
On the Decidability Status of Reachability and
Coverability in Graph Transformation Systems∗

Nathalie Bertrand1, Giorgio Delzanno2, Barbara König3,
Arnaud Sangnier4, and Jan Stückrath3

1 Inria Rennes Bretagne Atlantique, France
2 Università di Genova, Italy
3 Universität Duisburg-Essen, Germany
4 LIAFA, Univ Paris Diderot, Sorbonne Paris Cité, CNRS, France

Abstract
We study decidability issues for reachability problems in graph transformation systems, a power-
ful infinite-state model. For a fixed initial configuration, we consider reachability of an entirely
specified configuration and of a configuration that satisfies a given pattern (coverability). The
former is a fundamental problem for any computational model, the latter is strictly related to
verification of safety properties in which the pattern specifies an infinite set of bad configurations.
In this paper we reformulate results obtained, e.g., for context-free graph grammars and concur-
rency models, such as Petri nets, in the more general setting of graph transformation systems and
study new results for classes of models obtained by adding constraints on the form of reduction
rules.

1998 ACM Subject Classification D.2.2 Design Tools and Techniques, D.2.4 Software/Program
Verification, F.4.2 Grammars and Other Rewriting Systems

Keywords and phrases decidability, reachability, graph transformation systems

Digital Object Identifier 10.4230/LIPIcs.RTA.2012.101

Category Regular Research Paper

1 Introduction

Graph transformation systems (GTS) form an intuitive, but precise modelling framework,
which has been extensively studied since its introduction in the 1970’s. A graph trans-
formation system consists of an initial graph and a set of reduction rules, which rewrite
graphs and thus generate a transition system with graphs as states. Applications come from
diverse areas such as the specification of UML model transformation [14] or encoding of
process calculi [4].

In the past there has been a strong focus on questions of (categorical) semantics and
expressiveness, while algorithmic issues received much less attention. Especially, different
from related formalisms such as Petri nets [15], there is no systematic study of decidability
results for graph transformation systems.

Taking inspirations from recent work on concurrency models [5, 8, 19, 20, 23], we consider
here decidability issues for two fundamental problems: reachability and coverability of a
given graph Gf from an initial graph G0. The first problem requires the existence of a

∗ Research partially supported by DFG project GaReV.

© Nathalie Bertrand, Giorgio Delzanno, Barbara König, Arnaud Sangnier, Jan Stückrath;
licensed under Creative Commons License NC-ND

23rd International Conference on Rewriting Techniques and Applications (RTA’12).
Editor: A. Tiwari; pp. 101–116

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62916996?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.RTA.2012.101
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/dagpub/978-3-939897-38-5
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

102 On the Decidability Status of Reachability and Coverability in GTS

computation from G0 to (a graph isomorphic to) Gf . The second one requires the existence
of a computation from G0 to some graph G that includes Gf as a subgraph.

While it is straightforward to determine the decidability status of these problems for
general graph transformation systems, where the problems are both undecidable, and finite-
state graph transformations, where they are both decidable, there are several other classes
of infinite-state systems for which the question can be naturally asked. In this paper we
systematically analyse reachability and coverability for several subclasses of GTS obtained
as syntactic restrictions of reduction rules.

For special classes of GTS in which rules never change the underlying structure, we
also consider an existential formulation of the coverability problem in which the initial
configuration is an unknown variable to be discovered. This problem naturally models
parameterized verification questions for concurrent systems with a static topology [9].

With our analysis, we combine within a unified framework both known results coming
from fields such as context-free graph grammars, concurrency and verification, with new ones
that we obtain by considering restrictions such as non-deletion of nodes, well-structuredness
of the rewriting relation, and relabelling reductions only. An algorithmic view of graph
transformation systems could open new research directions in the field of verification of
infinite-state systems.

Due to length restrictions this paper contains mostly proof sketches. A version of this
paper including all proofs in full length is published as a technical report [3].

2 What is a Graph Transformation System?

A graph transformation systems (GTS) is defined by a collection of reduction rules that
can be used to dynamically modify the structure of an initial hypergraph. Reduction rules
can conveniently be defined as graph morphisms. To formalize these ideas, we next define
(labelled) hypergraphs – in the following simply called graphs – and graph morphisms.

I Definition 1. Let Λ be a finite sets of edge labels and ar : Λ→ N0 a function that assigns
an arity to each label. A (Λ-)hypergraph is a tuple (VG, EG, cG, l

E
G) where VG is a finite set

of nodes, EG is a finite set of edges, cG : EG → V ∗G is a connection function and lEG : EG → Λ
is an edge labelling function. We require that |cG(e)| = ar(lEG(e)) for each edge e ∈ EG

An edge e is called adjacent to a node v if v occurs in cG(e).

We remark here that we consider graphs in which hyperedges have a fixed arity determined
by their label. Directed labelled graphs are a special case of hypergraphs where every edge
label has arity 2 and every sequence cG(e) is of length two.

I Definition 2. Let G, G′ be (Λ-)hypergraphs. A partial hypergraph morphism (or simply
morphism) ϕ : G ⇀ G′ consists of a pair of partial functions (ϕV : VG ⇀ VG′ , ϕE : EG ⇀

EG′) such that for every e ∈ EG it holds that ϕV (cG(e)) = cG′(ϕE(e)) whenever ϕE(e) is
defined. Furthermore if a morphism is defined on an edge, it must be defined on all nodes
adjacent to it.

A morphism is called label-preserving if in addition lEG(e) = lEG′(ϕE(e)) for all e ∈ EG,
where ϕE(e) is defined. Total morphisms are denoted by an arrow of the form →.

In the following we drop the subscripts and write ϕ instead of ϕV and ϕE . Note that in the
literature graph morphisms are usually label-preserving. Here we are more flexible in our
definition, since we want to use graph morphisms also in order to define relabellings.

N. Bertrand, G. Delzanno, B. König, A. Sangnier, and J. Stückrath 103

E E

EE

T

21

E

E E

E
3

Figure 1 A graph (left) and its minor (right).

Isomorphism, Subgraphs, and Minors

Two graphs G,H are called isomorphic if there is a bijective, label-preserving morphism from
G to H. In the rest of the paper we consider the following graph orderings over hypergraphs:
G vs H, if G is a subgraph of H, namely, there exists a total, injective and label-preserving
morphism from G to H, and G vm H if G is a minor of H, i.e., G can be obtained from
H by (iterative) node deletion, edge deletion and edge contraction. Edge contraction for
hypergraphs means that the edge is deleted and its adjacent nodes are merged arbitrarily,
i.e. merging nodes according to any partition on the adjacent nodes will result in a valid
edge contraction (see also [22]). Fig. 1 shows an example of an edge contraction: the 3-ary
hyperedge labelled T (where the nodes attached to the edge are numbered 1, 2, 3 in their
respective order) is contracted with partition {1, 2}, {3}, which means that we obtain a
circle of E-edges.

Based on results in [22] it can be shown that the minor order defined above is a well-quasi
order1 on the set of all hypergraphs. The minor order on hypergraphs was first differently
introduced in [17], contracting all nodes attached to a hyperedge. However, unfortunately
it does not follow from the results in [22] that the order studied in [17] is a wqo. By using
the minor order defined above instead, the results of [17] can be recovered, see [18] for a
corrected version. Furthermore the subgraph order is a wqo on a restricted set of graphs
(for more details see Section 3.5). Note that if G is a subgraph of H, it is also a minor, but
not necessarily vice versa.

Graph Rewriting

We now define the rewriting mechanism, a slight extension of single-pushout rewriting (SPO)
[13]. One of the most important features of SPO is the handling of so-called “dangling”
edges: whenever a node is deleted, all edges attached to it have to be removed as well, also
those which are not explicitly deleted. Different from standard SPO we allow as rules partial
morphisms which are not necessarily label-preserving. In such a case the corresponding edge
is preserved and relabelled. In the definition below this is simulated by removing the old
edge and adding a new edge with the modified label. This will be especially important in
Section 3.7 where we consider node and edge relabelling as well.

I Definition 3. A rewriting rule is a partial morphism r : L ⇀ R, where L is called left-
hand side and R right-hand side. A match (of r) is a total, injective and label-preserving
morphism m : L→ G.2

1 A quasi order (on graphs) is a well-quasi order (wqo) if in every infinite sequence G1, G2, . . . of graphs
there are indices i < j with Gi v Gj .

2 Since m is injective we can assume that it acts as the identity on nodes and edges on which it is defined,
i.e., m(v) = v and m(e) = e for v ∈ VL, e ∈ EL. In addition we assume that the set of nodes and edges
in R not in the image of r are disjoint from the set of nodes and edges of G.

RTA’12

104 On the Decidability Status of Reachability and Coverability in GTS

Given a rule r and a match m, a rewriting step or an application of the rule to the graph
G, results in a graph H (symbolically G⇒R H), which is defined as follows. Let ED be the
set of edges e ∈ EG which are adjacent to a node m(v) where r(v) is undefined (so-called
dangling edges). We define the node and edge sets of H as follows: VH = VG\VL ∪ VR,
EH = EG\(EL ∪ ED) ∪ ER.

Define a mapping r̃ : VG ⇀ VH such that r̃(v) = v if v ∈ VG\VL, and r̃(v) = r(v) if
v ∈ VL. Finally, define the attachment and edge labelling functions of H:

cH(e) =
{
cR(e) if e ∈ ER

r̃(cG(e)) if e ∈ EG\(EL ∪ ED) lEH(e) =
{
lER(e) if e ∈ ER

lEG(e) if e ∈ EG\(EL ∪ ED)

Intuitively, we can think of this as follows: L is a subgraph of G, all items of L whose
image is undefined under r are deleted, the new items of R are added, merged and connected
as specified by r. Whenever a node is deleted, all adjacent edges will be deleted as well. In
addition, edges are relabelled as specified by r.

Note that for Definition 3 it would be sufficient to define r solely on nodes and to create
and recreate edges instead of preserving them. However, to be consistent with later sections,
especially Section 3.7, we allow that r is also defined on edges.

I Example 4. In the following we introduce an (erroneous) termination detection protocol
on a ring, modelled as a GTS to illustrate a rewriting step as well as the differences between
the classes of GTS studied in later sections.

AP

DP

Figure 2
Initial graph.

The protocol is initialised with a ring structure containing an active pro-
cess, a passive process and a passive detector as shown in Figure 2. The
first three rules presented in Figure 3 allow normal and detector processes
to deactivate themselves (3a), activate other processes (3b) and generate new
processes (3c). The last three rules shown in Figure 3 allow detector processes
to generate termination messages (3d), normal processes to forward these mes-
sages (3e) and detector processes to generate a termination flag after receiving
a termination message (3f).

Edges are represented as boxes with rounded edges and binary edges are drawn as dir-
ected edges, indicating the order of the nodes wrt. the edge. The example includes 0-ary
hyperedges (with label termination), unary hyperedges (with label T) and binary hyperedges
with labels (A,P,DA,DP). The label (D)A thereby represents both the label A and DA

(label (D)P is uses analogously), i.e. the rule in Figure 3a can either rewrite an A-edge to a

1 2 1 2

(D)A (D)P

(a) Deactivate
21 3

4 4

21 3

(D)A (D)P (D)A (D)A

(b) Activate

21 1 2

(D)A (D)A A

(c) Create new process 1 2 1 2

3 3

DP DP

T

(d) Generate termination message

1 2 1 2

3 3

P P

T T

(e) Forward termination message
1 2 1 2

3 3

DP DP

T

termination

(f) Termination detection

Figure 3 The basic rules of a termination detection protocol.

N. Bertrand, G. Delzanno, B. König, A. Sangnier, and J. Stückrath 105

1 2 1,2
(D)A

(a) Active process leaves
1 2 1,2

(D)P

(b) Passive process leaves

1 1

T

(c) Message lost

termination

(d) Termination flag lost

Figure 4 Additional rules simulating a lossy system.

D(A) termination

Figure 5 The error graph.

A

r �

m

��

P

��

AP

DP

�

P P

DP

Figure 6 A rewriting example.

P-edge or a DA-edge to a DP-edge. In a rule, an item (node or edge) in the left-hand side
numbered i is mapped to the corresponding item on the right-hand side.

This protocol is supposed to detect whether all processes are passive and generate a
termination flag in that case. However, by means of the methods of Section 3.5 it can
be proven erroneous. Figure 5 represents the pattern which a correct protocol will never
produce, that is an active process and a termination flag. Hence we can refute the correctness
by showing that a graph containing the pattern is reachable.

In order to model a lossy system, we add rules such that active (4a) and passive (4b)
processes can leave the ring and the termination message (4c) and flag (4d) may be lost.

Figure 6 exemplarily shows a rewriting step where the deactivation rule is applied to the
initial graph. The active process is thereby deleted and replaced by an identical but passive
process, resulting in the bottom right graph, where all processes are passive.

3 An Algorithmic Study of Reachability and Coverability

As mentioned in the introduction, we focus our attention on fundamental decision problems
for studying computational properties of a model, namely reachability and coverability. The
following definitions are given modulo isomorphism.

I Definition 5. Given a finite set of rewriting rules R, an initial graph G0 and a final graph
Gf , the Reachability Problem is defined as follows: does G0 ⇒∗R Gf hold?

I Definition 6. Given a finite set of rewriting rules R, an initial graph G0 and a final graph
Gf , the Coverability Problem is defined as follows: is there a graph H such that G0 ⇒∗R H

and Gf vs H?

RTA’12

106 On the Decidability Status of Reachability and Coverability in GTS

We will now study decidability and undecidability results by extending existing results
(e.g., for context-free grammars, GTS and Petri nets, and well-structured transition systems)
with new results for several fragments of GTS. The conclusion (Section 5) gives an overview
over the various cases in a single diagram. We first recall that the reachability and the
coverability problem are both undecidable in the general case. This is a known result. It
is quite straightforward to encode Turing machines into graph rewriting and either problem
admits a reduction from the halting problem.

Another immediate results follows from restricting the set of reachable graphs to be
finite. If it is known that only finitely many graphs up to isomorphism are reachable from
G0, the reachability and coverability problems are decidable for the given GTS. Indeed we
just have to enumerate all graphs up to isomorphism and check whether they are isomorphic
or in relation to Gf . While the result follows quite trivially, an efficient implementation is
more demanding (see for instance the GROOVE tool [21]).

3.1 Symbolic Backward Reachability Algorithm

Symbolic backward analysis turns out to be a convenient tool to answer coverability queries.
We present here a generic variant that we apply in some of the proofs in the rest of the
paper.

The key idea is to use a graph H as a symbolic representation of its upward closure
wrt. some subsumption relation v, namely the infinite set of graphs up(H) = {G | H v G}.
The subsumption relation is in our case either the subgraph inclusion (G vs H) or the graph
minor ordering (G vm H). For an upward closed set X, we define bXc to be a minimal
subset of X such that up(X) = up(bXc). We can then use bXc to describe X sufficiently, as
seen below. To check whether a graphs Gf is coverable using the set of rules R, we compute
the following sequence: Cover0 = {Gf}, Cover i+1 =

⌊
Cover i ∪

⋃
r∈R Prer(Cover i)

⌋
. The

sequence Cover0,Cover1, . . . resembles an exploration which starts from Gf and for each
rule r, it applies the rule backwards to the current set of graphs by taking into account their
denotation. The operator Prer is such that G ∈ Prer(H) iff ∃H ′. H v H ′, G⇒r H

′. Hence
in the case of subgraph inclusion, by adding auxiliary nodes and edges, we first expand H
into graph H ′, and then we search for a possible match with the right-hand side R of rule r.
If such a match exists, we apply a rewriting step backwards replacing R by L. The graph
Gf is then coverable if there is an H ∈ Cover i with H v G0 for some i ∈ N0.

It is sufficient to compute a minimal set MPrer(H) of graphs that denotes the infinite set
Prer(H), i.e. MPrer(H) = bPrer(H)c. In the case of subgraph inclusion this can be done
by considering only expanded graphs H ′ that are obtained by merging H with subgraphs
of R. Indeed we observe that if r is applied backwards to a subgraph of H ′ that does not
overlap with H, then the resulting graph will still contain H as a subgraph, and will never
be added (it is subsumed and does not bring any new information).

For the case of the minor ordering we can use similar ideas for the backwards step (see
also [17]).

In general the sequence Cover0,Cover1, . . . need not become stationary, hence the pro-
cedure need not terminate, but we can show that it terminates for our specific cases. The
termination depends mainly on the fact that the subsumption relation is a wqo on the used
set of graphs, but may also be affected by the rule set.

N. Bertrand, G. Delzanno, B. König, A. Sangnier, and J. Stückrath 107

3.2 Context-free Graph Transformation Systems
A well-known subclass of graph transformation systems are context-free graph grammars or
hyperedge replacement graph grammars [11], where the left-hand side of a rule consists of
a single hyperedge and no nodes are deleted or fused. Such grammars are usually used as
a language-generating device: labels are partitioned into terminal and non-terminal labels.
Only graphs which have only terminal labels are elements of the language. Furthermore
G0 consists of a single edge with a non-terminal label (the axiom) and the same is true for
all left-hand sides. Since the distinction between terminal and non-terminal labels does not
play a fundamental role for decidability questions, we will drop it in the following.

I Definition 7. A set R of rewriting rules is called context-free if every rule r ∈ R with
r : L ⇀ R satisfies the following restrictions:

L has the form L = ({v1, . . . , vn}, {e}, [e 7→ v1 . . . vn], lEL), i.e., L consists of a single
hyperedge, which is connected to a duplicate-free sequence of nodes.
r is defined and injective on v1, . . . , vn. Furthermore r is undefined on e.

Although not context-free, the termination detection example in Section 2 contains
context-free rules, e.g. the deactivation rule (3a), the creation rule (3c) and the rule gener-
ating a termination message (3f).

I Proposition 8 ([11]). The reachability problem for context-free graph transformation sys-
tems is NP-complete. More precisely: there are context-free grammars for which the mem-
bership problem is NP-complete (in the size of Gf).

I Proposition 9. The coverability problem for context-free graph transformation systems is
decidable.

Proof sketch. The decision procedure is based on the backward exploration algorithm in
Section 3.1, where we instantiate the predicate “G subsumesH” by G vs H (G is a subgraph
of H). Indeed, the key idea is to use a graph H as a symbolic representation of its upward
closure wrt. vs. For the case of context-free rules, termination is obtained by showing that
the number of hyperedges occurring in new graphs added at each iteration never increases.
From this property and since the arity of hyperedges is finite, we have that the state space
we need to explore to search for a graph that subsumes G0 is always finite (but potentially
exponential in the input). More details can be found in [3]. J

3.3 Restrictions on Node Deletion and Creation
In many cases graph transformation systems can be viewed as a variant of Petri nets with
additional structure. In this case the graph transformation system can be translated into
a low-level Petri net and we obtain decidability results from decidability results for Petri
nets, possibly with reset and transfer arcs. This is usually the case when we impose some
restrictions on the number of nodes that are deleted and/or created, since the main feature
that gives GTS more expressiveness than Petri nets is the creation of new nodes. We
can obtain such a GTS from the example of Section 2 by deleting the rule which creates
new processes and the lossy system rules. To model the lossy system rules transfer arcs
are required. This section relies on the intuitions and results of [2], which spells out the
connection between SPO and nets with reset arcs. The type of graph transformation systems
that are more or less equivalent to Petri nets can be specified as follows. Intuively the rules
do not allow node deletion, creation or fusion.

RTA’12

108 On the Decidability Status of Reachability and Coverability in GTS

I Proposition 10. Assume that the set R of rewriting rules satisfies the restriction that
every rule morphism r : L ⇀ R is a bijection on nodes. Then the reachability problem and
the coverability problem are decidable.

Proof sketch. Let G be the initial graph. In this setting VG remains unchanged by any
graph rewriting step and only the edges may change. We construct a Petri net from the
GTS to reduce reachability and coverability to reachability and coverability on Petri nets.
The places of the Petri net are defined as P = {(`, s) ∈ Λ × V ∗G | ar(`) = |s|}. A token
in a place (`, s) represents an edge e with l(e) = ` and c(e) = s. The initial graph can be
transformed straightforwardly into a marking of the Petri net. The rewriting steps are then
simulated by adding a set of transitions for each rule r : L ⇀ R, taking into account every
possible match of r to any possible graph with |VG| nodes. We achieve this by enumerating
all possible mappings h of nodes of L to nodes of VG, adding one transition for each. For
each edge e of L the transition has one input place (l(e), h(c(e))). Analogously the transition
has one output place for every edge in R using the same mapping. Effectively a transition
takes tokens out of places representing the edges deleted by r and adds tokens in places
representing the edges created by r. Since coverability and reachability are decidable for
P/T nets, we obtain the same for this variant of GTS. J

If we allow node fusion and node deletion and hence also deletion of adjacent dangling
edges, but recreate the same number of nodes, we are equivalent in expressivity to Petri nets
with transfer arcs.

I Proposition 11. Assume that the set R of rewriting rules satisfies the restriction that for
every rule (partial) morphism r : L ⇀ R we have |VL| = |VR|. Then the reachability problem
is undecidable, but the coverability problem is decidable.

Proof sketch. Since the number of nodes of a graph stays constant during rewriting, the
encoding of GTS into Petri nets is similar to the proof of Proposition 10. In order to deal
with partial morphisms (i.e. node deletion) and non-injective ones (i.e. node fusion), we
introduce transitions with transfer arcs that can transfer all tokens contained in a given set
of places into a specific place. Reset arcs [12] are a special case in which the transferred
tokens are moved to a sink place. Node deletion and subsequent recreation can be simulated
via reset arcs, which empty all places corresponding to edges adjacent to a deleted node.
Similarly, node fusion can be simulated by transfer arcs which merge the contents of all
places corresponding to edges adjacent to nodes that have the same image. Hence we can
encode all GTS conforming to the restrictions into transfer nets, inheriting the decidability
result from coverability of transfer nets. On the other hand, every reset net can be encoded
into a GTS with the above restrictions (see [2]). Hence reachability is undecidable for this
class of GTS. J

3.4 Non-Deleting Graph Transformation Systems
Now consider GTS that are non-deleting (neither edges nor nodes) and in addition label-
preserving, i.e., the rule morphism r : L � R is a (total) label-preserving injection. For
instance rule (3d) in Section 2 is non-deleting.

I Proposition 12. The reachability problem is decidable for non-deleting graph transform-
ation systems.

Proof sketch. In this setting reachability is decidable, due to the monotonicity of the rules.
We apply all rules to derive all possible graphs and stop the derivation if a graph larger than
Gf is reached. J

N. Bertrand, G. Delzanno, B. König, A. Sangnier, and J. Stückrath 109

However the monotonicity has no effect on coverability and we will show that coverability
is in fact undecidable.

I Proposition 13. The coverability problem is undecidable for non-deleting graph transform-
ation systems.

Proof sketch. The coverability problem is undecidable for general GTSs because the halting
problem for Turing machines can be reduced to it. This reduction is still possible for non-
deleting GTSs. We use a directed path of labeled edges to represent the tape of the Turing
machine and add one edge to mark the current state and head position. The input word
forms the initial graph and non-deterministically additional blanks are added at both tape
ends. Then for each step of the Turing machine, non-deleting rules copy the old tape
with the appropriate changes and connect it to the old tape, such that the full Turing
machine computation results in a grid-like graph. We have to take into account that without
application conditions any rule can be applied an arbitrary number of times using the same
matching, leading to a “branching” in the grid. However, we can show that this is not a
problem, because different branchings do not interact. Hence, the Turing machine terminates
if and only if an edge labeled with a final state is coverable in the GTS. The full proof can
be found in [3]. J

3.5 Well-Structured Graph Transformation Systems
A good source for decidability results for the coverability problem are well-structured trans-
ition systems [16, 1]. For this we need a well-quasi order v, possibly not on the class of all
graphs, but on restricted classes. Furthermore it has to be shown that the well-quasi order
is a (weak) simulation for the reduction relation, i.e., if G v H and G is rewritten to G′,
then H can be rewritten (possibly in several steps) to H ′ such that G′ v H ′.

These conditions ensure that every upward-closed set can be finitely represented and
that the set of predecessors of an upward-closed set is also upward-closed. If in addition the
order is decidable and the direct predecessors can be effectively computed, one automatically
obtains a backward search algorithm which can decide coverability.

Here we reuse results of [20, 17] and adapt them to our present setting (hypergraphs and
SPO with injective matches as a rewriting formalism). The following decidability results
then hold.

I Proposition 14. If the set of rules contains edge contraction rules for each edge label (i.e.,
a rule deleting that edge and merging some of its adjacent nodes using any partition on the
node set), then the coverability problem is decidable.

Proof sketch. We prove well-structuredness of GTS with contraction rules for all possible
edge labels. We first recall that the graph minor ordering is a decidable well-quasi ordering
[22]. Furthermore, the transition system of a GTS with contraction rules is monotone
wrt. the minor ordering. Based on these properties, we can apply the symbolic backward
reachability algorithm in Section 3.1, by instantiating the subsumes relation with the minor
relation, and by taking as MPrer the computation of the predecessors described in [17] for
conflict-free matches, adapted here to injective matches. The fact that the minor ordering
is a wqo ensures termination of the predecessor computation and thus of the entire decision
procedure. Note also that coverability with subgraph inclusion can be easily reduced to
coverability wrt. minor ordering by adding a rule that detects the subgraph Gf and adds an
edge with a unused label. Then we check whether this new edge is the minor of a reachable
graph. J

RTA’12

110 On the Decidability Status of Reachability and Coverability in GTS

[forward termination
message]

A

⇀

[activate]

⇀
[deactivate]

⇀
[termination

detection]

A

DA

A

DP

DA

P

⇀

A

DP

⇀

A

[activate]

DP

message]
[generate termination

⇀

DA

A

[deactivate]

⇀

DA

P

T

T T

T

termination

TT

Figure 7 Illustration of a backward search using the GTS of Example 4.

The GTS of Example 4 satisfies the conditions of Proposition 14 because of the lossy
system rules (Figure 4). Hence the presented backward search can be used to automatically
show that the protocol is erroneous, as shown in Figure 7. Beginning with the unwanted
pattern, i.e. an active process and the termination flag, the rules are applied backwards
until ultimately reaching a minor of the initial graph. In fact the result is a set of minimal
graphs describing all initial graphs for which the protocol is erroneous. Note that in the first
step the graph first has to be extended, adding the passive detector, before the rule can be
applied backwards. From the resulting sequence of rule applications it is apparent that the
protocols error occurs because a passive process which forwarded the termination message
can be activated afterwards. Hence the termination message and the process activation zone
both move around the ring, but never meet.

IDefinition 15. For a hypergraphG a path of length n is a sequence v0, e1, v1, . . . , vn−1, en, vn

of nodes vi ∈ VG and edges ei ∈ EG, where ei is adjacent to vi−1, vi and no node or edge
occurs more than once. A n-bounded path graph is a hypergraph G in which all paths have
length less than or equal to n.

The following proposition is inspired by results in [20].

I Proposition 16. If it is known that every graph reachable from G0 is an n-bounded path
graph, then the coverability problem is decidable for the given GTS.

Proof sketch. We prove well-structuredness of GTS wrt. subgraph ordering in the class of
n-bounded path graphs. We can then apply the symbolic backward reachability algorithm
in Section 3.1 by instantiating the subsumption relation v with subgraph inclusion, and by
discarding all predecessors that do not satisfy the n-bounded path property. Termination is
guaranteed here by the fact that subgraph ordering for bounded path graphs is a wqo [10].

J

3.6 Graph Transformation with Deletion by Minor Rules
The class of graph transformation systems with minor rules (node/edge deletion, edge con-
traction) is interesting in its own right. One can allow any combination of those rules and
study decidability questions.

A direct consequence of the decidability of the coverability problem (wrt. the minor
ordering) for graph transformation systems with edge contraction rules [17] is the decidab-
ility of the reachability problem for the class of graph transformation systems that contain

N. Bertrand, G. Delzanno, B. König, A. Sangnier, and J. Stückrath 111

=⇒

=⇒

=⇒

(q, 2, 1):
q

]1 c1 c1]1

c′1c
′
1c
′
1

]2 c2]2

c′2c
′
2

q, dec(c1), q′:

1 2 1 2

q

]1 c1 c1

c′1c
′
1

q′

]1 c1

c′1

q

]1 c1]1

c′1c
′
1

q′

]1]1

c′1

q, zero(c1), q′:
q

]1]1

c′1

q′

]1]1

c′1

Figure 8 Encoding of a Minsky machine.

node deletion, edge contraction and edge deletion rules. In fact, for these kind of systems,
reachability can be reduced to coverability because all the rules which are used in the minor
ordering are also present in the system. Here we investigate what happens to the reachabil-
ity problem when considering graph transformation systems where not all three minor rules
are present. In the sequel, we will say that a graph transformation system is:

edge-contracting if the set of rules contains all edge contraction rules for each edge label,
excluding the edge deletion rule which is a special case of edge contraction;
edge-deleting if the set of rules contains edge deletion rules for each edge label;
node-deleting if the set of rules contains a node deletion rule.

We have the following result which shows that to obtain the decidability of the reachability
problem in graph transformation systems with minor rules, all three types of minor rules
are necessary.

I Proposition 17. The reachability problem is undecidable for the following classes of graph
transformation systems: (a) edge-deleting and node-deleting; (b) edge-contracting and node-
deleting; (c) edge-deleting and edge-contracting.

Proof sketch. We encode reachability for two counter machines. A two counter machine
consists of a finite set of instructions manipulating two counters c1 and c2. Instructions
have the following form (the semantics is the intuitive one): (q, inc(ci), q′) (increment ci),
(q, dec(ci), q′) (decrement ci), (q, zero(ci), q′) (a blocking zero-test on ci), where q, q′ are
control states. Given a (q, k, l) with k, l ∈ N, it is undecidable to determine whether the
program can reach the configuration (q′, k′, l′) starting from (q0, 0, 0).

A configuration like (q, 2, 1) is encoded as a path with additional crossing edges as shown
Fig. 8. Such an encoding of configurations ensures that deletion by minor rules either blocks
a simulation or introduces some garbage that cannot be removed. In both cases we define
a reachability query that ensures that the simulation will not take wrong turns. Decrement
and increment are encoded via graph transformations that preserve the structure of the
representation as in Fig. 8. The correctness of the reduction is discussed in [3]. J

I Proposition 18. The coverability problem is undecidable for graph transformation systems
with edge deletion and node deletion rules.

RTA’12

112 On the Decidability Status of Reachability and Coverability in GTS

Proof sketch. The proof is a variant of the proof of Proposition 17 in the case of edge
deletion and node deletion. More details can be found in [3]. J

3.7 Relabelling Rules
We now consider rules with arbitrary left-hand sides that are however only allowed to relabel
their nodes or edges. So far, node labels were of no specific interest, but they play an
important role in this section. Hence we now generalize the notion of hypergraph to include
node labels: to a quadruple of the form G = (VG, EG, cG, l

E
G) representing a graph as

introduced in Definition 1, we will now add an additional node-labelling function lVG : VG →
Λ′, where Λ′ is a finite set of node labels. The notion of graph morphism and the notion of
rewriting are extended in the obvious way.

I Definition 19. A rewriting rule r : L ⇀ R is called a relabelling rule if r is a bijective
(but not necessarily label-preserving) morphism. A node or edge x is said to be relabelled
if lL(x) 6= lR(r(x)).

Example 4 can be seen as a relabelling system when deleting the lossy system rules as
well as the rule creating new processes. The termination message and flag can be realised
using two node labels or two edge labels where one indicates the existence and one the
non-existence of the message and flag respectively.

Since reachability and coverability from a fixed initial graph are clearly decidable in this
setting (the set of derivable graphs is finite), we consider the following existential coverability
problem: assume that we are given a set of rewriting rules R, a set of initial labels and a
final graph Gf . Is there a graph G0 labelled with only initial labels and a graph H such
that G0 ⇒∗R H and Gf is a subgraph of H?

The existential coverability is of interest when analysing distributed systems. By model-
ling an algorithm for a distributed system using a GTS, one effectively obtains a relabelling
GTS because the system’s topology remains unchanged during execution of the algorithm.
When Gf represents an error configuration, the existential coverability problem transforms
to the question: is there a distributed system where the modelled algorithm produces the
specified error? A slightly different approach using node labels is pursued in [6], where the
set of labels may be infinite and problems more specific for distributed systems are studied.

We first consider GTS with either only edge relabelling or only node relabelling rules,
i.e. either the set of node labels or the set of edge labels is a singleton.

I Proposition 20 (Edge Relabelling). The existential coverability problem is decidable for
graph transformation systems with relabelling rules where the set of node labels Λ′ is a
singleton, i.e., |Λ′| = 1.

Proof sketch. Coverability can be decided by a simple fixed-point computation which de-
termines the set of “reachable” edge labels. A label is reachable if it is initial or occurs
on a right-hand side of some rule, where all labels of the corresponding left-hand side are
reachable. Then the graph Gf is coverable if and only if its edges are labelled with only
reachable labels.

Assume all labels of Gf are reachable. Then for every edge ei of Gf there is an initial
graph Gei and a sequence of relabelling steps leading to some graph covering the edge. By
taking all graphs Gei

and merging appropriate nodes, an initial graph can be obtained from
which Gf is coverable by combining the relabelling steps used to cover the individual edges.
The nodes must thereby be merged such that the covered edges are connected to each other

N. Bertrand, G. Delzanno, B. König, A. Sangnier, and J. Stückrath 113

in a proper way to form Gf after relabelling. It can also be shown that Gf is not coverable
if it contains a non-reachable label. The full proof can be found in [3]. J

I Proposition 21 (Node Relabelling). The existential coverability problem is decidable for
graph transformation systems with relabelling rules where the set of edge labels Λ is a
singleton, i.e., |Λ| = 1.

Proof sketch. The proof for this proposition is analogous to the proof of Proposition 20
using node labels instead of edge labels. An initial graph for the whole graph can be
constructed by taking one initial graph for each occurrence of a node label (covering that
label) and adding every possible edge (i.e., generating a complete graph). J

Now assume there are both node and edge labels and both can be modified, then the
existential coverability problem is undecidable. The graph structure cannot be disregarded
in this case and therefore the main assumption of the proofs above does not hold.

I Proposition 22 (Node and Edge Relabelling). The existential coverability problem is un-
decidable for graph transformation systems with (general) node and edge relabelling rules.

Proof sketch. A GTS can be constructed, which simulates a Turing machine. It first ex-
tracts a path out of the initial graph and then simulates a Turing machine with the path as
tape, where each edge label is a cell of the tape. The node labels are thereby used to ensure
that the extracted structure is actually a path, i.e. they ensure that at most two edges at-
tached to the node belong to the tape. The Turing machine computation terminates if and
only if there is a sufficiently large initial graph, containing a large enough tape and resulting
in a graph covering the final state. The full proof can be found in [3]. J

Hence we arrive at the surprising conclusion that while for edge or node relabelling only
their existential coverability is easily decidable, their combination results in an undecidable
problem. The fact that graphs with edge and node labels can be encoded into graphs
with edge labels does not help, since the encoding is not surjective and the corresponding
relabelling problems cannot be reduced to each other: there could always be a graph outside
of the image of the encoding from which we can cover the given subgraph.

4 Related Work

In this paper we focused our attention on single-pushout (SPO) rewriting. Another possib-
ility would be to use double-pushout (DPO) rewriting [7]. In DPO a node cannot be deleted
if it is connected to edges that are not explicitly deleted. The relation between Petri nets
and DPO GTS has been studied in [2], where the encoding of nets into GTS deletes and
recreates nodes in order to simulate the effects of inhibitor arcs from which we get unde-
cidability of reachability and coverability even for rules that maintain the number of nodes
always constant.

Well-structuredness of concurrency models in the class of bounded path graphs has been
considered e.g. in [20, 23]. In all above mentioned models reduction rules have a restricted
form to model either rendezvous or broadcast communication. In this paper we generalize
well-structuredness to reduction rules defined by total injective morphisms. Well-structured
graph rewriting is also considered in [9] where reduction rules that involve all neighbours
(independently from their actual number) of a node are used to model broadcast commu-
nication. This type of rules cannot be modelled via GTS. Extending the language so as to
capture broadcast communication is a possible future research direction.

RTA’12

114 On the Decidability Status of Reachability and Coverability in GTS

Decidability boundaries for reachability problems of fragments of a graph-based model
of biological systems are given in [8]. In κ a configuration consists of a graph in which
nodes have labels and have a fixed number of binding sites. Rules can test and update
node labels and the presence or absence of a binding site. Undecidability of coverability in
GTS without deletion is inspired by a similar result for κ. The proof for GTS however does
not require (to test on) node labels: it is uniquely based on an increasing graph structure
used to simulate the evolution of an unbounded tape of a Turing machine. Furthermore, we
consider here several other classes of reduction rules (e.g. context-free, minor and bounded
path, relabeling) that are not studied in [8].

5 Conclusion

The results concerning decidability of reachability and coverability (excluding the relabelling
cases) can be summarised in the diagram in Fig. 9. Interestingly, for some classes of GTS
the reachability problem is decidable and the coverability problem undecidable, while for
other classes it is the other way round. Of particular interest is the case of non-deleting
GTS, into which we can encode Turing machines, however without guaranteeing termination
for halting machines. Hence these GTS cannot be considered Turing-complete in the sense
discussed in [19].

general

context-free

edge contr. edge del. node del.

edge del.
& contr.

node del. &
edge contr.

node &
edge del.

with minor
rules

with
bounded
paths

node del. &
recreation

no node
creation finite state non-deleting

Reachability

Coverability

Figure 9 Decidability and Undecidability Boundaries.

We have obtained very general (un)decidability results that can be applied to all kinds
of dynamic systems with evolving topologies. They can serve as a general toolbox to obtain
decidability results for process calculi, which can often be straightforwardly encoded into
graph transformation, for biological systems and for other formalisms. Note that, although
we used hypergraphs, our undecidability proofs are formulated such that they also hold for
directed multigraphs.

The studied subclasses of GTS can also be found in practice: first, in many examples in
the literature the system is indeed fairly static and the number of nodes is fixed. Still, GTS
here have a modelling advantage over Petri nets. Furthermore the node/edge deletion and
edge contraction rules can be used to faithfully model lossy systems. Finally, triple graph
grammars, specifying model transformations, usually have non-deleting rules.

Several of the decision procedures listed in this paper, especially those for coverability,
can be implemented in practice and have reasonable runtimes. For instance, there are

N. Bertrand, G. Delzanno, B. König, A. Sangnier, and J. Stückrath 115

implementations of the coverability algorithm for Petri nets and of the backwards search
algorithm described in [17].

One unsolved problem remains: the exact complexity of coverability for context-free
GTS. We currently know that the problem is in PSPACE and we have an NP-hardness
proof, but the exact complexity is open. We hope that this paper will stimulate further
research in this area and lead to a better understanding of the algorithmic aspects of graph
transformation systems.

Acknowledgements: We would like to thank Roland Meyer for interesting discussions
about several aspects of this work.

References

1 P. A. Abdulla, K. C̆erāns, B. Jonsson, and Y.-K. Tsay. General decidability theorems for
infinite-state systems. In Proc. of LICS ’96, pages 313–321. IEEE, 1996.

2 P. Baldan, A. Corradini, and U. Montanari. Relating SPO and DPO graph rewriting with
petri nets having read, inhibitor and reset arcs. In Proc. of PNGT ’04, volume 127.2 of
ENTCS, pages 5–28, 2005.

3 Nathalie Bertrand, Giorgio Delzanno, Barbara König, Arnaud Sangnier, and Jan Stückrath.
On the decidability status of reachability and coverability in graph transformation systems.
Technical Report DISI-TR-11-04, Dipartimento di Informatica e Scienze dell’Informazione,
Università di Genova, 2012.

4 F. Bonchi, F. Gadducci, and G. V. Monreale. Reactive systems, barbed semantics, and the
mobile ambients. In Proc. of FOSSACS ’09, pages 272–287. Springer, 2009. LNCS 5504.

5 N. Busi and G. Zavattaro. Deciding reachability in mobile ambients. In Proc. of ESOP
’05, pages 248–262. Springer, 2005. LNCS 3444.

6 J. Chalopin, Y. Métivier, and W. Zielonka. Election, naming and cellular edge local com-
putations. In Proc. of ICGT ’04 (International Conference on Graph Transformation),
pages 242–256. Springer, 2004. LNCS 3256.

7 A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Löwe. Algebraic ap-
proaches to graph transformation—part I: Basic concepts and double pushout approach. In
Handbook of Graph Grammars and Computing by Graph Transformation, Vol. 1: Founda-
tions, chapter 3. World Scientific, 1997.

8 G. Delzanno, C. Di Giusto, M. Gabbrielli, C. Laneve, and G. Zavattaro. The kappa-lattice:
Decidability boundaries for qualitative analysis in biological languages. In Proc. of CMSB
’09, pages 158–172. Springer, 2009. LNCS 5688.

9 G. Delzanno, A. Sangnier, and G. Zavattaro. Parameterized verification of ad hoc networks.
In Proc. of CONCUR ’10, pages 313–327. Springer, 2010. LNCS 6269.

10 G. Ding. Subgraphs and well-quasi-ordering. Journal of Graph Theory, 16(5):489–502,
1992.

11 F. Drewes, H.-J. Kreowski, and A. Habel. Hyperedge replacement graph grammars. In
Handbook of Graph Grammars and Computing by Graph Transformation, Vol. 1: Founda-
tions, chapter 2. World Scientific, 1997.

12 C. Dufourd, A. Finkel, and Ph. Schnoebelen. Reset nets between decidability and unde-
cidability. In Proc. of ICALP ’98, pages 103–115. Springer, 1998. LNCS 1443.

13 H. Ehrig, R. Heckel, M. Korff, M. Löwe, L. Ribeiro, A. Wagner, and A. Corradini. Algebraic
approaches to graph transformation—part II: Single pushout approach and comparison
with double pushout approach. In Handbook of Graph Grammars and Computing by Graph
Transformation, Vol.1: Foundations, chapter 4. World Scientific, 1997.

14 C. Ermel, H. Ehrig, F. Orejas, and G. Taentzer, editors. Proc. of GraMoT ’10, volume 30
of Electronic Communications of the EASST, 2010.

RTA’12

116 On the Decidability Status of Reachability and Coverability in GTS

15 J. Esparza and M. Nielsen. Decidability issues for Petri nets. Technical Report RS-94-8,
BRICS, May 1994.

16 A. Finkel and Ph. Schnoebelen. Well-structured transition systems everywhere! Theoretical
Computer Science, 256(1–2):63–92, 2001.

17 S. Joshi and B. König. Applying the graph minor theorem to the verification of graph
transformation systems. In Proc. of CAV ’08, pages 214–226. Springer, 2008. LNCS 5123.

18 S. Joshi and B. König. Applying the graph minor theorem to the verification of graph
transformation systems. Technical report, Abteilung für Informatik und Angewandte Kog-
nitionswissenschaft, Universität Duisburg-Essen, 2012. Corrected version, available from
http://duepublico.uni-duisburg-essen.de/go/technische-berichte.

19 S. Maffeis and I. Phillips. On the computational strength of pure ambient calculi. Theor-
etical Computer Science, 330:501–551, 2005.

20 R. Meyer. Structural Stationarity in the π-Calculus. PhD thesis, Carl-von-Ossietzky-
Universität Oldenburg, 2009.

21 A. Rensink. The GROOVE simulator: A tool for state space generation. In Proc. of
AGTIVE ’03, pages 479–485. Springer, 2003. LNCS 3062.

22 Neil Robertson and Paul Seymour. Graph minors XXIII. Nash-Williams’ immersion con-
jecture. Journal of Combinatorial Theory Series B, 100:181–205, March 2010.

23 T. Wies, D. Zufferey, and T. A. Henzinger. Forward analysis of depth-bounded processes.
In Proc. of FOSSACS ’10, pages 94–108. Springer, 2010. LNCS 6014.

http://duepublico.uni-duisburg-essen.de/go/technische-berichte

	Introduction
	What is a Graph Transformation System?
	An Algorithmic Study of Reachability and Coverability
	Symbolic Backward Reachability Algorithm
	Context-free Graph Transformation Systems
	Restrictions on Node Deletion and Creation
	Non-Deleting Graph Transformation Systems
	Well-Structured Graph Transformation Systems
	Graph Transformation with Deletion by Minor Rules
	Relabelling Rules

	Related Work
	Conclusion

