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Abstract
A judicious use of labelled terms makes it possible to bring together the simplicity of term re-
writing and the sharing power of graph rewriting: this has been known for twenty years in the
particular case of orthogonal first-order systems. The present paper introduces a concise and eas-
ily usable axiomatic presentation of sharing-via-labelling techniques that applies to higher-order
term rewriting as well as to non-orthogonal term rewriting. This provides a general framework
for the sharing of subterms and keeps the formalism as simple as term rewriting.
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1 Introduction

Termgraph rewriting [9, 27] improves on term rewriting by allowing the sharing of subterms,
thus preventing some duplications of computation steps. However, graph formalisms are
usually far more complex than the corresponding term formalisms. Higher-order graphs [29,
11, 19] in particular require non-trivial correctness criteria and readback procedures.

This paper aims at providing a fully general framework for the sharing of subterms, while
keeping the formalism as simple as term rewriting. It substantially generalizes an elegant
partial solution originating in L. Maranget’s work [25], of which we name two features:

Graphs are represented by labelled terms.
Graph reduction is simulated by sequences of term reduction.

Thus we get a formal setting for graph rewriting using only the well-known term rewriting.
This started 20 years ago with orthogonal first-order rewriting [25], and has then been

extended to several weak λ-calculi [10, 7] or orthogonal extensions of these weak calculi [6].
Thanks to its technological simplicity the approach turned out to be useful as an analysis
tool for various purposes, in particular by allowing the description of optimal reduction
strategies [25] and by allowing simple comparisons between different graph implementations
of the λ-calculus [7].

In this line of work, any symbol in a term is given a label which is a metaphorical
location. Two subterms with the same label are supposed to be physically equal, stored at
the same location in memory or drawn at the same coordinate in a picture (see Example 1).
Graph rewriting is then simulated by the simultaneous reduction of all the term-redexes
corresponding to a unique graph-redex, which means all the term-redexes with a given label.
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86 Axiomatic Sharing-via-Labelling

I Example 1. The two occurrences of aδ denote the same node and are reduced simultaneously.
Across this paper we use a single arrow → for the reduction of one redex, and a double arrow
⇒ for the simultaneous reduction of several redexes.

fα(fβ(aγ , aδ), aδ)
⇒ fα(fβ(aγ , bζ), bζ)

f

f
a a

→
f

f
a b J

This correspondence is sound as long as the system preserves a sharing property on its labelled
terms: whenever two subterms coexist with the same label they are syntactically equal. Note
that in this setting, a labelled term t satisfying the sharing property is itself a witness of the
correctness of the corresponding graph Gt, and that Gt is an acyclic graph.

While simultaneous reduction in general is a non-trivial extension to one-step rewriting,
the particular case considered here is simply definable within usual term rewriting. Indeed
we consider the simultaneous reduction of disjoint subterms, which we call parallel reduction.
It is simulated by the sequential reduction of the subterms in any order.

I Example 2. The parallel reduction of Example 1 can be implemented by:
fα(fβ(aγ , aδ), aδ) → fα(fβ(aγ , bζ), aδ) → fα(fβ(aγ , bζ), bζ) . J

In [25, 10, 6, 7] the labels are generated in an effective way, which helps to define the
labelled reduction by simple term rewriting rule schemes. The generation of labels in a
reduction is in two steps: first the redex is given a name Ω based on its labels, then new
labels are generated using Ω. For instance in Example 2, Ω = δ and ζ = <Ω, ζ0> for some
ζ0 fixed in the rule scheme.

In this method inspired by Lévy’s labelling for optimal sharing [23], the name of a redex
reflects the past reductions causally related to this redex, and is invariant from the creation
of the redex to its disappearance. These are key ingredients for providing absolute bounds
on the sharing of redexes, which is the point of Lévy’s optimality theory. In [25, 10, 6, 7],
both of these points also seem to play an important role in the preservation of the sharing
property. This limits the applicability of these labellings for sharing in several ways:
Orthogonality For the redex names to remain static, no reduction should ever interfere with

an existing redex in a way that could alter its name. Hence the restriction to orthogonal
systems where no two reduction rules can apply at overlapping sets of positions.

Causal sharing For each system the causal constraints of the previous labellings essentially
determine one level of sharing. Hence defining other sharing disciplines requires tampering
with the dynamics of the system. It is done in [7] by introducing various fine-tuned notions
of weak reduction (systems where reduction in the scope of a binder is constrained).

Weak reduction In higher-order rewriting, the “causal sharing” is typically incompatible
with our acyclic graphs, as the optimal sharing of the λ-calculus. Thus the previous
approaches apply to higher-order only through a restriction to weak systems that yield
compatible sharings. While the restriction does not prevent one from expressing the most
common evaluation strategies of the λ-calculus, it seems to rule out any truly higher-order
behaviour. Indeed, two common weak λ-calculi have been shown in [21, 7] to be strongly
equivalent to orthogonal first-order rewriting systems.

This paper generalizes the previous approaches, in particular by freeing them of their
bond to Lévy’s optimality theory. It expresses sharing-via-labelling in an abstract rewriting
framework encompassing any term rewriting system, be it higher-order and non-orthogonal.
In this framework we show that the preservation of sharing needs neither a static identification
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of redexes, nor a tight relation to causality. We thus break through the previous limitations
by giving to redexes a dynamic identity. And this makes all the difference!

Our main contribution is an axiomatic framework for the sharing of subterms that is:
Simple: it does not require more formal technology than term rewriting.
Expressive: it can describe a variety of graph algorithms for any term-style rewriting system.
Usable: it relies only on few axioms, and comes with highly adaptable concrete examples.
As a second contribution, we use the axiomatic framework to revisit call-by-need reduction
and improve its sharing (Section 5).

Section 2 gives an overview of our axiomatic framework and its main mechanisms, and
discusses its expressive power. Section 3 provides all the formal definitions and proofs.
Section 4 presents some simple examples, and Section 5 develops a more elaborate example
that takes advantage of the specifities of our approach. Other approaches to sharing and to
graph reduction are reviewed in Section 6, then Section 7 concludes.

2 Overview of the axiomatic framework

This section gives an informal presentation of our axiomatic framework and discusses its
mechanisms. Section 2.1 sets the scene of an abstract term rewriting framework. Section 2.2
presents the mechanisms of our axiomatic labelling on an example, and Section 2.3 discusses
the expressive power of the whole framework.

2.1 Principles of the basic formalism
Abstract Rewriting Systems (ARS) [26, 28] give a fully general description of rewriting. In [26]
any system is described by only four basic elements: a set O of objects, a set R of reductions,
and two functions src : R → O and tgt : R → O assigning a source object and a target
object to each reduction. Hence ARS can express rewriting on any kind of objects through
any kind of rewriting rules with any kind of rule application conditions.

We introduce Abstract Term Rewriting Systems (ATRS, Definition 9) as a specialization
of ARS to term rewriting by taking as set of objects O a set of terms. Now each reduction r
is supposed to apply to a particular subterm of the source, at a position root(r) called root
of r, and to leave the rest unchanged (see Fig. 1).

Equivalently, any reduction r can be identified by three other components (see Fig. 2):
the redex dex(r) and reduct duct(r) are the source-version and target-version of the modified
subterm and the context ctx(r) is what remains and is common to the source and the target.

2.2 Principles of the axiomatic labelling
In this section we derive from scratch a labelling for a higher-order rewriting system. By
showing the backstage of this sample construction we present the main ideas of the axiomatic
labelling defined in Section 3 (Definition 17).

We consider the fixpoint operator expressed by the rule scheme: µx.t → t{x :=µx.t}. We
analyse the following graph reduction, where the symbol h is duplicated but the expression
g(a) is kept shared. (G1) (G2)

f(g(a), µx.h(g(a), x) ) (t1)
→ f(g(a), h(g(a), µx.h(g(a), x)) ) (t2)

f
µx

h
g

a

x

→
f

h
µx

h
g

a

x
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Figure 1 Abstract term reduction, ARS-style: source, target, root.

src(r)

root(r)

tgt(r)

r

Figure 2 Abstract term reduction, TRS-style: redex, reduct, context.

src(r) tgt(r)

ctx(r)

root(r)

dex(r) duct(r)

r

Remark that either triple (src, tgt, root) or (dex, duct, ctx) is enough to deduce the other
informations. For instance, decomposing the source at the root position gives the context
and the redex. Conversely, combining the context and the reduct yields the target.

Figure 3 Effect zone

r

The effect zone, in black, is a connected part of the reduct that contains all that is created
or modified by the reduction.

Figure 4 Reductions at disjoint positions

r1

r2

src(r1)

r′
2

tgt(r1)

The reduction r1 cannot suppress the disjoint reduction r2: some similar r′2 remains in the
target of r1. An equivalence of reductions (Definition 9) relates r2 and r′2.
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We want to represent the graph G1 by a labelling tl1 of the term t1 such that each label
denotes a node of the graph. We label the symbols f , g and h. In particular the labels of the
two occurrences of g have to be equal, and the other labels have to be different. For instance:

fα(gβ(a), µx.hγ(gβ(a), x) ) (tl1)

Now the reduction of tl1 will act on the labels along the following principles. If labels
figuratively represent memory locations, then label generation corresponds to memory
allocation. Hence the new labels correspond to creations or to duplications of graph nodes.
Call effect zone and write effz(r) the part of the target of a reduction r where new labels
are created (see Fig. 3). Intuitively, a smaller effect zone tends to make less duplications.

First, we do not want the reduction to modify its context: the effect zone is contained in
the reduct h(g(a), µx.h(g(a), x)) and the labelled context fα(gβ(a),_) keeps its labels.

Second, remark that some subterms of the reduct are exact copies of some subterms of
the redex. This is the case for instance of h(g(a), x), or of the first occurrence of g(a). We
do not need to make new copies of these subterms. Thus they can be kept outside of the
effect zone and inherit the labels of their source-side counterparts. Axiom Effect zone in
Definition 13 checks that any other position is in the effect zone.

Finally, only the outer occurrence of h needs a new label, say δ. Then we can take the
following labelling tl2 of t2 to represent G2:

fα(gβ(a), hδ(gβ(a), µx.hγ(gβ(a), x)) ) (tl2)

At this point, we have to generate a new label δ in a way that does not break the sharing
property. Preferably, we would like a method that deduces the new labels from the redex
and does not require any global information on the context. This fundamental choice of
design allows us to define labelled reduction as a usual term rewriting rule scheme.

To avoid unintended clashes, the idea is to blend into the new label δ some information
that is characteristic of the reduced redex. As a consequence, two distinct redexes will
generate different labels, while two copies of the same redex will naturally have similar
evolutions. In our metaphor a safe such characterization of a redex is its physical identity, in
other words its label. This choice is possible if and only if the root of the reduced redex is
labelled, which is required by an axiom Redex head label. In our example, we add a label ω
to the symbol µx in tl1 and get the following corrected labelling of t1:

fα(gβ(a), µxω.hγ(gβ(a), x) ) (tl1)

Then the label δ can be explicitly built from ω and other information taken in the redex:
say for instance that hδ is the copy of hγ ordered by a redex of label ω, and write δ = [ω]γ.

Such a generation method is sound if the following last requirement is met: once a redex
of label ω is reduced, creating compounds such as [ω]γ, no other redex labelled by ω should
ever be created. Or better, no new occurrences of the label ω should ever be generated.

A first, short-term, precaution is to change the label of µx, which is done by putting µx
in the effect zone. This is one requirement of the axiom Effect zone: the copies of the root of
the redex must be in the effect zone. Also remark that the new label of µx, for instance [ω],
has to be taken different from the new label δ created for h. An axiom Separation states
that the labels created in the same reduction do not clash.

Then we need to check this property on the long run. We use two new ingredients:
A strict order ↪→ on labels called contribution such that α ↪→ [α] and α ↪→ [α]β for any
two labels α and β. An axiom Contribution expresses that the generated labels progress
along the contribution order.

RTA’12
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An independence invariant on labelled terms that forbids the existence in a term of two
labels α and β such that α ↪→ β (Independence property, Definition 19).

In this setting we have all the ingredients needed to prove that the sharing property is
preserved by parallel reduction (Sharing theorem 21).

2.3 Expressive power
Our framework axiomatizes sharing-via-labelling along three directions: the underlying term
systems, the graph algorithms, and the labellings. Each of these levels of abstraction brings
its own expressive power. They are reviewed here in reverse order.

The labels play two roles in our framework. As announced they first describe sharing,
but they moreover have to contain enough information to allow the generation of fresh labels.
The axiom Contribution we use for this is strictly less restrictive than its equivalent in the
previous approaches. In particular our labels need not contain as much causal information
as their predecessors, and our framework covers the previous labellings as well as new and
possibly simpler ones that are illustrated across this paper (see Section 4.2). In particular,
the sequences of labels and the dummy nodes that create arbitrary long chains of indirections
in [10, 7] are no longer necessary. This is possible thanks to an invariant of independence that
is strictly more general than its predecessors, and that is a key of our technical contribution.

The graph algorithms that can be described in our framework come from the combination
of two parameters: first the effect zone specifies the positions for which new nodes are created,
then the labelling decides on the positions of the effect zone that are to be shared or not.
The first parameter is constrained by axiom Effect zone and the second by axiom Separation,
which are both expressed in terms of equality of subterms. This allows us to describe a
variety of graph reduction systems, such as the many variants of call-by-need, lazy, and fully
lazy reduction that have been studied on the λ-calculus or similar systems. Some have been
reviewed in [7] and encoded in a sharing-via-labelling framework, at the cost of defining
finely-tuned reduction strategies. Such studies can be carried on in our new framework
without tampering with the dynamics of the systems (see Section 4.2).

Our abstract term rewriting framework makes no assumption on the shape of the reduction
rules of the underlying term systems, and few on the application conditions of these rules.
The only restriction is the fairly natural one that the reductions affecting disjoint subterms of
the same source term do not interfere (see Fig. 4). This allows the sequentialization of parallel
reductions as in Example 2 (Lemma 12). This assumption is formalized in an axiom Residuals
that allows a reduction r1 to inhibit a reduction r2 of same source term only if the position of
one reduction is a prefix of the position of the other, or in other words one redex is a subterm
of the other. Thus, virtually any reasonable term-style rewriting system can be represented.
We list below some classes of higher-order systems that are rewriting-theoretically interesting,
and moreover particularly relevant to the study of functional programming.
Conditional calculi Closed reduction strategies [14] are a family of fragments of the λ-calculus

particularly convenient for implementation purposes as they are α-conversion free. They
introduce conditions on β-reduction based on the free variables of the redexes.

Non-right-linear systems The fixpoint seen above is such a system, since t appears twice in
the right member of µx.t → t{x :=µx.t}.

Non-orthogonal systems Higher-order rewriting is useful to the study of program trans-
formations. This may yield non-orthogonal systems as the fully-lazy λ-lifting presented
in [7]. Another famous reservoir of non-orthogonal higher-order rewriting systems is
the literature on calculi with explicit substitutions [1, 20]. Explicit substitutions are an
important tool to bridge the gap between the formal definition of β-reduction and its
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various implementations. Section 5 presents a calculus with let-constructs having a
comparable flavor.

Non-sequential systems Defining functions by pattern matching is a key feature of functional
programming. One of its major difficulties is the treatment of matching failure, which is
non-sequential in general [18], and similar to the parallel or operator.

3 The axiomatic framework

This section defines Sharing-via-Labelling Systems (SvLS, Definition 17, Section 3.3) and
their parallel labelled reduction (Definition 18), and then proves that the latter preserves the
sharing property (Theorem 21).

The construction follows the principles presented above in three steps: Abstract Term
Rewriting Systems (ATRS, Definition 9, Section 3.2) are the basic formalism for term
rewriting. Marked ATRS (Definition 13, Section 3.2) enrich ATRS with a marking of the
potential effects of a reduction (the effect zone). SvLS are Marked ATRS whose terms are
partially labelled. We start by some basic and mostly natural definitions on terms.

3.1 Basic syntax
I Definition 3 (Terms). Let S be a finite or countable set called signature. Terms over S
are given by the following grammar:

t ::= f | f(t1, ..., tn)

where f ∈ S and n ≥ 1. Remark that the symbols in S have a priori variable arities. This
can be constrained later. A context c is a term with a hole. Write _ for the hole, and c[t]
for the term obtained by replacing the hole of c by the term t. J

I Example 4. @(λx(_), y)[@(x, y)] = @(λx(@(x, y)), y) J

I Definition 5 (Positions). A position p is a possibly empty sequence of positive integers.
Write ε the empty position, and p · q the concatenation of two positions p and q. The
concatenation extends to sets as follows: P · Q = {p · q | p ∈ P, q ∈ Q}. Write p · Q as a
shorthand for {p} ·Q. A position p is a prefix of a position q, written p ≺ q, if there is a
position p′ such that p · p′ = q. If moreover p′ 6= ε then the prefix is strict. Two positions
p, q are disjoint when none is a prefix of the other. An initial segment is a set of positions
P such that for any positions q ≺ p, if p ∈ P then q ∈ P .

The set of positions pos(t) of a term t is defined as follows:

pos(f) = {ε}
pos(f(t1, ..., tn)) = {ε} ∪

⋃
1≤i≤n

i · pos(ti)

For any term t and position p ∈ pos(t), write t(p) the symbol at position p in t and t|p the
subterm of t at position p, defined as follows:

f(ε) = f f |ε = f

f(t1, ..., tn)(ε) = f f(t1, ..., tn)|ε = f(t1, ..., tn)
f(t1, ..., tn)(i · p) = ti(p) f(t1, ..., tn)|i·p = ti|p J

I Example 6 (λ-terms). Let X be a countable set of variables. In the signature SΛ of the
λ-calculus we consider the binding λx as one symbol: SΛ = X ∪ {λx | x ∈ X} ∪ {@}. Let
t = @(λx(@(x, y)), y), then pos(t) = {ε, 1, 11, 111, 112, 2}, t(1) = λx and t|11 = @(x, y). J

RTA’12



92 Axiomatic Sharing-via-Labelling

I Definition 7 (Parallel replacement). For any terms t, u and any set of pairwise disjoint
positions P ⊆ pos(t), write t[u]P the parallel replacement defined as follows:

t[u]∅ = t

t[u]{ε} = u

f(t1, ..., tn)[u]P = f(t1[u]P1 , ..., tn[u]Pn) where P =
⋃
i i · Pi J

I Example 8 (Parallel replacement). f(f(a, a), a)[b]{12,2} = f(f(a, b), b) . J

3.2 Abstract Term Rewriting Systems (ATRS)
We define Abstract Term Rewriting Systems as a specialization of ARS where the set O of
objects is a set of terms. Each reduction r is associated to a redex dex(r), a reduct duct(r),
and a context ctx(r) (Fig. 2).

Axiom Source & Target ensures that the source src(r) and the target tgt(r) of a reduction
r are in O (which has to be understood as the set of well-formed terms). Axiom Residuals
requires that two reductions concerning disjoint positions do not interfere with each other
(Fig. 4). It is formalized using a notion of equivalence of redexes characterizing redexes
that differ only by their context. Axiom Residuals ensures that parallel reduction can be
simulated by sequences of single reduction steps (Lemma 12).

I Definition 9 (ATRS). Let Σ = (S, T ,R, dex, duct, ctx) be a tuple where:
S is a signature.
T is a set of terms over S.
R is a countable set whose elements are called reductions, and for any r ∈ R:

dex(r) is a term called redex of r.
duct(r) is a term called reduct of r.
ctx(r) is a context called context of r.

For any r ∈ R call source (resp. target) the term src(r) = ctx(r)[dex(r)] (resp. tgt(r) =
ctx(r)[duct(r)]) and say src(r) reduces to tgt(r). Write t→ t′ when t reduces to t′ and
write t � t′ if a sequence of reductions leads from t to t′. For any r ∈ R call root of r
the position root(r) of the hole of ctx(r). Two reductions r1, r2 are called equivalent if
dex(r1) = dex(r2) and duct(r1) = duct(r2). For any t ∈ T and p ∈ pos(t) write R(t, p)
the set of all the reductions r ∈ R such that src(r) = t and root(r) = p.
Σ is an Abstract Term Rewriting System if the two following axioms are satisfied:
Source & Target: For any r ∈ R, src(r) ∈ T and tgt(r) ∈ T .
Residuals: Let r1 ∈ R and p ∈ pos(src(r1)) such that root(r1) and p are disjoint. Then for

any r2 ∈ R(src(r1), p) there is r′2 ∈ R(tgt(r1), p) equivalent to r2. J

In any ATRS one can define a notion of parallel reduction that performs several disjoint
reductions at one go.

I Definition 10 (Parallel reduction). Let t be a term, and {r1, ..., rn} a set of reductions of
source t whose roots are pairwise disjoint. Write t′ = t[duct(r1)]root(r1)...[duct(rn)]root(rn)
the term t where each redex has been replaced by its reduct. Say t reduces parallely to t′
and write t⇒ t′. J

I Example 11. Let r1 and r2 be two reductions such that:

dex(r1) = a src(r2) = f(f(a, a), a)
duct(r1) = b tgt(r2) = f(f(a, a), b)
ctx(r1) = f(f(a,_), a) root(r2) = 2

Then f(f(a, a), a) ⇒ f(f(a, b), b) by parallel reduction of {r1, r2}. J
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I Lemma 12 (Simulation of parallel reduction). In any ATRS, if t⇒ t′ then t� t′.

Proof. By induction on the number of redexes reduced in parallel, with axiom Residuals. J

An ATRS can be extended with effect zones identifying in each reduction a part of
the reduct containing all the positions that have possibly been created or modified by the
reduction (Fig. 3). Axiom Effect zone states this property by contraposition: any subterm of
the reduct which does not intersect the effect zone is syntactically equal to a strict subterm
of the redex. This forms a Marked ATRS.

I Definition 13 (Marked ATRS). Let Σ = (S, T ,R, dex, duct, ctx, effz) be a tuple where:
(S,T ,R,dex,duct,ctx) is an ATRS.
For any r ∈ R, effz(r) is an initial segment of pos(duct(r)), called effect zone of r.

Σ is a Marked ATRS if the following axiom is satisfied:
Effect zone: For any r ∈ R and p ∈ pos(duct(r)) \ effz(r) there is q ∈ pos(dex(r)) such

that q 6= ε and dex(r)|q = duct(r)|p. J

The condition q 6= ε ensures that any copy of the root symbol of the redex is in the effect
zone, which forces the generation of new labels in the next section. This is required for the
preservation of the so-called independence property (Definition 19, Lemma 20).

I Example 14. Let r be a reduction such that dex(r) = g(f(a, b)) and duct(r) = h(g(f(a, b)), a).
Any initial segment of {ε, 1, 11, 111, 112, 2} that includes {ε, 1} is an admissible effect zone
for r. In particular, so are {ε, 1}, {ε, 1, 2}, and {ε, 1, 11, 111, 112, 2}. See Section 4.2 for the
impact of the choice of an effect zone. J

3.3 Sharing-via-Labelling Systems (SvLS)
We define Sharing-via-Labelling Systems as a specialization of Marked ATRS where the
signature contains possibly labelled symbols and where the labels are partially ordered by a
contribution relation ↪→.

Axiom Redex head label requires the head symbol of the redex of any reduction to be
labelled. Axiom Separation prevents the labels of an effect zone from clashing. Axiom
Contribution controls the progression of the labels along ↪→.

I Definition 15 (Labelled signature). Let S be a signature, and L be a countable set
whose elements are called labels. The labelled signature S[L] is a signature defined by
S[L] = S ∪{fα|f ∈ S, α ∈ L}. Let t be a term over a labelled signature S[L], and p ∈ pos(t).
If t(p) = fα with f ∈ S and α ∈ L, then write τp(t) = α the label at position p in t. Else
τp(t) is undefined. From now on, by writing τp(t) we suppose the label is defined. J

The sharing property is the main invariant we want to preserve:

I Definition 16 (Sharing property). A term t on a labelled signature S[L] has the sharing
property, written S(t), when for any positions p, q ∈ pos(t) if τp(t) = τq(t) then t|p = t|q. J

I Definition 17 (SvLS). Let (L, ↪→,Σ) be a tuple where:
L is a countable set of labels.
↪→ is an irreflexive and transitive relation on L called contribution relation.
Σ = (S[L], T ,R, dex, duct, ctx, effz) is a Marked ATRS over a signature S[L].

For any t, if there is p ∈ pos(t) such that τp(t) = α then we say α occurs in t. If moreover
t = duct(r) for some r ∈ R and p ∈ effz(r) then we say α occurs in effz(r).

RTA’12
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(L, ↪→,Σ) is a Sharing-via-Labelling System if the following axioms are satisfied:
Redex head label: For any reduction r ∈ R, the head label τε(dex(r)) is defined. Write τ(r)

as a shorthand for τε(dex(r)).
Separation: For any r ∈ R such that S(dex(r)), for any p, q ∈ effz(r), if τp(duct(r)) =

τq(duct(r)), then duct(r)|p = duct(r)|q.
Contribution: For any r ∈ R and β ∈ L occurring in effz(r) one has τ(r) ↪→ β. Moreover

for any α ∈ L, if α 6= τ(r) and α ↪→ β then there is γ ∈ L in dex(r) such that α ↪→ γ.
A label α ∈ L is initial if there is no β ∈ L such that β ↪→ α. A term t is initial if all its
labels are initial and different. J

Remark that→ does not preserve the sharing property: only the parallel labelled reduction
defined below and the corresponding reduction sequences have a graphical meaning. The
parallel labelled reduction simulating graph reduction is the simultaneous reduction of all
the redexes with a given label.

I Definition 18 (Parallel labelled reduction). Let t be a term in a SvLS such that S(t), and
α be a label in t. Write Pα = {q ∈ pos(t) | τq(t) = α}. By S(t) remark that the positions
in Pα are pairwise disjoint. Let r ∈ R with τ(r) = α such that for any p ∈ Pα there is
rp ∈ R(t, p) equivalent to r. Then t reduces parallely to t′ = t[duct(r)]Pα (Definition 10),
which is written t⇒α t

′ and called parallel labelled reduction. J

The proof of the preservation of the sharing property requires an invariant of ⇒α:

I Definition 19 (Independence property). A term t in a SvLS has the independence
property, written I(t), when there are no two labels α and β in t such that α ↪→ β. J

I Lemma 20 (Independence). In any SvLS, if S(t), I(t) and t⇒α0 t
′, then I(t′).

Proof. By definition, there is a reduction r such that τ(r) = α0 and the parallel reduction
uses dex(r) and duct(r) as unique redex and reduct. Let α, β be two labels in t′ s.t. α ↪→ β.

If β occurs in t, then by I(t) there is no occurrence of α in t. Hence α occurs in effz(r)
and by axiom Contribution α0 ↪→ α. By transitivity α0 ↪→ β, which contradicts I(t).
If there is no occurrence of β in t, then β occurs in effz(r).

If α occurs in t, then case on α ↪→ β with axiom Contribution:
∗ Either α = α0, which implies that α0 occurs in t′. Then by definition of parallel

labelled reduction α0 occurs in duct(r), and by axiom Effect zone α0 occurs in
effz(r). Hence by axiom Contribution α0 ↪→ α0, which contradicts irreflexivity.

∗ Or there is γ in dex(r) such that α ↪→ γ, which contradicts I(t).
If there is no occurrence of α in t, then α occurs in effz(r) and in particular α0 ↪→ α.
Moreover α 6= α0, hence by axiom Contribution there is γ in dex(r) s.t. α ↪→ γ. By
transitivity α0 ↪→γ, which contradicts I(t). J

I Theorem 21 (Sharing). In any SvLS, if S(t), I(t) and t⇒α0 t
′, then S(t′).

Proof. As above there is r with τ(r) = α0 such that the parallel reduction uses dex(r) and
duct(r) as unique redex and reduct. Let p′, q′ ∈ pos(t′). Suppose τp′(t′) = τq′(t′) = α.

If none of p′, q′ is in the effect zone of a reduced redex, then by axiom Effect zone there is p
(resp. q) in pos(t) such that t(p) = t′(p′) (resp. t(q) = t′(q′)). In particular τp(t) = τq(t) =
α, and t|p = t|q by S(t). Write P = {p1 | τp1(t|p) = α0} and Q = {q1 | τq1(t|q) = α0} and
remark that P = Q. By definition t′|p′ = (t|p)[duct(t)]P = (t|p)[duct(r)]Q = t′|q′ .
If both p′ and q′ are in the effect zone of a reduced redex, then by unicity of duct(r) and
by axiom Separation t′|p′ = t′|q′ .
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Else, wlog. p′ is in the effect zone of a reduced redex and α0 ↪→ α (axiom Contribution)
and q′ is not in the effect zone of a reduced redex and α occurs in t (axiom Effect zone).
This contradicts I(t). J

Remark that any initial term ti satisfies S(ti) and I(ti). Then Independence lemma 20
and Sharing theorem 21 have an immediate corollary:
I Corollary 22 (Long-term sharing). In any SvLS, if ti is an initial term and there is a
sequence of parallel labelled reductions from ti to a term t, then S(t). J

4 First examples

This section presents some simple Sharing-via-Labelling Systems and gives useful definitions
to handle binders: Subsection 4.1 formalizes the example of Section 2.2, then Subsection 4.2
shows three sharing disciplines for the (unrestricted) λ-calulus.

4.1 The fixpoint operator, formally
Let X and L be countable sets of variables and initial labels. We consider the signature
{a, f, g, h} used in Section 2.2. Define:

Labels (L): α ::= a | [α] | [α]α a ∈ L
Terms (Tµ): t ::= x | a | µxα.t | Fα(t1, ..., tn) x ∈ X , F ∈ {f, g, h}

Free variables fv(t) and bound variables bv(t) of a term t are defined as usual, remembering
that µxα.u binds x in u. For any term t and variable x, call spine of x in t the initial segment
of pos(t) whose elements are the strict prefixes of the positions of the free occurrences of x in t.
These are exactly the positions of the subterms of t that would be affected by a substitution
of x. By abuse of language, the “labels of a spine” denote the labels at the positions of a
spine. The labelled substitution t{x :=ω,u} substitutes u for x in t and modifies the labels
of the spine of x in t using the label ω. If x 6∈ fv(t) then t{x :=ω,u} = t, else:

x{x :=ω,u} = u

(µyα.t){x :=ω,u} = µy[ω]α.t{x :=ω,u} y 6∈ fv(u)
(Fα(t1, ..., tn)){x :=ω,u} = F [ω]α(t{x :=ω,u}

1 , ..., t
{x :=ω,u}
n ) F ∈ {f, g, h}

Remark that this substitution without capture may be undefined in general. See Section 4.2.
Define the reduction rule (µ) : µxω.t → t{x :=ω,µx[ω].t}. The corresponding reduction
relation is the smallest congruence on terms generated by (µ).

Axiomatic checking The application of the rule (µ) to a term µxω.t in any context c defines
an obvious reduction r in redex-reduct-context format in a way that satisfies the ATRS
axioms. Write t′ = t{x :=ω,µx[ω].t}. The effect zone of r is the union of the spine of x in t and
the occurrences of µx[ω]. Hence the positions in t′ that are outside of the effect zone are
subterms of t, which verifies the axiom Effect zone.

Define ↪→ as the least transitive relation such that α ↪→ [α] and α ↪→ [α]β for any α, β ∈ L.
It is irreflexive. Axiom Redex head label is satisfied since all occurrences of µ are labelled.
Axiom Contribution is satisfied since all labels in the effect zone have the form [ω] or [ω]α
with ω the label of the redex.

Axiom Separation: suppose S(µxω.t), and α occurs twice in the effect zone, at two
positions p and q of the reduct. If α = [ω] then t′|p = t′|q = µx[ω].t. Else α = [ω]β for
some β occurring at positions p and q in t. Hence, since S(t) by hypothesis, t|p = t|q, and
t′|p = t|{x :=ω,µx[ω].t}

p = t|{x :=ω,µx[ω].t}
q = t′|q.

RTA’12
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4.2 The λ-calculus: β- and α-reduction
We consider the λ-calculus, with the usual notions of free and bound variables, and the
notions of spine and labelled substitution adapted from above. We also use L, L and ↪→
as above, and we label applications and abstractions. Let (λx.λy.x(ty))u → λy.u(ty) be
a reduction where t, u are two terms in which neither x nor y appears free. Three of the
possible effect zones are circled below. The effect zone is arbitrary as soon as it contains the
spine of x in λy.x(ty), which is circled in case (c).

λy(a)

@
u @

t y

λy(b)

@
u @
t y

λy(c)

@
u @

t y

(a) duplicating the whole body of the func-
tion is usual lazy evaluation; (b) avoiding
the copy of the free expressions (t here) is
Wadsworth’s algorithm [29]; (c) duplicat-
ing only the spine of x is found in [10].

While these examples have been originally defined with weak reduction strategies, more
general strategies are known to allow shorter reductions [17], thus we consider here general
β-reduction. As a consequence α-conversion is sometimes needed to avoid blocked terms.

Remark that in our framework only the symbols of the effect zone are allowed to be
modified, hence any renaming operation has to be contained in the effect zone. In cases (a)
and (b) there is no problem: the effect zone is always large enough. In case (c) there is a
solution: add a reduction rule for renaming, with appropriate creations of labels.

Renaming: λxα.t → λy[α].t{x :=α,y} y 6∈ fv(t) ∪ bv(t)

The effect zone of this reduction is ε · P where P is the spine of x in t. Checking the axioms
for this new rule as well as for β-reduction is similar to Section 4.1. Remark that renaming
can also be inlined in β, with an appropriate extension of the effect zone.

The need for this new rule and the duplications it implies comes from a new behaviour
brought by case (c): sharing-via-labelling allows the sharing of open subterms bound by
different binders. Note that this is not allowed in usual higher-order termgraphs [11, 19].
Section 5 develops this point and illustrates how one can take advantage of it.

5 A significant example

This section presents a labelling of a calculus inspired by the call-by-need λ-calculus [3]. It
emphasizes how the graphs represented by SvLS are more general than usual higher-order
termgraphs, and takes advantage of this point to present a reduction strategy performing a
more-than-fully-lazy sharing.

In the call-by-need λ-calculus λlet, the β-rule is replaced by the introduction of a let-
construct that delays the substitution of the argument: (λx.t)u → let x = u in t.
From the point of view of the argument u, this keeps only one shared occurrence of u for
possibly numerous corresponding occurrences of x in t.

Now, in our context the labels can take care of this sharing already: the substitution of u
does not need modifying the labels of u. This safeguard allows us to relax most of the original
rules of λlet and use the delay introduced by let in a new way. Indeed, in let x = u in t,
from the point of view of t, the let makes the value of x unspecified. This allows us to share
multiple copies of t bound by different let-constructs with different arguments.

Let X , L, L and ↪→ be as defined above. We define below the labelled terms, where
applications and let-constructs are labelled (labelling λ-abstractions is possible but not
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needed). The answers represent λ-abstractions under let-constructs. Evaluation focuses
are contexts that guide call-by-need shared reduction by pointing one of the redexes to be
reduced parallely.

Terms (Tlet): t ::= x | λx.t | @α(t, t) | letα x = t in t x ∈ X
Answers (Alet): A ::= λx.t | letα x = t in A x ∈ X
Eval. focus (Elet): E ::= _ | @α(E, t) | letα x = t in E x ∈ X

The application is explicited by a binary constructor @ to ease the reading of labelled terms.
Free and bound variables are defined as usual, remembering that both λx.t and let x = u in t
bind x in t. Spines and labelled substitutions are adapted from above.

Two main rules (Intro) and (Subst) respectively introduce a let-construct to delay the
substitution of a β-reduction and perform substitution when the focus of the reduction
encounters a variable. The (Scope) rule prevents let-constructs from hiding β-redexes. A
(GC) rule is added to lighten the examples, and (Renaming) is as discussed in Section 4.2.
The system is not orthogonal: (GC) and (Renaming) introduce several critical pairs. The
reduction relation is the smallest congruence on terms generated by the rules.

Intro: @α(λx.t, u) → let[α] x = u in t
Subst: letα x = t in E[x] → let[α] x = t in E[y]{y :=α,t} y fresh
Scope: @α(letβ x = t in A, u) → let[α]β x = t in @[α](A, u) x 6∈ fv(u)
GC: letα x = t in u → u x 6∈ fv(u)
Renaming: letα x = t in u → let[α] y = t in u{x:=α,y} y 6∈ fv(u) ∪ bv(u)

Remark that in rule (Subst) only one occurrence of the variable is substituted and the labels
are modified along the substitution.

In the sequence below we follow the underlined subterm @δ(λz.z, y). In usual call-by-need
the two copies are separated from step (1), as the value of the first occurrence of x is required.
Even with the fully lazy version given in [2], only the duplication of λz.z would be spared,
which would not help here. In this example however, the two copies remain shared thanks to
the label δ (and later [δ]). They are separated only at the end of step (5). Inbetween, steps
(3), (4) and (5) evaluate in parallel the two copies. As a consequence, the function substituted
for the second occurrence of x in step (6) is already fully evaluated. The interesting new
behaviour observed here is the sharing of two subterms occurring at very different positions:
one is buried under a λ-abstraction while the other stands in the evaluation focus.

@α( λx.@β(x,@γ(x, a)), λy.@δ(λz.z, y) )
→I let[α] x = λy.@δ(λz.z, y) in @β(x,@γ(x, a))

→Su let[[α]] x = λy.@δ(λz.z, y) in @[[α]]β(λy.@δ(λz.z, y),@γ(x, a)) (1)
→I let[[α]] x = λy.@δ(λz.z, y) in let[[[α]]β] y = @γ(x, a) in @δ(λz.z, y) (2)
⇒I let[[α]] x = λy.let[δ] z = y in z in let[[[α]]β] y = @γ(x, a) in let[δ] z = y in z (3)

⇒Su let[[α]] x = λy.let[δ] z = y in y in let[[[α]]β] y = @γ(x, a) in let[δ] z = y in y (4)
⇒GC let[[α]] x = λy.y in let[[[α]]β] y = @γ(x, a) in y (5)
→Su
GC let[[α]] x = λy.y in @γ(x, a)

→Su
GC @[[[α]]γ](λy.y)a (6)

The labelled term obtained at step (2) and its corresponding graph are represented below.
They show how sharing-via-labelling allows the sharing of open subterms affected by different
bindings. This kind of graph is usually called non-admissible [29], but in our case the labelled
term clearly shows that there is no binding ambiguity, and thus that using this graph is
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possible. The point is: in this setting α-conversion cannot be silent. Indeed, renaming one
occurrence of y requires breaking the sharing and modifying one of the occurrences of the
label δ.

let[[α]] x = λy.@δ(λz.z, y)
in let[[[α]]β] y = @γ(x, a)

in @δ(λz.z, y)

→ let[[α]] x = λy.@δ(λz.z, y)
in let[[[[α]]β]] y = @γ(x, a)

in @[[[[α]]β]]δ(λz.z, y)

xin
λy yin

@
x a

@
λz y

z

→
xin

λy y′in
@

x a

@
yλz

z

@
y′λz

z

In this case the “physical identity” of one copy of the shared redex @δ(λz.z, y) is modified,
which illustrates the dynamic identification mentioned in introduction.

Axiomatic checking Define a reduction as the application of any rule in any context. The
axioms of ATRS are satisfied. Define the effect zone of a reduction as the set of the positions
where the labels are changed. Remark that the collapsing rule (GC) has an empty effect
zone, while the effect zones of (Subst.) and (Renaming) correspond to spines. The axiom
Effect zone is satisfied. The axioms of SvLS are satisfied as in Section 4.1.

I Remark. The labelled substitution extends implicitly the right-hand-sides of the rules,
hence this system does not fit directly in usual (higher-order) term rewriting frameworks.
This is fixed as soon as the rule schemes explicitly mention the spines, as it is done in [7]. J

6 Related work

Sharing and graph rewriting have already been described in many different ways, some of
which are reviewed here. We compare them with our framework along three directions:
Expressive power: the amount of compatible rewriting systems and their features.
Sharing power: the level of sharing achieved on compatible systems.
Formal complexity: the simplicity or complexity of defining and handling the system.

Adressed TRS D. Dougherty et al. [13] propose labelled first-order systems with a similar
sharing power. They allow non-orthogonality, and also cycles representing infinite terms,
which we do not here. They do not however mention higher-order systems. Their technology
is slightly more complex than term rewriting: the new labels are taken globally fresh, thus the
reduction of a redex depends on its global context and parallel reduction is not decomposed.

Term graphs Term graphs [9, 27, 19, 8] provide sharing facilities for any first-order or
higher-order system, with an equivalent sharing power in many cases, and also allow cycles [8].
They have a far higher formal complexity, since they require subtle correctness criteria and
notions of morphisms of graphs with binders. They forbid the sharing of open subterms
affected by different binders, which limits the reduction strategies with sharing (Section 5).

Call by need The call-by-need λ-calculus [3] and its fully lazy version [2] give a simple and
elegant account of Wadsworth’s graph algorithm for the evaluation of the λ-calculus [29].
N. Yoshida [30] also develops similar ideas by using explicit substitutions in place of let-
constructs. These works also manage to use only terms and one-step term reduction. On the
other hand they require structural rules or structural equations. The latter point however
has been recently improved in [12]. Concerning the expressive power, these works are a study
of the particular case of the λ-calculus, which is orthogonal.
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Optimal sharing The optimal implementations of higher-order systems [23, 22, 4, 5] perform
a better sharing than our framework, and apply to a large class of orthogonal higher-order
systems, through Interaction Systems [5]. They do not apply however to all orthogonal
higher-order systems, and do not apply at all to non-orthogonal systems. They also achieve
optimal sharing at the cost of a far greater formal complexity.

Interaction nets Interaction nets can implement wide classes of first-order and higher-order
rewriting systems [15, 16, 24]. They are known in particular for the suboptimal yet powerful
sharing they realize in systems like [24]. The limit of their expressive power is their sequential
nature. Also their atomization of every operation makes the link with the term specifications
technically very demanding.

7 Conclusion

The axiomatic sharing-via-labelling systems presented in this paper provide a general frame-
work for the sharing of subterms in term rewriting. This very expressive framework applies
to higher-order and non-orthogonal rewriting systems and covers a wide range of shared
reduction algorithms based on acyclic graphs. The formalism is simpler than most of the
other approaches to shared rewriting since it is definable within the realm of term rewriting.

The framework generalizes the previous label-based approaches to sharing inspired by
optimality theory [25, 10, 6, 7] by dropping the causal content of the labels. This makes it
possible to eliminate their restriction to weak reduction as well as their need for indirection
nodes, and to define more efficient shared reduction strategies. Section 5 in particular shows
this, illustrating the power of ingredients as simple as term rewriting and acyclic sharing.

This work opens new perspectives for rewriting theory and functional programming:
Study of general term rewriting The Abstract Term Rewriting Systems (ATRS) are an

intermediate formalism between fully abstract rewriting frameworks and concrete term
rewriting frameworks. This granularity makes it possible to grasp specific properties of
term rewriting that are common to all term frameworks.

Specification of graph rewriting Sharing-via-labelling provides a simple approach to graph
rewriting, which is now applicable on a large scale.

Analysis of functional programming Our work provide a homogeneous framework for com-
paring shared implementations of functional programming languages, in the line of [7].

Implementation of functional programming Sharing-via-labelling provides means to ima-
gine and express new graph algorithms and new reduction strategies for the implementation
of functional programming languages, as illustrated in Section 5.
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