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Abstract
Music is often processed through its acoustic realization. This is restrictive in the sense that
music is clearly a highly multimodal concept where various types of heterogeneous information
can be associated to a given piece of music (a musical score, musicians’ gestures, lyrics, user-
generated metadata, etc.). This has recently led researchers to apprehend music through its
various facets, giving rise to multimodal music analysis studies. This article gives a synthetic
overview of methods that have been successfully employed in multimodal signal analysis. In
particular, their use in music content processing is discussed in more details through five case
studies that highlight different multimodal integration techniques. The case studies include an
example of cross-modal correlation for music video analysis, an audiovisual drum transcription
system, a description of the concept of informed source separation, a discussion of multimodal
dance-scene analysis, and an example of user-interactive music analysis. In the light of these case
studies, some perspectives of multimodality in music processing are finally suggested.
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1 Introduction

While the most natural way to perceive music is through its acoustic rendering, it is clear
that it is a highly multimodal concept that can be sensed in a variety of ways: music is
materialized in the head of a composer, or a trained musician reading a musical-score; it is
translated into sound and motion in a performer’s gestures or a dancer’s movements and
steps; it becomes visual art when it is illustrated by disc cover designs or transformed into an
audiovisual production; not to mention its textual dimension that encapsulates not only the
lyrics (in sung music) and editorial metadata, but also social web content such as user-tags,
reviews, ratings, etc.

Consequently, treating music only through its acoustic realization appears to be quite
restrictive, which has led researchers in the general field of music content analysis to appre-
hend it through its various facets, giving rise to multimodal music analysis studies. To our
knowledge the earliest contributions along this line dealt with two modalities, that is the
audio and score modalities, in order to perform music-to-score matching [10, 66]. The more
complex visual modality has not been exploited in music analysis until the late 90s [60],
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38 Fusion of Multimodal Information in Music Signals Processing

in contrast to the speech processing domain where audiovisual speech recognition systems
have been imagined in the 80s [59]. Not surprisingly, the earliest works on audiovisual music
were dedicated to the analysis of piano music [60], [62], probably due to the possibility to
segment the keyboard keys and track the musician’s fingers positions on the keyboard more
easily than with other instruments.

Since then, our field of interest has seen a variety of multimodal studies spanning a wide
range of techniques and applications, an overview of which is proposed in this article. We will
first provide a synthetic view of methods that have been successfully employed in multimodal
research works in general and discuss their use for music processing. Subsequently, we will
discuss a selection of case studies we have contributed to, and highlight the related future
research directions that seem promising to us.

2 Multimodal Techniques

Multimodal processing techniques, in general, fall into one of two categories of a binary
taxonomy: early integration techniques as opposed to late integration techniques.1 The
former refers to the process whereby a system directly exploits the “raw” low-level features
used to describe each data stream, without any further transformations other than basic
postprocessing (typically denoising, normalisation, resampling, etc.). By contrast, the lat-
ter is employed to indicate that the joint exploitation of the modalities is performed at a
decision-level, typically by combining the outputs of intermediate monomodal classifiers.
This distinction will be useful to understand the differences between the techniques presen-
ted hereafter. Another interesting distinction is the following: the effort of characterizing
the “relationships” between the different modalities reflecting the content being analyzed
is referred to as cross-modal processing, while the problem of efficiently combining the in-
formation conveyed by the different modalities (to perform a more thorough analysis of the
content) is called multimodal fusion. Below we further describe the previous paradigms and
discuss their exploitation in the field of music processing.

2.1 Cross-Modal Processing

The relationships between the modalities considered can be expressed in several different
ways.

In the first place, when dealing with modalities having a temporal dimension (typically
audio signals, video signals, or musical scores), it might be required to temporally align the
different data streams in case they are not initially synchronized. In fact, achieving this
synchronization may be one’s ultimate goal: for instance when dealing with the audio and
score modalities, this task is often referred to as music-to-score alignment (or music-to-score
synchronization) [50, 41]. Since the latter is already well covered in other articles of this
book, we will here assume that the data streams considered are temporally aligned.

Assuming synchronized features, many proposals have been made to measure a form of
dependency between two heterogeneous data streams, part of which remain under-exploited
in the music information retrieval community, despite their potential. For the sake of clarity,
we make the assumption (without loss of generality) that two streams of data are considered:
an audio stream and a video stream. Though the methods presented in the following have

1 It is worth mentioning that hybrid approaches exist too.
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been mainly applied to those two particular modalities, they can be used with any other
parallel data streams whose dependency is to be characterized.

A number of techniques have been suggested to map the observed audio and visual fea-
ture vectors to a low dimensional space where a measure of “dependency” between them
can be computed. Let us assume the n observed audio feature vectors xa ∈ RDa are as-
sembled column-wise in a (n×Da)-matrix Xa, and the corresponding visual feature vectors2
xv ∈ RDv are assembled column-wise in a (n × Dv)-matrix Xv. The methods we describe
here aim to find two mappings fa and fv (that reduce the dimensions of the audio and
visual feature vectors), such that a dependency measure Sav(fa(Xa), fv(Xv)) is maximized.
Various approaches can be described using this same formalism. Darrel et. al. choose the
mutual information [8] as a dependency measure and seek single-layer perceptrons fa and
fv projecting the audiovisual feature vectors to a 2-dimensional space. Other more popular
approaches, for which closed-form solutions can be found, use linear mappings to project
the feature streams:

Canonical Correlation Analysis (CCA), first introduced by Hotelling [33], aims at finding
pairs of unit-norm vectors ta and tv such that

(ta, tv) = arg max
(ta,tv)∈RDa×RDv

corr(tt
aXa, tt

vXv) . (1)

An alternative to the previous (expected to be more robust than CCA) is Co-Inertia
Analysis (CoIA). It consists in maximizing the covariance between the projected audio
and visual features:

(ta, tv) = arg max
(ta,tv)∈RDa×RDv

cov(tt
aXa, tt

vXv) . (2)

Yet another configuration known as Cross-modal Factor Analysis (CFA), and found to
be more robust than CCA in [45], seeks two matrices Ta and Tv, such that

(Ta, Tv) = arg max
(Ta,Tv)

(1− ||TaXa − TvXv||2F ) = arg min
(Ta,Tv)

||TaXa − TvXv||2F ; (3)

with TaT t
a = I and TvT t

v = I. ||X||F denotes the Frobenius norm of matrix X.

Note that the previous techniques can be kernelized to study non-linear coupling between
the modalities considered (see for instance [44, 31]).

The interested reader is referred to [33, 31, 45] for further details on these techniques,
and to [25] for a comparative study. Examples of applications in the field of music content
processing are mentioned in Section 2.4.

2.2 Feature-Level Fusion
Feature-level fusion is the (early integration) process of combining different types of features
from different modalities into a common feature representation.

The most basic audiovisual feature fusion approach consists in concatenating the audio
and visual feature vectors, xa and xv, to form a global feature vector xav = [xa, xv]. However,

2 The underlying assumption is that the (synchronized) audio and visual features are extracted at the
same rate, which is often obtained by downsampling the audio features or upsampling the video features,
or by using temporal integration techniques [40].
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the dimensionality of the resulting representation is often too high, leading researchers to
resort to dimensionality reduction methods.

A common approach is to use feature transformation techniques such as Principal Com-
ponent Analysis (PCA) [5], Independent Component Analysis (ICA) [63], or Linear Dis-
criminant Analysis [5]. An interesting alternative, is feature selection [30] which aims to
select only useful descriptors for a given task and discard the others. Indeed, when applied
to the feature vectors xav, feature selection can be considered as a feature fusion technique
whereby the output will hopefully retain the “best of xa and xv” i.e. a subset of the most
relevant audiovisual features (with respect to the selection criterion).

Nevertheless, the two previous approaches can be considered as limited owing to the dif-
ferent physical nature of the audio-visual features to be combined. In particular, the features
do not necessarily live in the same metric space, and are not necessarily extracted from the
same temporal segments. Consequently, there has been a number of proposals attempting
to address these limitations. One possible approach consists in building separate kernels for
different features, before determining new optimal kernels (as convex combinations of the
individual ones) in order to use them for classification [70]. Another possible approach of
note is the construction of joint audiovisual representations, envisaged as audiovisual atoms
in [38], and audiovisual grouplets in [39], both exploiting audiovisual correlations. The joint
audiovisual representation may in particular be built using one of the audiovisual subspace
methods described in Section 2.1 (see [45] for an example).

2.3 Decision-level fusion

Late fusion or the idea of combining intermediate monomodal decisions3 in order to achieve
a more accurate multimodal characterization of a content has been explored extensively,
under various configurations.

Numerous works rely on majority voting procedures whereby final global decisions are
made based on a weighted sum of individual voters, each typically corresponding to a decision
taken on a particular modality. The weights are often chosen using either heuristics or
trial-and-error procedures (see for example [46]). This idea can be better formalized using
a Bayesian framework, which allows for taking into account the uncertainty about each
classifier’s decisions, as done in [36]. Also, solutions to deal with the potential imprecision
of some modalities have been proposed using the Dempster-Shafer theory [19]. Another
widely used strategy consists in using the monomodal classifiers outputs as features, on the
basis of which a new classifier, that is expected to optimally perform the desired multimodal
fusion, is learned [68].

The previous approaches do not account for the dynamic properties of the media streams
considered, nor do they allow for encoding prior knowledge about the dependency structure
in the data, in particular the temporal and/or cross-modal dependencies. To this end,
sophisticated dynamic classifiers have been utilized, ranging from variants of (multi-stream)
Hidden Markov Models (HMM) [28, 52, 43, 1], through more general Dynamic Bayesian
Networks (DBN) [6, 27], to even more general graphical models such as Conditional Random
Fields (CRF) [41, 3].

3 These decisions are generally output by previously trained classifiers.
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Table 1 Case studies presented. The “Modalities” are the ones taken into account in the corres-
ponding case study; “Cross-modal” indicates whether the method presented performs cross-modal
analysis; “Fusion” indicates whether it exploits multimodal fusion and “Section” is where in this
chapter the case study is presented.

Case studies Modalities Cross-modal Fusion Section
Audiovisual correlation audio, video • ◦ 3.1.1
in music videos
Audiovisual drum audio, video ◦ • 3.1.2
transcription
Music in motion: audio, motion, depth, • • 3.2
analyzing dance scenes video, choreographies
Interactive music analysis audio, human • • 3.3
Informed source separation audio, score, human • ◦ 3.4

2.4 Discussion
Many of the techniques mentioned above have been exploited in multimodal music content
analysis research. Cross-modal analysis seems to be particularly popular within this domain.
For instance, CCA has been used both for studying correlations between sounds and human
motion or gestures [54, 55], and correlations between music and words, in view of creating a
musically meaningful vocabulary [65]. Also, heuristic rules for the association of higher-level
descriptors extracted from different modalities have been employed [4, 21]. In fact, it seems
that approaches relying on heuristic rules are mainstream, be it for specific content analysis
tasks, such as music video summarization [71], or more general classification problems (see
for example [46] where the output of audio and visual classifiers are heuristically combined).

We believe there is a great potential in exploiting the more sophisticated cross-modal
techniques and dynamic statistical models previously mentioned to be able to better express
one’s prior knowledge on the data structure (features dependency, temporal synchronisation,
multi-scale effects, higher-level cross-modal concept relationships, etc.) and fully exploit the
valuable information that is encoded in it. This of course entails a formalisation effort
which is expected to be rewarding both in terms of performance and generalization insofar
as the purpose of using common architectures for different applications can be pursued.
Modeling the ambiguity and imprecision of intermediate (mono-modal) decisions thanks to
the Dempster-Shafer theory of evidence is another interesting idea that is believed to hold
much promise.

3 Case Studies

We now present particular multimodal music applications that we have treated in the past
few years illustrating the techniques introduced in Section 2. Table 1 gives an overview of
these case studies indicating the modalities considered and the class of techniques employed.

3.1 Audiovisual Music
3.1.1 Audiovisual Correlation in Music Videos
The first case study is dedicated to a specific aspect of multimodal signal analysis and aims
at exploiting the correlation between the audio and visual modalities in music videos [21].

Chapte r 03
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Figure 1 Overview of the audio-visual content structuring system (from [21]).

In the case of music videos, a large palette of semantic relationships between the audio
and video streams may be used by the artists at the production stage. For example, main-
stream music videos show dancers or performers, but some videos have a narrative content
based on higher-level features of the song (such as structure or mood) while others explore
new forms of visual metaphors [26, 42, 53].

In this case study (further described in [21]) high-level structures of the audio and video
streams are separately extracted in order to measure the correlations between these struc-
tures. The objective in such an approach is to characterize the synchrony of significant
events and changes in the music and the accompanying images.

It is clear that a large number of salient events can be defined both for audio and visual
streams. In music signals, note or chord changes are obviously important events. Thus, an
efficient mid-level temporal structuring of a music piece can be achieved by detecting the
onsets of such events which coarsely capture the rhythmic properties of the music (many
onset detection methods exist and the interested reader may consult the tutorial given in
[2]).

In parallel, the events of interest to be extracted from the video include rapid movements
such as dance steps, movements of musicians or any action sequence (similarly many ap-
proaches exist and such events can be for example detected using motion activity detectors
[37]).

At a higher level, a music piece can be temporally segmented in sections, characterized
by distinct dynamic, tonal or timbral properties and corresponding to the musical structure
of the piece, i.e. choruses, verses, fill-ins, etc. Such segments can be either obtained by
identifying large blocks in a self-similarity matrix computed on the signal (see for example
[58, 7] in the framework of automatic summarization) or by exploiting novelty detection
methods which allow for determining boundaries between homogeneous temporal segments
[21].

For the video part, the higher level description is obtained by means of a segmentation
into shots. In fact, shot changes events are semantically important in the sense that they
may be correlated with the rhythm or section changes in the music.

These four segmentation processes produce detection functions (represented in Figure
1) ideally exhibiting peaks whenever an event or section change is detected. The detection
functions can be thresholded to obtain the temporal location of salient events and segment
boundaries, or directly considered to measure correlations.

The experiments reported in [21] have shown that the correlation between note onset
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(music) and shot changes (video) is particularly appropriate for cross-media authoring or
cross-media retrieval applications (e.g. audio retrieval from video or vice-versa video retrieval
from audio). In the latter case, it obviously depends on the genre of the music videos. For
instance, for narrative videos, where the music video has a strong narrative content and
chronology, the proposed mid-level correlations are not adequate since they cannot capture
such high level semantic links. Understanding music lyrics, music emotion from audio and
video, represent some of the very attractive current and future lines of research in this
domain.

This case study is thus an illustration of an exclusively cross-modal application, where
multimodal fusion per se is not employed, in the sense that one is only interested in detecting
the synchrony between the audio and visual streams and not in interpreting or automatically
annotating the individual streams. Note that such a matching of the audio and video content
at a structural level opens the path for numerous applications, ranging from temporal re-
synchronization of mismatched audio and video streams to audio-driven video editing, or
soundtrack retrieval by video query.

3.1.2 Audiovisual Drum Transcription
Drum transcription in polyphonic music is a particularly interesting case study for mul-
timodal music analysis. Indeed, for many musical instruments (brass and woods in particu-
lar) a small visible movement of the musician’s body or fingers may induce a large variation
of the produced sound. On the contrary, the nature of the drum kit (e.g. consisting of sev-
eral drum elements which are physically located at rather different locations) implies that a
rather specific movement is needed from the drummer to hit each of the drum elements. It
is then expected that multimodality is of great benefit for automatic drum transcription.

Even though a number of studies exist for drum solo transcription (see [18]) or for
monomodal (audio-only) drum transcription of polyphonic music signals [24], [57], there has
been only a few studies exploiting multimodality. A number of multimodal experiments
were conducted by S. Dahl showing the relationship between body movements and emotions
in marimba performances or the correlation between video features and musical accents in
drumming [9].

In [22], a multimodal system for drum transcription is described exploiting both the
video and audio modalities. In this work several early-fusion and late-fusion techniques were
evaluated on drum-solos and it was shown that feature-level fusion by simple concatenation
of audio and video features can achieve significant improvements compared to either of the
monomodal transcription systems. However, with such simple integration schemes, it does
not seem obvious that the strength of each modality is well exploited. In this initial system,
there is indeed no intent to understand the semantics of the images or to extract higher-level
features.

A different strategy is followed in [49] where the video modality is used as a detection
process. More precisely (see Figure 2), the video sequence is first analyzed to detect the
position of each drum element (drums and cymbals) in the scene, and more specifically the
part of the instrument hit by the drum sticks. A geometric criterion is used to detect the
drum tops (which are of circular shape). Then, a simple motion intensity feature coupled
with foreground object segmentation is used to detect drum strokes on each of the detected
drum tops. The transcription is obtained by identifying which drum instrument corresponds
to each detected drum top. In parallel, the audio transcription system can also be used,
as an additional source of information, to unequivocally assign each detected region to the
corresponding drum instrument. Finally, once a video transcription is obtained, it can
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Video processing

Audio processing

Multimodal processing

Video stream Drum tops 
segmentation Hit detection

Region to 
instrument mapping

Audio transcriptionAudio stream

Video transcription

Audio/video fusion Audiovisual 
Transcription

Figure 2 Overview of the audio/video analysis drum transcription system (from [49]).

be fused with an audio transcription or other video transcriptions obtained from different
cameras.

This multimodal system outperformed both the monomodal systems and the system
based on the traditional early and late fusion methods (the evaluation was performed on the
Audiovisual ENST-Drums database [23]). One of the interesting lessons that can be learned
from this work is that exploiting high-level information obtained from one modality to drive
(or at least help) the processing of the other modality can be a better strategy than merely
relying on direct feature-level or decision-level fusion.

3.2 Music in Motion: Analyzing Dance Scenes
Dancing is another manifestation of the multimodal nature of music. Indeed, it can be
considered as a form of motion-rendering of music by dancers. For most dance styles, the
analysis of a dancer’s movements cannot be abstracted from the related music, as the steps
and movements of the choreography are expected to be responses to particular musical
events, an observation that has been successfully exploited in [61, 11].

We here describe a new multimodal dance dataset that is particularly challenging in
terms of open research issues, namely the 3DLife dance dataset4 [14].

The dataset consists of multimodal recordings of Salsa dancers, captured at different
sites with different pieces of equipment, as illustrated in Figure 3. This includes:

synchronized 16-channel audio capture of dancers’ step sounds, voice and music;
synchronized 5-camera video capture of the dancers from multiple viewpoints covering
whole body, plus 4 non-synchronized additional video captures;
inertial (accelerometer + gyroscope + magnometer) sensor data captured from multiple
sensors on the dancers’ bodys;
depth maps for dancers’ performances captured using a Microsoft Kinect;
original music excerpts;
different types of ground-truth annotations, for instance, annotations of the music in
terms of beats, annotations of the choreographies with step time codes relative to the
music and ratings of the dancers’ performances (by the Salsa teacher).

Over 20 dancers have been captured, each performing 2 to 5 solo Salsa choreographies
among a set of 5 pre-defined ones. The dancers have been instructed to execute these
choreographies respecting the same musical timing, i.e. all are expected to synchronize

4 http://perso.telecom-paristech.fr/˜essid/3dlife-gc-11/
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Figure 3 Recording setup at Telecom ParisTech studio.
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steps/movements to particular music beats. Salsa music was chosen for this data corpus
as it is a music genre that is centered at dance expression, with highly structured, yet not
straightforward rhythmic patterns.

The dancers’ degree of mastering of Salsa is variable. In particular there are two reference
dancers which are considered as the dance teachers whose performances are viewed as the
ideal templates to be followed by the other “student-dancers”. In fact, this dataset has been
designed in view of a broad application scenario that is an online virtual environment for
dance teaching (see [14] for more details).

A number of exciting research questions are raised by such a scenario, many of which
are intimately connected to multimodal music content analysis issues, in particular:

multimodal dance performance analysis, including dance step/movement tracking and
recognition;
dance performance rating, which may involve the alignment of a dance-student perform-
ance against the teacher’s performance for comparison, and/or the analysis of the stu-
dent’s “sense of rhythm” by assessing his/her movements timing with respect to musical
timing;
musical rhythm analysis using the analysis of the timing of a (reliable) dancer’s move-
ments;
automatic dance synthesis for virtual agents.

Some of these tasks have already been approached. For instance encouraging results
have been obtained for automatic dance performance rating [13], though more sophisticated
approaches are needed towards a more accurate evaluation of a performance that would
allow for highlighting a dancer’s mistakes across the duration of a choreography.

3.3 User-Interactive Music Analysis
The analysis of some forms of music which cannot be represented by musical scores, in
particular electro-acoustic music [48], cannot be envisaged without taking into account the
viewpoint of a human analyst, for instance a musicologist. This is owing to the highly
subjective nature of such an analysis that is linked to high-level cultural and cognitive
processes.

Hence, interactive schemes have been considered for the development of electro-acoustic
music analysis systems [29]. This scenario is considered as a particularly challenging mul-
timodal scenario in which the music takes two forms: on the one hand, an audio recording
(and possibly its visual waveform or spectrogram representation), and on the other hand
the analyst’s mental perception of the recording. Here the goal is to reach a representation
of the recording that matches, insofar as it is feasible, its representation in the mind of the
musicologist, in a reasonable period of time. Such a representation often takes a graphical
form in which visual objects are chosen by the analyst to represent sound objects. The
interested reader is referred to [35] for examples.

In his work, Gulluni has focused on electro-acoustic music pieces that can be represented
as the superposition of sound objects. Using relevance-feedback and active learning techniques
(see [29] for more details on these techniques), satisfactory performance has been obtained
at transcribing such a content into sound objects [29].

Many exciting extensions could be addressed in the continuation of this work. Notably,
the user could be equipped with more advanced interfaces, such as EEG5 headsets, in his/her

5 ElectroEncephaloGraphy: “the recording of electrical activity along the scalp”, see [67] for more details.
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interaction with the computer analysis system (which has been so far limited to keyboard
and mouse feedback), thus allowing it to take into account their cerebral feedback while
listening to the music. Even more general physiological recordings could be employed with
the aim to characterize the user’s emotional responses to the content, for example ECG,
blood pressure, sweat activity, etc.

3.4 Partially-Informed Source Separation
The gradual shift of the general domain of music signal processing from the analysis of
isolated notes or monophonic signals to the more challenging and more realistic case of
polyphonic music explains the increase of interest for source separation paradigms. Indeed,
one of the popular means to deal with polyphony is to first split the signals into individual
sources (or components) that can then be individually processed as monophonic signals
[51, Section V]. Even if the source separation is, in many situations, not explicit (and may
only provide a mid-level representation on which subsequent processing would be easier), it
remains a very challenging task for common music recordings (e.g. mono or at best stereo
recordings of complex polyphonic signals).

However, performances of source separation systems can be significantly improved by
incorporating some prior information about the sources and the mixing process. In unsu-
pervised source separation, this information can be given in form of a specific source model
(as for example the source/filter model used in [12] for singing voice separation). But in
some cases, one may have access to a richer information that describes the content. This
additional information can be provided by a user [64] or by a more or less accurate transcrip-
tion of the music signal (see for example [32], [16] for score-informed transcription systems).
In [64], the goal is to separate the singing voice from the polyphonic recording using some
information provided by a user. To that aim, the user mimics the desired source by simply
singing or humming the main melody. The source separation is then performed using both
the original polyphonic music signal and the user provided input. Since the user’s signal is
simpler to process (no polyphony) and carries many audible similarities with the original
signal in both frequency and temporal behaviors, it greatly helps the source separation.

In some cases, one may have access to a more or less accurate transcription of the
polyphonic music by means for example of a MIDI score. The usefulness of this MIDI score
(possibly obtained on the Web) depends on its quality or in other words on its accuracy to
represent the original recording content.

In real case scenarios, it is usually important to first align the score to the audio recordings
(see for example [41, 17, 34, 50]). Then, once aligned, the score is used to guide the source
separation. For example, the score is used in [69] for obtaining improved spatial information
about the sources in a stereo source separation problem. In other works, the aligned MIDI
score is used as priors in the probabilistic model (such as Probabilistic Latent Component
Analysis in [20] and [32]). The MIDI score can also be used to define harmonic filters which
are built from the fundamental frequencies of each active notes [15]. It is also possible using
score informed source separation to focus on specific parts of the music. For example in [16],
an automated approach is proposed for the decomposition of a monaural piano recording
into sound sources corresponding to the left and the right hands.

The different examples discussed above all exploit another source of information, other
than the original audio signal. In all cases, this leads to significant improvements in separ-
ation quality.

However, it seems reasonable to assume that the strategy followed in these studies can
be extrapolated to a much wider set of information sources including for example the lyrics
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of the song, the gender of the singer or possibly his or her emotional state. The availability
of cover versions, of some of the separated sources as in recent informed source separation
methods ([47],[56]) or of user tags for appropriate source models selection also appear to be
extremely valuable sources of information.

4 Conclusion

Signal processing for music analysis is a vibrant and rapidly evolving field of research. The
richness and complexity of the music content call for methods that take into account music-
specific characteristics including concepts such as pitch, harmony, rhythm, and instrument-
ation. Nevertheless, a growing trend in music analysis is to tackle the problem in a more
global manner and to exploit, whenever possible, the multimodal or multi-faceted aspects
of music. In this paper, we have proposed a short synthetic view of some methods that
have been successfully used in multimodal signal processing. We have also briefly discussed
five case studies as recent examples of successful exploitation of multimodality in music
processing. In the light of these case studies, it seems clear that multimodality in music
processing is very promising. Although many important challenges in this field are ahead of
us, we would like to highlight three main directions for future work:

Towards extended multimodality: Most current studies focus on a limited number
of modalities (audio and video, audio and score, audio and tags, . . . ). Since music
is by nature truly multidimensional there is a great interest to incorporate multiple
information sources or modality for music analysis tasks (including source separation),
such as for example song lyrics, singer/performer’s motion and emotional state, user
tags, physiological signals (EEG6, ECG7, . . . ), etc.
Towards extended cross-modality: There are no particular reasons why cross-modality
should be expressed through simple linear couplings. There is thus a clear perspective
to extend the current approaches to non-linear coupling between modalities using for
example “kernelized correlations”.
Towards extended user interaction: In most studies, the user is not directly involved
in the music analysis stage. It seems however important to strengthen the involvement
of users by further developing the concept of relevance feedback or active learning which
should allow for designing better human-aware multimodal music systems.
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