures (R2, E) and (C, E) of (R1, E) in O(n3) time. Afterwards, we compute the E/R2
normal forms NF(− ◦ −), which as seen above takes O(n3) time. We then compute TS(−),
TS(−,−) and ↓E−∪R2 in O(n3) time. Finally we check the three confluence conditions. For
the first condition, we check each of the O(n2) pairs of rules s1 ◦ s2 →E u, t1 ◦ t2 →E v with
u→C v. For the second condition, we consider the O(n3) triples such that s1 ◦ s2 →E u→C
t′ →R2 v E← t1 ◦ t2. For the third condition we check all O(n2) pairs s′ →C t′. All these
steps can be accomplished in O(n3) time. J

4 Experiments

We have implemented the above algorithm in the confluence tool CSI2 [12], and tested it
on the ground confluence problems from the Cops database.3 The results are displayed in
Table 1. There are no runtimes given because they are all negligible. Note though that even
before implementing ground confluence in CSI, the tool could handle all these problems.
The runtime improved from 14s to 3s for checking all the TRSs. In order to obtain runtime
measurements, we considered the family of TRSs Rn = R∪ {fn(b)→ b} extending R from
Example 3.1. One can easily argue that the system Rn is confluent if and only if n is odd.
(Since R is a subsystem, all terms are convertible. However, f(b) and b are only joinable if n

is odd—otherwise the parity of k in the reducts fk(b) is invariant.) The runtimes for various
n are given in Table 2. ACP4 [1] and Saigawa5 fail on all these systems. The numbers from
Table 2 do not agree well with the proven complexity bound. This is due to cache effects—as
the input size increases, the intermediate arrays outgrow the first and second level caches.
Note that for the last two columns, the factor is very close to 8, finally meeting expectations.
The difference between odd and even n can be explained by the different size of the rewrite
closures. All measurements were done on a 2.67GHz Intel i7-620M computer with 4GB RAM
using a single core.

2 http://cl-informatik.uibk.ac.at/software/csi/
3 http://coco.nue.riec.tohoku.ac.jp/cops/
4 version 0.20, http://www.nue.riec.tohoku.ac.jp/tools/acp/
5 version 1.2, http://www.jaist.ac.jp/project/saigawa/

http://cl-informatik.uibk.ac.at/software/csi/
http://coco.nue.riec.tohoku.ac.jp/cops/
http://www.nue.riec.tohoku.ac.jp/tools/acp/
http://www.jaist.ac.jp/project/saigawa/


B. Felgenhauer 175

5 Conclusion

We have described an efficient algorithm for deciding the confluence of ground TRSs. In
our opinion, this is a worthwhile addition to an automated confluence checker, since other
methods fail on relatively simple ground TRSs. In fact, ACP can not handle either TRS
from Example 3.1, and neither can Saigawa. Before adding the ground TRS code, CSI could
not disprove confluence of R, but it was able to prove confluence of R′. It still failed on a
close relative of R′, namely the confluent ground TRS R5 = R∪ {f(f(f(f(f(b)))))→ b}.

A natural question is whether we can improve the bounds for the other known classes
of TRSs with fixed maximum arity that have a known polynomial complexity for deciding
complexity, foremost the class of shallow, left-linear TRSs. Our main improvement over [10]
is the limitation to C-rules in the rewrite closure, effectively constraining the considered
rules to relations between subterms of the original curried TRS. This does no longer work
once we have variables in rules. Therefore, at present, we do not know how to improve the
other results.

Acknowledgements The author is grateful to Aart Middeldorp, Harald Zankl and Sarah
Winkler for comments on a preliminary draft of this paper, and to the anonymous reviewers
for advice that helped to improve the presentation of the final version.

References
1 T. Aoto, J. Yoshida, and Y. Toyama. Proving confluence of term rewriting systems auto-

matically. In Proc. 20th RTA, volume 5595 of LNCS, pages 93–102, 2009.
2 F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press,

1998.
3 H. Comon, G. Godoy, and R. Nieuwenhuis. The confluence of ground term rewrite systems

is decidable in polynomial time. In Proc. 42nd FOCS, pages 298–307, 2001.
4 W.F. Dowling and J.H. Gallier. Linear-time algorithms for testing the satisfiability of

propositional horn formulae. Journal of Logic Programming, 1(3):267–284, 1984.
5 G. Godoy, A. Tiwari, and R. Verma. On the confluence of linear shallow term rewrite

systems. In Proc. 20th STACS, volume 2607 of LNCS, pages 85–96, 2003.
6 G. Godoy, A. Tiwari, and R. Verma. Deciding confluence of certain term rewriting systems

in polynomial time. Annals of Pure and Applied Logic, 130(1-3):33–59, 2004.
7 S. Kahrs. Confluence of curried term-rewriting systems. JSC, 19(6):601–623, 1995.
8 G. Nelson and D.C. Oppen. Fast decision procedures based on congruence closure. Journal

of the ACM, 27(2):356–364, 1980.
9 D. Plaisted. Polynomial time termination and constraint satisfaction tests. In Proc. 5th

RTA, volume 690 of LNCS, pages 405–420, 1993.
10 A. Tiwari. Deciding confluence of certain term rewriting systems in polynomial time. In

Proc. 17th LICS, pages 447–457, 2002.
11 Y. Toyama. On the Church-Rosser property for the direct sum of term rewriting systems.

Journal of the ACM, 34(1):128–143, 1987.
12 H. Zankl, B. Felgenhauer, and A. Middeldorp. CSI – A confluence tool. In Proc. 23rd

CADE, volume 6803 of LNCS (LNAI), pages 499–505, 2011.

RTA’12


	Introduction
	Preliminaries
	Testing Confluence
	Flattening
	Rewrite Closure
	Congruence Closure
	Confluence Conditions
	Computation of Confluence Conditions

	Experiments
	Conclusion

