
A Term Rewriting System for Kuratowski’s
Closure-Complement Problem∗

Osama Al-Hassani1, Quratul-ain Mahesar1, Claudio Sacerdoti
Coen2, and Volker Sorge1

1 School of Computer Science, University of Birmingham
Edgbaston, United Kingdom
O.Al-Hassani@cs.bham.ac.uk,Q.Mahesar@cs.bham.ac.uk,V.Sorge@cs.bham.ac.uk

2 Dipartimento di Scienze dell’Informazione, Università di Bologna
Mura Anteo Zamboni, 7 (BO) Italy
sacerdot@cs.unibo.it

Abstract
We present a term rewriting system to solve a class of open problems that are generalisations
of Kuratowski’s closure-complement theorem. The problems are concerned with finding the
number of distinct sets that can be obtained by applying combinations of axiomatically defined
set operators. While the original problem considers only closure and complement of a topological
space as operators, it can be generalised by adding operators and varying axiomatisation. We
model these axioms as rewrite rules and construct a rewriting system that allows us to close some
so far open variants of Kuratowski’s problem by analysing several million inference steps on a
typical personal computer.

1998 ACM Subject Classification G.2.1 Combinatorics

Keywords and phrases Kuratowski’s closure-complement problem, Rewriting system

Digital Object Identifier 10.4230/LIPIcs.RTA.2012.38

Category Regular Research Paper

1 Introduction

In 1922 Kuratowski asked and solved the following question on an arbitrary topological
space: how many different combinations of the operators of complement and closure exist?
The number turns out to be just 14 and the proof is quite small. The problem has been
generalised in many different ways to consider other operators, such as union or intersection,
or slightly different settings, such as point free topology (locale theory). The solution to a
generalised version can be a significantly larger number of combinations, but it could also be
a proof that infinitely many combinations exist.

Computing finite large solutions, or obtaining an intuition for infinite variants is unfeasible
by hand and therefore computer automation is crucial to our solutions of the problems.
Solutions or partial solutions can be represented as directed graphs whose vertices are
equivalence classes of provably equal combinations of operators and whose arcs represent
the order relation. Graphs can be constructed iteratively by systematically adding more
combinations of iterators, merging distinct vertices once it can be shown that they contain

∗ This work was partially supported by the Italian PRIN project McTafi (Metodi Costruttivi in Topologia,
Algebra e Fondamenti dell’Informatica.)

© Osama Al-Hassani, Quratul-ain Mahesar, Claudio Sacerdoti Coen, and Volker Sorge;
licensed under Creative Commons License NC-ND

23rd International Conference on Rewriting Techniques and Applications (RTA’12).
Editor: A. Tiwari; pp. 38–52

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62916989?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.RTA.2012.38
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/dagpub/978-3-939897-38-5
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

O. Al-Hassani, Q. Mahesar, C. Sacerdoti Coen, and V. Sorge 39

x ≤ x (reflexive) x ≤ y y ≤ z
x ≤ z (transitive) x ≤ y y ≤ x

x = y
(antisymmetric)

x ≤ y
−y ≤ −x (antimonotone)

x ≤ −− x (saturates) −−−x = −x (quasi-idempotent)

i(x) ≤ x (reduces) x ≤ y
i(x) ≤ i(y) (monotone)

i(x) = i(i(x)) (idempotent)

x ≤ c(x) (saturates) x ≤ y
c(x) ≤ c(y) (monotone)

c(x) = c(c(x)) (idempotent)

c(−x) ≤ −i(x) (compatible-1)
i(−x) ≤ −c(x) (compatible-2)

Figure 1 The inference rules that define the problem.

provably equal combinations. For problems with finite solutions, this process terminates once
a fixpoint is reached, in the sense that new vertices are not added, or vertices will never be
merged in the future. The resulting graph then represents all possible distinct combinations.
In a case where a solution is infinite, there exist infinitely many distinct combinations and
finite graphs can only ever represent an approximation of the solution. Nevertheless these
approximations can offer crucial information by exhibiting regularities in the growth of the
graph, to suggest the existence of an infinite subgraph of distinct vertices that will never
become equal, thereby leading to the essential proof idea.

We present a generalised Kuratowski problem (§2) — originally proposed by Sambin in [7],
Section 2.4, and still listed as an open problem in [8] — which is particularly demanding in
terms of size of the approximating graphs. Indeed, in order to exhibit sufficient evidence of
regularities in the graph we need to compute several million edges, i.e., we need to prove
several million lemmas on relations between pairs of operator combinations. Since traditional
automated theorem proving techniques are unsuitable for this task, we have developed a term
rewriting system that models all inference rules of the problem in a uniform way and, coupled
with a particular strategy and some standard graph algorithms, can show the large numbers
of necessary lemmas in a few minutes (§3). We then demonstrate how the rewriting system
can be further enhanced, whilst retaining both correctness and completeness by exploiting
regularities in the partial solutions of the problem (§4). The implementation of our ideas
have not only enabled us to prove the infinite nature of the generalised Kuratowski problem,
which was up to now unknown (§6), but also serves as a basis to tackle other variants of
Kuratowski’s problem (§5).

2 The Problem

Kuratowski’s classical closure-complement problem [5] can be solved by observing that the
following identities hold for the interior operator i, the closure operator c, and the complement
‘−’ for subsets x of an arbitrary topological space. (i) c(c(x)) = c(x), (ii) −−x = x,
(iii) i(x) = −c(−x), and (iv) c(i(c(i(x)))) = c(i(x)). Applying the previous equalities
only, one can show that there exist at most 14 distinct subsets one can obtain by different
combinations of the three operators. As a consequence of equation (iii), all combinations
can be expressed in terms of closure and complement, only. Furthermore, one can indeed
construct a model, that is, a space in which this upper bound can be achieved.

The observation that the previous identities are sufficient to solve the problem allows to

RTA’12

40 A Term Rewriting System for Kuratowski’s Closure-Complement Problem

restate Kuratowski’s classical problem in point-free topology. It is sufficient to forget the
concrete definition of the operators and to define them axiomatically by means of the four
identities above. The domain of the operators is thus no longer required to be the power set
of a topological space, but it can be any arbitrary set.

In the rest of the paper we are interested in the generalisation of the point-free version
of Kuratowski’s problem introduced by Sambin in [7], Section 2.4. Corsi’s master thesis [3]
studied the problem under the supervision of Sambin, but the problem remained open and
only minimal progress towards a solution was achieved. The generalisation is obtained by
introducing a partial order relation ≤ — that captures the inclusion relation for subsets —
and relaxing the axioms for the operators as given in Figure 1 in a rule format. Observe
that the relaxed axiomatisation, effectively turns i into a reduction operator, c into a
saturation operator, and − into a pseudo-complement. Observe also that the two compatibility
requirements are reminiscent of the classical equation i(x) = −c(−x) (dually c(x) = −i(−x)).
Indeed, if we define i(x) as −c(−x) and we also assume −−x = x for all x, then both
compatibility axioms can be derived.

An example model for the axioms can be obtained by combining the definitions of interior,
closure and complement with the rules of intuitionistic logic. Given a topological space (P,O),
the interior of a set x is defined as {α | ∃y ∈ O, α ∈ y∧∀β ∈ y.β ∈ x}, and a definition of the
closure of x that avoids any reference to negation is {α | ∀y ∈ O, α ∈ y ⇒ ∃β ∈ y.β ∈ x} (the
set of all accumulation points of x). Thus the notion of interior hides an ∃∀ combination and
that of closure a ∀∃. The complement of x is {α | ¬(α ∈ x)} and it hides a negation. Finally,
the subset relation (axiomatised as ≤) hides implication: x ⊆ y iff ∀α, α ∈ x ⇒ α ∈ y.
All the axioms presented are thus simply obtained from the properties of negation and the
quantifiers in intuitionistic logic. For instance, from the intuitionistic principle A⇒ ¬¬A we
obtain x ≤ −−x and from the DeMorgan laws for quantifiers we obtain the two compatibility
relations: For example, ∀∃¬ ⇒ ¬∃∀ becomes c(−x) ≤ −i(x).

Since we are effectively interested in the number of different combinations of operators
that can lead to distinct sets when applied to any subset of a topological space, we define
the generalised Kuratowski problem in terms of equivalent operator combinations.

I Definition 1 (Generalised Kuratowski closure-complement problem). Let (P,≤) be any par-
tially ordered set and let {i, c,−} be the set of operators on P axiomatised as in Figure 1. Let
S = {i, c,−}∗ be the set of all words over the operators (i.e., all possible finite combinations).
We define the order relation ≤ on S for all w1, w2 ∈ S by: w1 ≤ w2 iff w1(x) ≤ w2(x) for all
x ∈ P . Finally, let ≡ over S be the symmetric closure of ≤. The generalised Kuratowski
closure-complement problem then consists in computing the cardinality of S/≡, the set of
equivalence classes of S modulo ≡.

Useful for the remainder of our considerations is to define the canonical representative
of an equivalence class [w]/≡ ∈ S/≡ as the minimum element of the set according to the
shortlex order1. Furthermore, we can naturally extend the relation ≤ on S to equivalence
classes.

Since the cardinality of S/≡ is not necessarily finite, for practical purposes it is necessary
to define finite approximations to the solution.

I Definition 2 (nth approximation). Let Sn = {i, c,−}≤n ⊂ S be the set of all operator
combinations up to order n. For w1, w2 ∈ Sn we define ≤n as w1 ≤n w2 iff for all x ∈ P we

1 Two words are in the shortlex order relation when the first is shorter or, in case they have the same
length, when the first comes first in lexicographical order.

O. Al-Hassani, Q. Mahesar, C. Sacerdoti Coen, and V. Sorge 41

Figure 2 Approximating graph of order 3 for the generalised problem.

can derive w1(x) ≤ w2(x) by applying the axioms from Figure 1 to elements w ∈ Sn only
(i.e., we restrict derivations to combinations of maximally n operators).

Finally, let≡n the symmetric closure of≤n. Then the nth approximation of the generalised
Kuratowski closure-complement problem is defined as computing the cardinality of Sn/≡n

.

The nth approximation of the problem can be visually represented as a directed graph
whose vertices are the equivalence classes of Sn/≡n

and whose edges represent one step of
the ≤n relation.

I Definition 3 (Approximating graph of order n). Let G = (V,A) be a directed graph, where
we define the set of vertices V = Sn and the set of arcs A by (v1, v2) ∈ A iff v1 ≤n v2 for
v1, v2 ∈ V .

Now let V ′ be the set of all strongly connected components in G. We then define
the approximating graph of order n as G′ = (V ′, A′) where (v′1, v′2) ∈ A′ iff v′1 ≤n v′2 for
v′1, v

′
2 ∈ V ′.

Note that the approximating graph can be represented in transitively reduced form, exploiting
the transitivity of the ≤n relation. We also observe that every vertex in the approximating
graph contains all the elements of the equivalence class it represents. Thus the graph itself
provides a solution to the nth approximation problem as the number of vertices in the graph
is the cardinality of Sn/≡n

. Consequently, our goal is effectively to construct the graph
by partitioning Sn into equivalence classes, which amounts to an inference procedure that
determines if [w1]/≡ ≤n [w2]/≡ for [w1]/≡n

, [w2]/≡n
∈ Sn/ ≡n.

Figure 2 shows the approximating graph of order 3 for the generalised Kuratowski closure-
complement problem. The vertices are subsets of S3, where only three vertices represent
equivalence classes with more than one element. Note that ‘.’ corresponds to the empty
word ε.

We note that the nth approximation is an approximation to the original problem in
two ways. First of all it only shows classes whose canonical representative has length at
most n. More importantly, however, it does not grant that two distinct classes in the nth
approximation will remain distinct for every (n+m)th approximation. Thus the cardinality
of the graph may decrease or increase when moving to larger values of n. Nevertheless, the

RTA’12

42 A Term Rewriting System for Kuratowski’s Closure-Complement Problem

approximation procedure is monotone in the following sense: if two words belong to the
same class in the nth approximation, they will belong to the same class in any (n+m)th

approximation. Moving to the (n+1)th approximation can only collapse more classes or
create new ones made only of words of length n+1.

The following theorem holds.

I Theorem 4. If the solution of the generalised problem is finite, then there exists an n such
that every (n+m)th approximation is isomorphic (as a directed acyclic graph) to the solution.

The theorem says that approximations stabilise, in the sense that larger approximations only
augment the cardinality of the equivalence classes, but they do not collapse any existent
distinct classes, nor do they add new arcs to the approximating graph.

The theorem does not provide an effective way to decide if an approximation is (isomorphic
to) the solution. We postulate the following conjecture that would provide a simple decision
procedure to recognise solutions.

I Conjecture 5. There exists an m such that, if for a given n the nthand the (n +
m)thapproximations are isomorphic, then they are isomorphic to the solution.

We have not tried to prove the conjecture yet and the proof does not seem to be simple. In
particular, we do not know what is the m for the set of axioms considered. Nevertheless, we
can employ an alternative to the conjecture to recognise which approximations are solutions.
Let us assume that at a certain point the approximations seem to stabilise, i.e., the (n+1)th

approximation is equal to the nth approximation. We can build a syntactic model of the
solution as follow. We take the set P of all strings w made from {i, c,−} such that w is a
canonical representative of an equivalence class in the nth approximation. Then we define an
≤ relation over P by taking the ≤n relation. The i, c and − operators are obtained as finite
maps that associate to each w ∈ P the canonical representative of i ◦w (respective c ◦w and
− ◦ w) in the nth approximation. In order to verify if (P, i, c,−) is a model for the problem,
we can use a computer algebra system or a theorem prover to verify that all axioms hold.
If they do, the nth approximation is isomorphic to the solution of the generalised problem
because the model shows that all classes are distinct and moreover the number of classes is
maximal because we have only equated combinations that had to be equated because proved
to be equal. Otherwise, we start computing larger approximations and we will eventually
find an (n+m)th approximation that is not isomorphic to the nth approximation that, a
posteriori, was not stable.

A priori, if the conjecture is false it may be that all syntactic models built from approxima-
tions that seem to be stable (i.e. (n+1)th isomorphic to nth) turn out to be wrong. However,
as we will see in the conclusions, this has not been the case for the different instances of the
generalised problem that we considered and that seemed to be stable.

The following theorem, instead, is obvious:

I Theorem 6. If the solution of the generalised problem is infinite, then there exists an
infinite increasing sequence of approximations with larger and larger cardinalities.

Our experience shows that in this case a clear pattern emerges, which after some time
allows us to predict what new classes will be generated passing from any nth approximation
to the (n+1)th approximation. This prediction can then be manually turned into a proof
that these new classes will never be collapsed in later approximations and therefore the
solution is infinite.

Consequently, in the rest of the paper we will focus on finding a solution to the nth
approximation of the problem.

O. Al-Hassani, Q. Mahesar, C. Sacerdoti Coen, and V. Sorge 43

3 The Basic Rewriting System

We now present a method to compute approximating graphs by constructing a rewriting
system directly from the axioms given in Figure 1. We present the term rewriting system in
a standard way employing terminology used in standard references such as [1]. Nevertheless,
the system can also be understood as an instance of generalised equational reasoning as
defined in [6], which corresponds more to the actual form in which the system was developed.

A preliminary observation is the fact that in the axiomatisation of the problem we can
replace the equality with a ≤ in all three idempotency inference rules as the (anti)monotonicity
of the respective operator yields the equality automatically. For instance, idempotency of the
i operator can be replaced by the axiom i(x) ≤ i(i(x)) since, by monotonicity, we already have
i(i(x)) ≤ i(x). Therefore, the only rule that employs an equality remains the antisymmetry
rule for ≤.

The approximating graph of order n can now be computed in two steps. In the first
step we compute the initial directed graph G from Definition 3 whose vertices are all the
elements of Sn (words of length at most n) and whose arcs represent all pairs (w1, w2) ∈≤n.
The anti-symmetric rule of the ≤ relation and, more generally, equalities are not used in
this step. In the second step we apply a standard connected component algorithm to this
graph. Since a connected component is made of all vertices that are mutually reachable, i.e.,
mutually less or equal, by antisymmetry of ≤ they are all equal. The resulting graph is then
the approximating graph of order n we are looking for.

Since the second step is completely standard and we can employ implementations out-of-
the-box, we will only focus on developing the first step here.

In order to compute the first directed graph G = (V,A) it is sufficient to find all pairs of
vertices (w1, w2) ∈ A in the transitive reduction of the graph of ≤n (recall that following
Definition 3 w1, w2 are words of length ≤ n in Sn), since the connected components algorithm
does not distinguish between a transitively reduced and a transitively closed graph. In other
words, we are looking for all pairs (w1, w2) ∈ A such that w1 ≤n w2 and there is no w3 ∈ V
such that w1 ≤n w3 and w3 ≤n w2.

By a close inspection of the rules that have a premise, it is easy to notice that all
applications of the transitive rules can be pushed towards the root of the derivation tree.
For instance, consider the monotone rule for i and assume (by induction hypothesis) that
the derivation of the premise x ≤ y is obtained by means of a transitive rule whose premises
are x ≤ z and z ≤ y. It is therefore possible to conclude both i(x) ≤ i(z) and i(z) ≤ i(y)
and then, with one final application of transitivity, that i(x) ≤ i(z). Thus, since we are
interested only in the transitively reduced graph, we can also avoid the use of the transitive
and reflexive properties of ≤.

The final preliminary observation is that, to compute all pairs (w1, w2) in the transitively
reduced graph G it is sufficient for every word w ∈ Sn to compute the two sets w↓ =
{w′ | w′ ≤n w ∧ |w′| ≤ |w|} and w↑ = {w′ | w ≤n w

′ ∧ |w′| ≤ |w|} where |.| is the length of
the two combinations. The final set is just given by⋃

w∈Sn

({(w,w′) | w′ ∈ w↑} ∪ {(w′, w) | w′ ∈ w↓})

In order to compute w↓ and w↑ we introduce the non confluent, noetherian term re-
writing system presented in Figure 3. The term rewriting system manipulates both active
configurations of the form 〈w1, w2, d〉 (where d ∈ {≤,≥}) and stuck terms w. The intended
big step semantics of the rewriting system is the following: an initial term 〈ε, w, d〉B∗ w′ iff

RTA’12

44 A Term Rewriting System for Kuratowski’s Closure-Complement Problem

(saturates)
〈w1,−−w2,≥〉B w1w2

(antimonotone)
〈w1,−w2, d〉B 〈w1−, w2, d

−1〉
(quasi-idempotent)

〈w1,−−−w2,≥〉B w1−w2

(reduces)
〈w1, iw2,≤〉B w1w2

(monotone)
〈w1, iw2, d〉B 〈w1i, w2, d〉

(idempotent)
〈w1, iiw2,≥〉B w1iw2

(saturates)
〈w1, cw2,≥〉B w1w2

(monotone)
〈w1, cw2, d〉B 〈w1c, w2, d〉

(idempotent)
〈w1, ccw2,≤〉B w1cw2

(compatible-1)
〈w1, c−w2,≤〉B w1−iw2

(compatible-2)
〈w1, i−w2,≤〉B w1−cw2

Figure 3 The non confluent, noetherian term rewriting system to compute w↓ and w↑.

wdw′ and |w′| ≤ |w|. In particular, w↓ can be computed as {w′ | 〈ε, w,≥〉B∗ w′} and w↑ as
{w′ | 〈ε, w,≤〉B∗ w′}.

The small step semantics of the rewriting system is more technical and it involves generic
configurations 〈w1, w2, d〉. The idea is that an initial reduction trace 〈ε, w, d〉Bn 〈w1, w2, d

′〉
represents a partial derivation of wdw′ for some yet unknown w′. Two invariants say
that |w1| = n and w = w1w2. The partial derivation built in a top-down manner starts
with exactly n monotonicity/anti-monotonicity rules: if w1 = o1 . . . on where oj ∈ {−, i, c}
then the j-th inference rule in the partial derivation is the monotonicity/anti-monotonicity
rule for oj . Moreover, the hypothesis of the partial derivation is w2d

′w′2 for some yet
unknown w′2 such that w′ = w1w

′
2. According to this interpretation, a reduction trace

〈ε, w, d〉 B∗ 〈w1, w2, d
′〉 B w′ corresponds to a derivation of wdw′ where there is a w′2 such

that w′ = w1w
′
2, the last inference rule in the top-down construction is an axiom that proves

w2d
′w′2 and |w′2| ≤ |w2|. The proof that reduction traces of length n correspond to partial

derivation trees of height n having the property just described is by induction on n. We only
sketch here one case of the proof.

Each rule in Figure 3 corresponds to the rule with the same name in Figure 1. It means
that applying the reduction rule adds the corresponding inference rule to the partial proof tree.
The most interesting rule is the rule antimonotone: In order to proceed in the derivation
we use one more application of antimonotonicity of complement by pushing − on top of
the stack w1 and looking for a new derivation for w2d

−1w′. To see that the rule is correct,
assume that 〈ε, w, d〉Bn 〈w1,−w2, d

′〉B 〈w1−, w2, d
′−1〉. By induction hypothesis there is a

partial proof derivation of wdw′ built top-down that starts with monotone/anti-monotone
rules for the operators in w1 and whose hypothesis is −w2d

′w′′ for some yet unknown w′′
such that w′ = w1w

′′. By applying anti-monotonicity of − we obtain a new partial proof
derivation of wdw′ whose new hypothesis is w2d

′−1
w′′′ and such that w′ = w1w

′′ = w1−w′′′.
The reduction rule is therefore correct and by applying it we discover that w′′ = −w′′′ or,
equivalently, that the next rule in the combination w′ after w1 is −.

Strong normalisation of the term rewriting system can simply be proved by induction on
the length of the second component of active configurations, which always decreases by one
in all (anti)monotonicity rules. All remaining rules produce a stuck term.

By inspection of all the rules, it is easy to prove (by induction on the second component
of an active configuration) that if 〈ε, w, d〉B∗ w′ then |w′| ≤ |w|. Moreover, if 〈ε, w, d〉B∗ w′
and |w′| = |w| then 〈ε, w′, d−1〉6 B∗w. This is important for efficiency reasons since it means
that we are never generating the same arc twice (as w1dw2 and w2d

−1w1).
The system clearly has several critical pairs between (anti)monotonicity rules and the

O. Al-Hassani, Q. Mahesar, C. Sacerdoti Coen, and V. Sorge 45

remaining rules. Actually, it turns out that every critical pair is not joinable and the system
is thus non confluent. Non-joinability is a feature of our system; because our rewriting rules
are never applied under a context,from non-joinability it follows that we never compute the
same arc twice in different ways.

Computing all normal forms of a term can be done very efficiently (in terms of actual,
non asymptotic computational cost of the program): At every step at most two rules can be
applied, one produces a stuck term and the other can be implemented as a tail recursive call.
It is thus possible to simplify the code of an implementation for a generic term rewriting
system.

4 The Advanced Rewriting System

Given a combination w ∈ Sn, the computation of w↓ and w↑ by means of the term rewriting
system presented in the previous section is very efficient. Nevertheless, the number of
combinations to be reduced is exponential in n and the number of reducts for each w is also
exponential in n. The limiting factor for the computation of larger and larger approximating
graphs is thus the memory required to hold the graph defined by w↓ and w↑, which is the
initial directed graph G from Definition 3 before the computation of connected components.

To be able to compute larger approximations, we exploit the following result: There exist
only 7 distinct equivalence classes of combinations of closure and interior. While this results
is well known in the literature and we can obtain it with our technique for very small values
of n, we additionally observed that every class can be associated with a regular expression
that generates all elements of the class2. These seven regular expressions are:

ε, i+, c+, (ic)+, (ci)+, i(ci)+, c(ic)+

Taking as canonical representatives the shortest expressions in each class, we have that the
set of representatives is {ε, i, c, ic, ci, ici, cic}. Let K be any regular expression that generates
the set. When we consider combinations that also contain complement, and remembering
that −−−x = −x, we obtain that all combinations can be partitioned into an infinite number
of sets of equivalent combinations whose representatives are all generated by the following
regular expression E: (−|−−)?(K−−?)∗K?. The set that corresponds to a representative is
the set obtained by replacing any occurrence of − with an odd number of occurrences of
− and any occurrence of a term generated by K with an element of its equivalence class.
For instance −−−−−icicicic−−−− is a member of the set whose representative is −ic−−.
The sets that correspond to different representatives are not distinct according to the ≡
relation. For instance c−i− and −i− are representatives of different sets, but c−i− ≡ −i−.
Nevertheless, if two elements belong to the same set, than they are equivalent. Thus the ≡
equivalence relation is more fine grained than the equivalence relation that is induced by
partitioning with respect to regular expressions.

The idea to speed up our previous algorithm is to avoid to generate the vertices (and
relative arcs) that correspond to non-canonical representatives of the equivalence classes
discussed above. These vertices will all belong to the connected component that will be
collapsed to its canonical representative. For instance, for n = 7, our previous algorithm
would handle the vertices {−,−−−,−−−−−,−−−−−−−} as potentially distinct.

To implement the idea, we change the already presented algorithms in two ways.

2 This property does not hold any longer when we consider combinations with complement.

RTA’12

46 A Term Rewriting System for Kuratowski’s Closure-Complement Problem

(−−)
−−w B w

(cc)
ccw B w

(ii)
iiw B w

(cici)
ciciw B ciw

(icic)
icicw B icw

(compatible-1 + i-idempotent)
〈w1, c−iw2,≤〉B w1−iw2

(compatible-2 + c-idempotent)
〈w1, i−cw2,≥〉B w1i−w2

Figure 4 Additional rewriting rules.

1. We change the definition of Sn with the following one. The changes apply everywhere in
Section 3, and in particular to Definitions 2 and 3.

x ∈ Sn iff x is generated by the regular expression E and |x| ≤ n

2. We integrate the rewriting system with the rules of Figure 4 after dropping the rule
quasi-idempotent and the two idempotent rules from the previous rewriting system.
The reason why we drop these rules is that their left hand side will never match any
active configuration due to restricting the definition of Sn.

Considering the rules in Figure 4, we observe that all rules of the first line simplify a
combination. Applied repeatedly they put any combination into their K-normal form. The
rules of the second line are obtained by applying Knuth-Bendix completion. Note, however,
that our rewriting rules come from a non-symmetric relation (≤) and we have to take care of
this during the superposition phase of Knuth-Bendix completion. The names of the new rules
are a concatenation of the names of the rules superimposed. The new rules are necessary to
keep completeness after having changed the definition of Sn. For instance, because c−ii does
no longer belong to S4, we are no longer considering the combinations like (c−ii)↑ 3 −i.
The new rewriting rule generated by Knuth-Bendix completion takes care of adding −i to
(c−i)↑ by implicitly performing a step of ii-expansion. Note that, in the original rewriting
system, monotonicity of i was only used to perform a step of ii-contraction.

In Figure 4 we only list two rules obtained from the Knuth-Bendix completion because
all the others are logically redundant: they allow to derive w1 ∈ w2↓ when there exists a w3
such that w1 ∈ w3↓ and w3 ∈ w2↓. The redundant rules have been pruned by hand, but it is
surely possible to automate the procedure.

The new term rewriting system remains noetherian: all the new rules decrease the
length of either the (no longer stuck) combinations or the second component of the active
configurations. Of the new rules only those in the first line need to be applied several times
in order to obtain the normal form of a term. However, it is easy to show that all critical
pairs are joinable. Therefore, by Newman’s lemma, the normalisation step implemented by
the rules in the first line is confluent, as expected.

I Theorem 7 (Correctness and completeness). The algorithm based on the advanced rewriting
system just described correctly computes the nth approximation of the problem for each n.

The advanced rewriting system is obtained by rewriting in one step all combinations to
their canonical representatives in the equivalence classes identified by the regular expression
considered. The same trick can used more aggressively when we build the nthapproximation
after the (n − 1)th. Indeed, we can add to the nthterm rewriting system one rewriting
rule per combination of length (n − 1) that in one step rewrites the combination to its
(n− 1)thcanonical representative.

Since the number of these additional rules is exponential in n, we avoid running the
Knuth-Bendix completion, by using the new rules only to normalise terms that are not

O. Al-Hassani, Q. Mahesar, C. Sacerdoti Coen, and V. Sorge 47

−− = ε
(axiom 1)

c− = −i (axiom 2)

i− = −c (axiom 3)

c−− = −−c (axiom 4)

c = −i− (axiom 5)

{}

{3} {4} {2}

{4,3} {4,2}

{5,[2,3,4]} = {2,3,[4,5]}

General Case

Classical Case

{1,[4]}

{1,2,[3,4,5]} = {1,3,[2,4,5]}= {1,5,[2,3,4]}

Localic Case

Variants

Figure 5 Variations of Kuratowski’s problem.

active configurations. The consequence is that we have to normalise exactly the same set
of combinations and so we do not save time during the graph generation phase with the
rewriting system. The size of the generated graph, however, will be much smaller since it will
no longer contain nodes that are not in (n−1)thnormal form. The benefit is thus a significant
reduction of the computational cost for the computation of the connected components when
generating the approximating graph of order n.

The proof of correctness and completeness of the rewriting system obtained with this final
improvement is a simple corollary of Theorem 7. The implementation of the improvement is
very cheap: the additional rewriting rules generated at the (n− 1)thstep can only be applied
to terms that are stuck according to all other rules. Moreover, they only generate stuck
terms. Therefore we can implement this final step as a simple look-up in a trie.

5 More Variations of Kuratowski’s Problem

Although the rewriting system presented so far has been developed as a bespoke approach to
solve the generalised Kuratowski problem, it turns out that with a parametric implementation
our procedure can be applied to a variety of related problems lying between the classical
and general problem. These problems are generated by introducing axioms which restrict
the general problem, or generalise the classical one. Figure 5 demonstrates variations of
Kuratowski’s problem, where the axioms on the left hand side gradually refine the generalised
problem to the classical problem according to the graph on the right. The nodes are given as
sets of included axioms, with the root as the empty set representing the generalised case.
Furthermore, axioms derivable from already included ones are given in square brackets.

The variations are motivated by Sambin’s work who proposed the generalised problem in
the context of intuitionistic point-free topology. Axioms 1–5 are likewise inspired by axioms
commonly found in topological problems. For example, axiom 1 postulates the complement
operator as idempotent, corresponding to its use in classical logic. Axiom 4, c−− = −−c, is
another axiom that is frequently satisfied by concrete basic topologies (see [8]). Adding axiom
5 to the generalised problem, further restricts the saturation operator c. The axiomatisation
obtained is the one for locale theory, for which it is already known in the literature [9] that a
maximum of 21 combinations exists. Weaker cases than the localic one can be obtained by
effectively splitting axiom 5 into axioms 2 and 3, and considering those either separately or
in combination with axiom 4.

All the presented problems in the generalised problem domain can be obtained using
our approach, by simply adding the corresponding axioms to our advanced term rewriting

RTA’12

48 A Term Rewriting System for Kuratowski’s Closure-Complement Problem

systems as pairs of reductions over active configurations. The Knuth-Bendix completion
must also be applied to combine the new rules with the ones of the advanced term rewriting
system.

6 Implementation and Results

Our procedure has been implemented in a combination of bespoke code and existing tools. The
rewriting engine has been written in pure OCaml and is fully parametric on the list of reduction
rules. The connected-components algorithm exploits the ocamlgraph library [2] instantiated
with an ad-hoc, optimised hashing function for equivalence classes of combinations. For the
transitive reduction of the obtained graph we employ the tred tool and for its visualisation
we use the dot tool.

Implementing the rewrite engine from scratch has allowed us to take care of the peculiarities
of the rewriting system, (e.g., by exploiting as much as possible tail recursive calls). This
choice was also motivated by the need to generate graph representations that were easy to
inspect manually as well as to influence the generation of elements in S in order to explore
particular subgraphs, which, to the knowledge of the authors would have been difficult to
achieve in any existing system. Furthermore, our implementation allowed us to take some
care on memory consumption. Nevertheless, when supplying the rewrite engine with the
rules of the advanced rewriting system, the program runs out of memory after about 12
minutes on one of the cores of a server equipped with a 2.4GHz Intel Xeon processor and
48GB of RAM producing an approximating graph of order 16.

That means that it explores all words generated by the regular expression in Section 4 of
length at most 16, deriving all equations and inequalities that are provable without using
combinations of length ≥ 17. The initial graph generated by the rewriting system contains
1, 771, 825 vertices, corresponding to all the combinations of length up to ≡16, and 8, 687, 605
arcs, corresponding to steps of the ≤n relation. The approximating graph obtained after the
computation of the strongly connected components contains 44, 138 vertices, corresponding
to distinct equivalence classes. The number of arcs in the transitively reduced graph could
not be computed as the tred tool would not terminate within a 2 hour time-limit already
for approximating graphs of order greater than 12. Note that tred has been run in separate
threads of the computations of our rewrite systems.

The resulting graph is quite chaotic, in that, we were not able to find any simple
description of either the set of equivalence classes or the elements of most equivalence classes.
Nevertheless, by manual inspection of the generated graph we were able to spot sufficient
regularity to solve the problem by showing that the number of equivalence classes is infinite.
In fact, all the equivalence classes whose representatives are generated by the following
regular expression are distinct: c?(−−c)∗(−−)?. Moreover, each one is less than or equal to
every other class generated by a longer representative (e.g. −−c ≤ −−c−−) and they are all
bounded by −i−, which is also distinct from them and is the minimum of the lattice.

Figure 6 contains a clipping of the approximating graph of order 12 for the generalised
problem visualised with the dot tool. The clip contains the approximation of the infinite
subgraph with elements of the c?(−−c)∗(−−)?, together with some surrounding nodes. The
outgoing arc at the bottom leads to the bottom element of the graph, −i−, that is not
visible. It is obvious to see that the entire subgraph (i) has only one outgoing arc to the
bottom element, (ii) it is less than all elements in the remainder of the graph, and (iii) grows
downwards with increasing word length. We briefly sketch the formal argument that leads to
the above result using our rewriting formalism.

O. Al-Hassani, Q. Mahesar, C. Sacerdoti Coen, and V. Sorge 49

Figure 6 Infinite subgraph for the generalised problem.

First to demonstrate that the equivalence classes generated by the regular expression
r = c?(−−c)∗(−−)? constitute indeed an increasing sequence wrt. ≤, we let 〈w1, w2,≥〉 be
any configuration such that w2 6= ε and w1 and w1w2 are generated by r.

If 〈w1, w2,≥〉B∗w then w is generated by r and is shorter. The argument is by induction
over the length |w2|:

1. Suppose w2 starts with c or with −−. Then either one of the saturates rules is applicable,
resulting in a shorter expression.

2. Suppose w2 starts with c and monotone is applicable. Thus w2 is shorter and we can
apply the induction hypothesis.

3. Suppose w2 starts with − and antimonotone is applicable. The new configuration is
〈w1−,−w′2,≤. The only applicable rule is now antimonotone again and we can conclude
using the induction hypothesis.

Similarly we can show that −i− is indeed the bottom element: Let 〈w1, w2,≥〉 be any
configuration such that w2 6= ε and w1 and w1w2 are generated by r. If 〈w1, w2,≤〉 B∗ w
then w is in the same class as −i−. Again by induction over |w2| we can show:

1. Suppose w2 starts with c−− with compatible-1 we get w1−i−w2 = −i−.
2. Suppose w2 starts with c then monotone is applicable and we can apply the induction

hypothesis.
3. Suppose w2 starts with − then antimonotone is applicable. The new configuration is
〈w1−,−w′2,≤. The only applicable rule is now again antimonotone and we can conclude
using the induction hypothesis.

Applying our implementation to other problems in the domain introduced in the previous
section, we could quickly verify the results known from the literature of 14 and 21 combinations
in the classic and localic case, respectively. For the other problems we obtain a mixed picture
of both finite and infinite cases.

Table 1 lists the approximating graphs from order 14 to 16 for the infinite cases in terms
of vertices and arcs as well as infinite subgraphs identified. Again no arc count could be
computed for the general case due to non-termination of tred.

RTA’12

50 A Term Rewriting System for Kuratowski’s Closure-Complement Problem

Table 1 Approximating graph for all the variants that do not stabilise.

Axiom set Order 14 Order 15 Order 16 Infinite
Classes Arcs Classes Arcs Classes Arcs subgraph

∅ 10439 ? 16869 ? 27315 ? (−− c)∗

{2} 135 269 142 285 149 299 (−− ci)∗

{3} 135 269 142 285 149 299 (−− ic)∗

{4} 278 640 283 649 288 660 (−− ici)∗

So far we have proved formally only the infinite subgraph of the general case to consist
of distinct classes. While when adding axiom 2 or 3 or 4 only, the approximating graphs
also continue to grow, the infinite subgraph that we spotted in the general case collapses to
a finite one as the equation c−− = −−c forces all combinations generated by the regular
expression c?(−−c)∗(−−)? into less than four classes. Consequently, the argument we used
to show that the general case is infinite does no longer hold. Thus the formal proof for these
cases is still outstanding.

For the remaining problem variants the approximating graphs stabilise. The exact figures
for the graphs are given in Table 2. Axiom sets {1, 2, 3} and {2, 3} are the classical and localic
case from the literature and we can observe that in our system their approximating graphs
stabilise after only few iterations. Similarly, for axiom combinations {2, 4} and {3, 4}, the
set of equivalence classes stabilises quickly at 35 and 44 after 8 and 9 iterations, respectively.
Finally when adding axiom 1 alone we get a stable approximation after 13 iterations with
126 classes. For these latter three cases we also do not yet have a formal proof because we
did not check yet the induced syntactic model.

7 Conclusions and future work

We have presented the study of the generalised version of Kuratowski’s classical closure-
complement problem from point-set topology. To solve the problem we used a computational
procedure that combines a term rewriting system with bespoke graph algorithms. The
procedure is capable of showing several million lemmas about relations between combinations
of operators, which allowed us to iteratively approximate the solution to the problem. The
resulting graph exhibited enough regularity to enable us to show that the solution space
of the problem is infinite, thereby successfully closing the problem. A posteriori, the proof
that the number of combinations is infinite was quite easy and the infinite set of distinct
combinations is generated by a simple regular expression. Nevertheless, the problem has
remained open for more than nine years, and the clutter in the rest of the graph made it
difficult to spot the infinite subgraph.

Table 2 Approximating graphs for all variants that stabilise.

Axiom set Classes Arcs Stabilising Iteration
{1} 126 268 13
{1, 2, 3} 14 16 4
{2, 3} 21 31 5
{2, 4} 35 57 8
{3, 4} 35 57 8

O. Al-Hassani, Q. Mahesar, C. Sacerdoti Coen, and V. Sorge 51

From the mathematical point of view, the result is quite interesting. It shows that the
generalisation to a saturation operator partially independent from the reduction operator
greatly adds to the expressive power of the system. This is one of the main intuitions at
the base of the Basic Picture of Sambin [8], a complete re-formulation of point-wise and
point-free topology that is deeply rooted in intuitionistic and predicative logic.

Our graph algorithms, mainly the connected components computation, take care of
the transitivity of the less than relation and computes the smallest representatives of the
equivalence classes according to the shortlex order. The noetherian term rewriting system
where all critical pairs are non joinable takes care of monotonicity and anti-monotonicity of
the operators and is used to quickly derive a large number of inferences that do not require
transitivity. Non joinability implies that all inferences have different conclusions. Finally,
another noetherian and confluent rewriting system allows to aggressively prune the number
of inferences by constraining the shape of the terms under consideration. When combined
together, we need to apply Knuth-Bendix completion between some rules of the first rewriting
system and some of the second one because we implicitly choose the strategy when a term
is first simplified using the second set of rules, then reduced using the first, then simplified
again. The strategy is implicit since we start from terms already in normal form according
to the second set of rules. The completion allows to preserve completeness under the implicit
strategy.

Our initial problem that generalises Kuratowski’s classical result is not the only possible
generalisation. Other typical examples of generalisations are obtained by considering other
topological or set theoretical operators like union or intersection. A recent reference for
variations on the original problem and applications of the classification to the characterisation
of properties of subsets of topological space can be found in [4]. The paper also presents a
large bibliography on variants and applications of the problem. It does not cite, however,
the generalisation and variants studied in this paper, nor the paper [9] that shows that in
locale theory there are exactly 21 different combinations.

We have mapped out a landscape of generalised problems that lie between the finite
classical and localic cases, where results were previously known, and the infinite generalised
case, which is a new result. We are currently systematising the results about the intermediate
cases considered. The general picture obtained, once perfectly clear, will be the subject of a
future publication in a mathematical venue.

Already the presented results demonstrate that our approach scales well to all these
generalisations. Indeed, the system we implemented is fully parametric on the list of reduction
rules of the advanced rewriting system. The computation of the Knuth-Bendix like completion,
that at the moment is done manually, could be easily automated. Note, however, that we
cannot use any of the many off-the-shelf tools available. The reason is that we need to
perform a Knuth-Bendix completion, but we are not dealing with a canonical word problem
because the starting relation to be oriented is not symmetric. Rewriting in presence of non
symmetric relations has been previously investigated by the third author in [6] to implement
semi-equational reasoning and the technique employed here can be effectively understood as
an application of this study.

Acknowledgements The authors want to thank Prof. Sambin that stated the generalised
Kuratowski’s closure-complement problem studied in this paper and personally brought it to
the attention of the third author.

RTA’12

52 A Term Rewriting System for Kuratowski’s Closure-Complement Problem

References
1 Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge University

Press, Cambridge, 1998.
2 Sylvain Conchon, Jean-Christophe Filliâtre, and Julien Signoles. Designing a generic graph

library using ML functors. In The Ninth Symposium on Trends in Functional Programming,
volume 8, pages 124–140. Intellect, 2008.

3 Lara Corsi. Combinazioni di operatori di interno, chiusura e loro complemento in LJ. Tesi
di laurea in Matematica, Università di Padova, 2006.

4 Barry J. Gardner and Marcel Jackson. The Kuratowski closure-complement theorem. New
Zealand Journal of Mathematics, 38:9–44, 2008.

5 Kazimierz Kuratowski. Sur l’operation a de l’analysis situs. Fund. Math., 3:182–199, 1922.
6 Claudio Sacerdoti Coen. A semi-reflexive tactic for (sub-)equational reasoning. In Types

for Proofs and Programs, volume 3839/2006 of LNCS, pages 98–114. Springer-Verlag, 2006.
7 Giovanni Sambin. Some points in formal topology. Theoretical Computer Science, 305(1-

3):347–408, 2003.
8 Giovanni Sambin. The Basic Picture: a structural basis for constructive topology. Oxford

University Press, 2012.
9 He Wei and Zhang Yasoming. Interior and boundary in a locale. Advances in Mathematics,

29(5):439–443, 2000.

	Introduction
	The Problem
	The Basic Rewriting System
	The Advanced Rewriting System
	More Variations of Kuratowski's Problem
	Implementation and Results
	Conclusions and future work

