
The Limits of Decidability for First Order Logic on
CPDA Graphs∗

Christopher H. Broadbent

LIAFA, Université Paris Diderot-Paris 7 and CNRS
Case 7014 F-75205 Paris Cedex 13, France
broadbent@liafa.jussieu.fr

Abstract
Higher-order pushdown automata (n-PDA) are abstract machines equipped with a nested ‘stack
of stacks of stacks’. Collapsible pushdown automata (n-CPDA) extend these devices by adding
‘links’ to the stack and are equi-expressive for tree generation with simply typed λY terms.
Whilst the configuration graphs of HOPDA are well understood, relatively little is known about
the CPDA graphs. The order-2 CPDA graphs already have undecidable MSO theories but it
was only recently shown by Kartzow [9] that first-order logic is decidable at the second level. In
this paper we show the surprising result that first-order logic ceases to be decidable at order-3
and above. We delimit the fragments of the decision problem to which our undecidability result
applies in terms of quantifer alternation and the orders of CPDA links used. Additionally we
exhibit a natural sub-hierarchy enjoying limited decidability.

1998 ACM Subject Classification F.1.1 Models of Computation, F.4.1 Mathematical Logic

Keywords and phrases Collapsible Pushdown Automata, First Order Logic, Logical Reflection

Digital Object Identifier 10.4230/LIPIcs.STACS.2012.589

1 Introduction

Higher-order pushdown automata generalise traditional pushdown automata by allowing the
stack to contain other stacks rather than just atomic elements. These devices are closely
related to recursion schemes, which are essentially simply typed λY terms that generate a
single infinite tree. Enjoying decidable µ-calculus theories, the class of trees generated by
recursion schemes shows a lot of promise as a model for verifying higher-order functional
programs [12, 13]. Unfortunately n-PDA expressively coincide with order-n recursion schemes
only when the latter satisfy a property called safety [10], unsafe recursion schemes are strictly
more expressive [15, 14]. Hence a more powerful automaton is needed, which motivates
order-n collapsible pushdown automata (n-CPDA) [7]. Inspired by panic automata [11], which
can be viewed as the special case at order-2, atomic elements in collapsible stacks eminate
‘links’ that target a component of the stack further below.

We concern ourselves here with configuration graphs of these automata with reachable
states as vertices and transitions as edges. It is particularly fruitful to additionally consider
the ‘ε-closures’ of such graphs, whose edges consist of an unbounded number of transitions
rather than just single steps. The ε-closures of n-PDA graphs form precisely the Caucal
Hierarchy [6, 3, 5], which is defined independently in terms of graph transformations. This
deep result has as a consequence that every n-PDA graph has decidable MSO theory.

∗ The author is funded by La Fondation Sciences Mathématiques de Paris.

© Christopher H. Broadbent;
licensed under Creative Commons License NC-ND

29th Symposium on Theoretical Aspects of Computer Science (STACS’12).
Editors: Christoph Dürr, Thomas Wilke; pp. 589–600

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62916907?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.STACS.2012.589
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

590 The Limits of Decidability for First Order Logic on CPDA Graphs

2-CPDA 32-CPDA 32-CPDA nn-CPDA nn,(n−1)-CPDA nm-CPDA n-PDA
/w ε-cl. /w ε-cl. (/w ε-cl.) n ≥ 4 /wo ε-cl. n ≥ 4, /w ε-cl.

n ≥ 3 n ≥ 3 /w ε-cl. m ≤ n− 2 all n
Σ1 Dec [9] Dec [1] Dec [1] Dec ? Und Dec [5]
Σ2 Dec [9] Dec [1] Und Und Und Und Dec [5]
FO Dec [9] Dec [1] Und Und Und Und Dec [5]
MSO Und [7] Und [7] Und [7] Und [7] Und [7] Und [7] Dec [5]
µ-c. Dec [11] Dec [7] Dec [7] Dec [7] Dec [7] Dec [7] Dec [10]

Table 1 Summary of (un)decidability results known to date. Those in bold are from this paper.
The notation ‘nm,m′ -CPDA’ means an n-CPDA that only uses links of orders m and m′.

Unfortunately there is even a 2-CPDA graph that has undecidable MSO theory [7].
Nevertheless the local nature of first-order logic meant it was widely assumed the first-order
theories would still enjoy decidability and indeed Kartzow saw that the ε-closures of 2-CPDA
graphs are tree automatic [9] and so do indeed have decidable first-order theory. Our first
contribution is to show that Kartzow’s result cannot be extended to higher-orders in full
generality. At order-3 we get undecidability when we consider Σ2-sentences, namely those
with quantifier alternation of the form ∀∃. If we allow order-3 links we do not even need
ε-closure for this. This result is interesting in itself, but we also gain some insight into
what links ‘mean’ in terms of 3-CPDA graphs. On the one hand links can act as ‘place
holders’ that allow first-order logic to compare internal components of a single order-3 stack
rather than just two order-3 stacks in their entirety. This is the core of the undecidability
result, which goes via a reduction from Post’s Correspondence Problem [16]. Additionally
order-3 links provide edges in the graph that are ‘non-local’ in nature, allowing ε-closure to
be eliminated as a requirement for undecidability. At order-4 we get that even the Σ1-theory
is undecidable—viz. the theory consisting of sentences without any quantifier alternation.

Our second contribution introduces a technique to tackle the Σ1-theories of CPDA graphs.
Making use of logical reflection [2], which enables CPDA to ‘know’ which µ-calculus sentences
they satisfy at any given point, we define a notion of monotonic CPDA that constructs
all its reachable configurations without ever destroying an order-(n − 1) stack. This has
some parallels with Carayol’s work on canonical sequences of operations witnessing the
constructibility of n-PDA stacks [4]. If an n-CPDA only has ‘order-n links’, monotonicity
allows us to eliminate them, thereby producing an n-PDA with decidable MSO theory, and
leading to the decidability of the Σ1 theory of the original n-CPDA. This is a graph analogue
of Aehlig et al.’s [8] in which links are eliminated from 2-CPDA to produce an equivalent
word-generating 2-PDA. This decidability result is the first about a fragment of first-order
logic on n-CPDA at all orders and shows restricting links can recover some decidability.

We emphasise that even the undecidability results without ε-closure still require a
restriction of the domain to configurations reachable from the origin. Unlike word-automatic
structures, however, this undecidability is non-trivial, as indicated by the positive results.

2 Preliminaries

2.1 Higher-Order Stacks
Let us fix a stack-alphabet Γ. For higher-order automata this alphabet must be finite, but it
is convenient for definitions to allow it to be infinite. An order-1 stack over Γ is just a string of

C.H. Broadbent 591

the form [γ] where γ ∈ Γ∗. Let us refer to the set of order-1 stacks over Γ as stack1(Γ). For
n ∈ N the set of order-(n+ 1) stacks is: stackn+1(Γ) := stack1(stackn(Γ)). We allow the fol-
lowing operations on an order-1 stack s for every a ∈ Γ: pusha1([a1 · · · am]) := [a1 · · · ama],
pop1([a1 · · · amam+1]) := [a1 · · · am], nop(s) := s. We allow the following order-(n+1) oper-
ations on an order-(n+ 1) stack s, where θ is any order-n operation: pushn+1([s1 · · · sm]) :=
[s1 · · · smsm], popn+1([s1 · · · smsm+1]) := [s1 · · · sm], θ([s1 · · · sm]) := [s1 · · · θ(sm)].
Where s is an (n+ 1)-stack we write topn+1(s) to denote the top-most (right-most) order-n
stack (abusing notation with topn+1(s) := s if s is an n-stack) and top1(s) as the top atomic
element. Let us also write s v t when s = [s1 · · · sm] and t is of the form [s1 · · · sm′] for
m′ ≤ m, s @ t when additionally s 6= t and define |s| := m.

2.2 Collapsible Pushdown Stacks
A pusha,k1 operation in a CPDA attaches a k-link from the newly created a element that
points to the k-stack below. The targets of these links are preserved during higher-order
push operations. Consider the sequence σ = pusha,21 ; push2; push3; pushc,31 ; push3, then:

[[[abca] [ab]]] σ−−→ [[[abca] [ab a] [ab a]] [[abca] [ab a] [ab a c]] [[abca] [ab a] [ab a c]]]

We offer fine control over the orders of links that a collapsible stack may contain; an order-nS
stack is an order-n stack equipped with order-i links for each i ∈ S. Formally the S-collapsible
pushdown alphabet Γ[S] (for S ⊆ N) induced by an alphabet Γ is the set Γ × S × N. The
set of order-nS collapsible stacks stackCnS

(Γ) is defined by: stackCnS
(Γ) := stackn(Γ[S]). An

atomic element (a, l, p) ∈ Γ[S] has label a with a link of order l. If l < n the target of a link
is the pth (l − 1)-stack of the l-stack in which the element resides.

We thus introduce the operations pusha,l1 (s) := push(a,l,|topl+1(s)|−1)
1 (s) and collapse(s) :=

popl|topl+1(s)|−p where top1(s) = (a, l, p) and θm represents the operation θ iterated m times.
From now on we will abuse notation and consider top1(s) := a. Write ΘnS

to denote the set
of order-nS collapsible stack operations. Write ⊥n for the empty n-stack.

2.3 The Automata and their Graphs
Let n ∈ N and let S ⊆ [1..n]. An nS-CPDA (order-nS collapsible pushdown automaton)
A is a tuple:

〈
Σ,Π, Q, q0,Γ, Ra1 , Ra2 , . . . , Rar , Pb1 , Pb2 , . . . , Pbr′

〉
where Σ is a finite set of

transition labels {a1, a2, . . . , ar}; Π is a finite set of configuration labels {b1, b2, . . . , br′}; Q
is a finite set of control-states; q0 ∈ Q is an initial control-state; Γ is a finite stack alphabet;
each Rai

is the ai-labelled transition relation with Rai
⊆ Q × Γ × ΘnS

× Q; each Pbi
is

the bi-labelled unary predicate specified by Pbi
⊆ Q × Γ. Remaining consistent with the

definitions in the literature, an n-CPDA is an n[n..2]-CPDA and an n-PDA is an n∅-CPDA.
A configuration of an nS-CPDA A is a pair (q, s) where q is a control-state and s is an nS-

stack. Such a configuration satisfies the predicate bi ∈ Π just in case (q, top1(s)) ∈ Pbi . We say
A can ai-transition from (q, s) to (q′, θ(s)), written (q, s) ai−−→ (q′, θ(a)), iff (q, top1(s), θ, q′) ∈
Rai . Let us further say that (q′, s′) can be reached from (q, s) in A with path labeled in L
for some L ⊆ Σ∗ iff (q, s)

ai1−−−→ (q1, s1)
ai2−−−→ (q2, s2)

ai3−−−→ · · · (qm−1, sm−1) aim−−−−→ (q′, s′)
for some configurations (q1, s1), . . . , (qm−1, sm−1) where ai1ai2ai3 · · · aim ∈ L. We write
(q, s) L−−→ (q′, s′) to mean this. The set of reachable configurations of A is given by:

R(A) := { (q, s) : (q0,⊥n) Σ∗−−−→ (q, s) }

STACS’12

592 The Limits of Decidability for First Order Logic on CPDA Graphs

The configuration graph G(A) of A has domain R(A), unary predicates Π and directed
edges Σ between configurations. The ε-closure of such a graph Gε(A) is induced from G(A)
by defining a-labelled edges between vertices related by ε∗a−−−→ in G(A).

2.4 Logics
We consider first-order logic FO on graphs as it is standardly defined. A Σ0 = Π0 = ∆0
formula φ(x1, . . . , xk) is one without any quantifiers. A Σn+1 formula is one of the form
∃~y.φ(~y, x1, . . . , xk) where φ(~y, x1, . . . , xk) is Πn and a Πn+1 formula is one of the form
∀~y.φ(~y, x1, . . . , xk) where φ is Σn. A ∆n formula is one that is equivalent to both a Σn and
Πn formula on every CPDA graph. MSO is FO extended with variables ranging over sets.
Transitive closure logic FO(TC) is FO together with a binary predicate φ(x, y) for every
formula of FO φ(x, y) with two variables, which denotes the transitive closure of the relation
defined by φ(x, y). When the formulae transitively closed are restricted to ∆1 we call the
logic FO(TC [∆1]). A sentence is a formula with no free variables.

Note that we often allow ourselves to assume additional edges in the graph when writing
formulae. For example z pop3;pop2−−−−−−→ z′ means that we perform pop3 and then pop2 on the
stack of z and move into a fixed distinguished control-state to result in a configuration z′.
Thus x pop3;pop2−−−−−−→ z ∧ y

pop3;pop2−−−−−−→ z mean that pop3 followed by pop2 on the stack of x
results in the same stack as pop3 followed by pop2 on the stack of y, regardless of whether x
and y have different control-states. Provided that the number of operations constituting the
edge is bounded, this can be done without ε-closure.

3 Undecidability

3.1 Post’s Correspondence Problem
All of the undecidability results go via a reduction from the Post Correspondence Problem
[16], which is well known to be undecidable. Consider a finite-alphabet Σ with |Σ| ≥ 2. An
instance of the Post Correspondence Problem (PCP) consists of two finite sequences of strings
over Σ: u1, . . . , um and v1, . . . , vm. The question to be decided is whether there is a finite
sequence i1 . . . ik consisting of integers 1 ≤ ij ≤ m such that ui1 .ui2 . · · · .uik = vi1 .vi2 . · · · .vik .

I Example 1. Consider the following two sequences of strings over the alphabet {a, b, c}:

u1 := ab u2 := cababcabb u3 := ca v1 := ababc v2 := ab v3 := bca

Then the Post Correspondence Problem has answer ‘yes’ as witnessed by the solution 1123:

u1.u1.u2.u3 = ababcababcabbca = v1.v1.v2.v3

Given an instance of the PCP P we define a pushdown automaton AP1 that pushes
elements of Σ onto the stack together with indices indicating a partition into the ui and vi.

IDefinition 2. The automatonAP1 has stack alphabet: Σ] {1u, 2u . . .mu}] {1v, 2v . . .mv}
and behaves by non-deterministically choosing one of the following options:

Push any member of Σ onto the stack.
If the Σ symbols in the stack since the last symbol of the form iu (or the bottom of the
stack if there is no such symbol) form the word uj , then it may push ju onto the stack.
If the Σ symbols in the stack since the last symbol of the form iv (or the bottom of the
stack if there is no such symbol) form the word vj , then it may push jv onto the stack.

C.H. Broadbent 593

P has a solution just in case AP1 can generate a stack with ‘matching’ iu and iv subsequences.

I Lemma 3. Let P be an instance of Post’s Correspondence Problem. P has a solution just
in case the automaton AP1 can generate a stack s such that:

su = sv where su is the subsequence of s consisting of elements of the form iu and sv of
elements of the form iv and equality is interpreted with respect to the indices i only.
The top two elements of s form the set {iu, iv} for some 1 ≤ i ≤ m.

I Example 4. To continue the running example from Example 1, which we call P , the
solution as represented by a stack of AP1 is: [ab1uab1uc1vababc1vab2vb2uca3u3v]

3.2 Post’s Correspondence Problem and 2-CPDA
Hague et al. [7] showed that the model-checking problem for MSO on 2-CPDA graphs is
undecidable; indeed the 2-CPDA graph they exhibit witnesses the undecidability of transitive
closure logic FO(TC). To introduce our basic technique, we first reprove the undecidability
of FO(TC) on 2-CPDA graphs—in fact we get the undecidability of FO(TC [∆1]).

The 2-CPDA AP2 is like AP1 except it ensures each index (elements of the form iu or iv)
has a pointer to a distinct 1-stack in the 2-stack. This enables first-order logic to ‘ascertain
corresponding positions’ in two instances of a 1-stack by comparing the results of collapsing.
More specifically, AP2 behaves in the same way as AP1 except that it performs push2; pushju,2

1
or push2; pushjv,2

1 whenever AP1 would have performed pushju

1 or pushjv

1 for some 1 ≤ j ≤ m.

I Example 5. To continue Example 1, the solution as represented by a stack of AP2 is:

[[ab] [ab 1u ab] [· · ·] [· · ·] [· · ·] [· · ·] [· · ·] [· · ·] [ab 1u ab 1u c 1v ababc 1v ab 2v b 2u ca 3u 3v]]

We adapt AP2 further so that it may non-deterministically enter a distinguished control-
state guess when it has formed a stack whose top two elements are those in a set {iu, iv}
for some 1 ≤ i ≤ m. Lemma 3 then implies:

I Lemma 6. Let P be an instance of Post’s Correspondence Problem. P has a solution iff
the automaton AP2 can reach a configuration (guess, s) such that su = sv, where su is the
subsequence of top2(s) consisting of elements of the form iu, and sv of elements of the form
iv, and equality is interpreted with respect to the indices i only.

Let us say that a stack s is a u-stack if its top element is of the form iu and a v-stack if its
top element is of the form iv. Consider the compound operations popu(s) (resp. popv(s))
that perform pop1 on s, stopping only when the next element of the form iu (resp. iv) is
found or else the top 1-stack is rendered empty if no such element exists. It is also useful to
define !u := v and !v := u. Note that a configuration (guess, s), where s is a w-stack for
w ∈ {u, v} (so that pop1(s) is a !w-stack), meets the criterion of Lemma 6 precisely when
top1(popkw(s)) = iw iff top1(popk!w(pop1(s))) = i!w for every k ∈ N. This is because popu
and popv step (backwards) through the sequences su and sv.

Bearing this in mind, we extend AP2 to an automaton AP2+ that allows additional behaviour
after reaching a guess-configuration so that it does its best to verify the condition above.
We will then use FO(TC [∆1]) to assert the constraints that the automaton is unable to
enforce by itself. AP2+ is defined to generate any sequence of configurations of the form:

(guess, s) init−−−→ (test, t1) next−−−→ (test, t2) next−−−→ · · · next−−−→ (test, tk−1) next−−−→ (final, tk)

STACS’12

594 The Limits of Decidability for First Order Logic on CPDA Graphs

where the top three 1-stacks of each ti include a 1-stack u(ti) that is either a u-stack or
empty and a 1-stack v(ti) that is either a v-stack or empty. The automaton will abort if ever
top1(u(ti)) = iu but top1(v(ti)) = jv with i 6= j and will enter a control-state final iff u(tk)
and v(tk) are both empty. Let us say that ti is w-dominant for w ∈ {u, v} if w(ti) A !w(ti),
which occurs iff w(ti) is below !w(ti) in ti. The third of the top three 1-stacks in ti is the
auxiliary conditional stack cond(ti) = pop!w(!w(ti)) where ti is w-dominant. This will be
of technical use in avoiding the need for ε-closure. Where s is a w-stack, the transition init−−−→
consists of just push2; pop1; push2; pop!w, which sets up an initial u, v and conditional stack,
one of which will be the original top2(s).

The idea is that AP2+ can always enforce one of u(ti+1) = popu(u(ti)) or v(ti+1) =
popv(v(ti)) but not both—the one that is not enforced in ti+1 must be guessed. It is easy to
see that this is possible. A transition (test, t) next−−−→ (test, t′) will employ a sequence of trans-
itions of the form pop2; pop2; pop∗1; push2; pop∗1; push2; pop∗1, enforcing w(t′) = popw(w(t)),
guessing !w(t′) but still enforcing cond(t′) = pop!w′(!w′(t′)) when t is w-dominant and t′
is w′-dominant. It may or may not be the case that w = w′ depending on the guess and the
ordering of the iu and iv.

We now define a relation stronger than next−−−→ that AP2+ cannot impose by itself. We
say that c′ = (test, t′) is a successor of c = (test, t), written c′ = c+, iff c

test−−−→ c′ and
!w(t′) = pop!w(w!(t)) = cond(t) where t is w-dominant. We then reformulate Lemma 6:

I Lemma 7. Let (guess, s) be a reachable configuration of AP2+ for some instance P of
Post’s Correspondence Problem. Then s represents a solution to P in the sense of Lemma
6 if and only if there exists a chain of configurations c1, c2, . . . , ck such that ci+1 = c+i for
1 ≤ i < k, (guess, s) init−−−→ c1 and ck has control-state final.

Let us now observe that the relation x = y+ is definable by a ∆1 formula. Let w range
over {u, v} and consider configurations (test, t) and (test, t′). Define tow(t) to be pop2(t)
or (pop2; pop2)(t) as necessary to render w(t) the topmost 1-stack in t. Since the number
of stack operations are bounded, we may safely view this as an edge in G(AP2+) without
resorting to ε-closure.

Recall that we have ensured that each instance of iu or iv in the representation of the
postulated solution to P has a 2-link with a distinct target. It is also the case that the
conditional stack of any t is the top-most 1-stack. This means that the equality cond(t) =
w(t′) between internal 1-stacks holds iff the equality collapse(t) = (tow; collapse)(t′) holds,
which may be viewed as an equality between configurations since t and t′ are 2-stacks. Hence
x = y+ can be expressed by a ∆1 formula ψ+(x, y) ∧ (x next−−−→ y) where ψ+(x, y) asserts for
each w ∈ {u, v} that if y is !w-dominant, then:

∃z.(x collapse−−−−−→ z ∧ y tow;collapse−−−−−−−−→ z) equivalently ∀z.(x collapse−−−−−→ z → y
tow;collapse−−−−−−−−→ z)

With the aid of transitive closure, the existence of the (_)+-sequence in the condition in
Lemma 7 can be asserted in Σ1-FO(TC [∆1]), completing the reduction.

I Lemma 8. There exists a Σ1 sentence φ of FO(TC [∆1]) such that for all instances P
of Post’s Correspondence Problem we have: G(AP2+) � φ iff P has a solution.

3.3 Undecidability for 32-CPDA and 42-CPDA
A 32-CPDA can record the chain of 2-stacks mentioned in Lemma 7 directly in its 3-stack—the
members of the chain are piled on top of each other. This allows ε-closure in the graph and

C.H. Broadbent 595

universal quantification to replace transitive closure in the logic. As with AP2+ the key idea
in the proof is to use first-order logic to assert the coherence of guesses that the automaton
makes, ensuring that the 2-stacks making up the alleged (_)+-chain stored in the stack really
do form a chain. The 32-CPDA AP32

begins by behaving in the same way as AP2+ , performing
only 2-stack operations until just after it has performed an init transition. It then proceeds
to perform next transitions, perfoming a push3 operation after completing each one. It
may stop and enter a distinguished control-state guess32 as soon as it has completed a
(push3; next)-transition that would have resulted in a final-control state in AP2+ . We thus
have a solution to P iff AP32

has a reachable configuration of the form:

(guess32 , [s s1 s2 · · · sk]) such that si+1 = s+
i for every 1 ≤ i < k

Since the si
next−−−→ si+1 is guaranteed by the definition of AP32

, it suffices to assert that
ψ+(si, si+1) for every 1 ≤ i ≤ k (abusing notation by ignoring control-states). But observe
how ψ+ makes sense on 3-stacks provided that the 3-stacks only differ in their topmost
2-stacks. This is thus equivalent to ψ+([s s1 s2 · · · si−1 si si], [s s1 s2 · · · si−1 si si+1]).
Given ε-closure we are able to have a single edge labelled toP re going from a configuration
of the form (guess32 , S) to any one of the form (test32 , Si) where Si is the prefix of S with
its si on top for 2 ≤ i ≤ k. Thus the following asserts correctness:

∃x.(guess32(x) ∧ ∀y.(x toP re−−−−→ y → ψ+((pop3; push3)(y), y)))

I Lemma 9. There exists a Σ2 sentence φ of FO such that for all instances P of Post’s
Correspondence Problem we have: Gε(AP32

) � φ iff P has a solution.

Observe that the sentence asserting the correctness of a chain suggested by AP32
essentially

says that every Si generated by toP re from (guess32 , S) satisfies θ(Si) = θ′(Si) for some
particular sequences of operations θ and θ′. With the aid of an order-42 stack we are
able to go from a (guess32 , [S]) configuration to create both a configuration of the form
(testθ, [S θ(Sk) θ(Sk−1) · · · θ(S2)]) and following an alternative path a configuration of
the form (testθ′ , [S θ′(Sk) θ′(Sk−1) · · · θ′(S2)]). In other words we create two 42-stacks
containing in corresponding positions the 32-stacks that have to be compared to verify the
chain. Given a 42-CPDA AP42

implementing this, we can assert the existence of a correct chain
with a Σ1-sentence asserting the existence of a testθ-configuration and a testθ′ -configuration
both with the same stack. Whilst ε-closure is not required here, the restriction to reachable
configurations is necessary for the control-states testθ and testθ′ to be significant.

I Lemma 10. There exists a Σ1-sentence φ such that for every instance P of Post’s
Correspondence Problem we have G(AP42

) � φ iff P has a solution.

3.4 The Non-Locality of 33-CPDA
Adapting AP32

to become a 33-CPDA is straightforward—the role of 2-links, giving each
element iu and iv a link with a distinct target, can easily be taken by 3-links; of course these
distinct targets will be distinct 2-stacks rather than distinct 1-stacks. The challenge is that
we also want to remove the need for ε-closure, although we still have to restrict the domain to
configurations reachable from the origin. The idea is that 3-links are ‘non-local’ with respect
to a 3-stack so that whilst with AP32

it was necessary to use ε-closure in order to provide
access to all elements of the alleged chain, this can instead, in some sense, be performed by a
single collapse edge on a 3-link.

STACS’12

596 The Limits of Decidability for First Order Logic on CPDA Graphs

The 33-CPDA AP33
begins by behaving in a similar way to AP32

(using 3-links instead of 2-
links). Recall a next-transition inAP2+ takes the form pop2; pop2; pop∗1; push2; pop∗1; push2; pop∗1
(the lack of ε-closure is not a concern here as we will not need to refer to next-transitions in
the logic). By implication AP32

will perform a next-transition of the form:
push3; pop2; pop2; pop∗1; push2; pop∗1; push2; pop∗1. We make AP33

differ again from AP32
by

performing instead: push3; pop2; pop2; push?,31 ; push2; pop∗1; push2; pop∗1; push2; pop∗1 for each
next-transition, where ? is a new distinct stack symbol. After the next-transitions are com-
plete, and AP32

would have moved into a guess32 control-state, we perform final push3; push?,31
operations and move into a distinguished candidate control-state.

This has the effect of creating a configuration of the form:

(candidate, [s s1 s2 · · · sk [? ? · · · ?]])

which corresponds to an AP32
-configuration (guess32 , [s s1 s2 · · · sk]). From here we further

extend AP33
to be allowed to perform arbitarily long sequences of pop2 operations from a

candidate-configuration with the option of ending in a distinguished control-state ready

if it reaches a ? symbol. Thus to assert the existence of a candidate-configuration x such
that χ(y) holds of all y that are prefixes of its stack ending in an si, we may say:

∃x.∃x′.∀z.∀y.(candidate(x)∧x pop3−−−→ x′ ∧ ((ready(z)∧ z pop3−−−→ x′ ∧ z collapse−−−−−→ y)→ χ(y)))

In particular we may take χ to be the assertion about prefixes used with AP32
(noting that

this does not require ε-closure). Again the restriction to reachable configurations is necessary
to give candidate and ready their significance.

I Lemma 11. Let P be an instance of Post’s Correspondence Problem. Then there exists
a Σ2 sentence φ of FO such that: G(AP33

) � φ (note no ε-closure) if and only if P has a
solution.

As a consequence of all these reductions:

I Theorem 12. 1. For every n ≥ 4 and 2 ≤ m ≤ n− 2 the Σ1-FO model-checking problem
for nm-CPDA graphs (even without ε-closure, albeit restricted to configurations reachable
from the origin) is undecidable.

2. For every n ≥ 3 and m ≥ 3 the Σ2-FO model-checking problem for nm-CPDA graphs
(even w/o ε-closure, albeit restricted to configurations reachable from the origin) is
undecidable.

3. For every n ≥ 3 and m ≥ 2 the Σ2-FO model-checking problem for the ε-closures of
nm-CPDA graphs is undecidable.

4 Σ1 Decidability on nn-CPDA

We reduce checking a Σ1-sentence on the ε-closure of an nn-CPDA graph to MSO model-
checking on n-PDA, which is known to be decidable. The idea is to ‘eliminate the n-links’
and instead ‘simulate’ them in an n-PDA. The high level idea could be viewed as the graph
analogue of Aehlig et al.’s link-elimination at order-2 for word generation [8]; however our
technique for graphs is necessarily quite different. When generating a word one only needs to
(non-deterministically) simulate a single run at a time, whilst for graphs one sometimes needs
to verify the non-existence of edges which in some sense requires checking all possible runs.

C.H. Broadbent 597

A

L

B

n-stack ops (n−1)
-stack ops

n

-stack ops

A

L

B

Figure 1 The anatomy of a run and eliminating the destruction of (n− 1)-stacks.

Another issue is that for graphs links not only serve an operational purpose but additionally
distinguish otherwise identical stacks. Due to space constraints we will not detail the solution
to this challenge as it is largely technical. But the basic idea is that every atomic element
(0-stack) and every constituent k-stack is assigned one of three colours c<, c= and c> which
specifies whether the highest target of an n-link that it contains is below, the same as or
above the highest target of an n-link contained in a k-stack below it in the (k + 1)-stack.
The colouring of every prefix of a stack is sufficient to distinguish stacks even when links
are deleted. It is also possible for an nn-CPDA to keep track of sufficient information to
dynamically maintain colour annotations.

We instead focus on the more interesting question of accounting for the operational
aspect of links after they have been eliminated—that is how we express what a run involving
collapse ‘would have done’ in the simulating n-PDA. Again due to space constraints we only
sketch the main ideas. Our strategy is illustrated in Figure 1. Consider an a-labelled edge
in the ε-closure of the configuration graph of an nn-CPDA A between a configuration with
stack A and a configuration with stack B, witnessed by an ε∗a-labelled run. Such a run can
be divided into two parts with a configuration bearing stack L at the boundary. Suppose
that no n-stack containing fewer than m (n− 1)-stacks is used, then L is deemed to be the
first configuration in the run with a stack containing m (n− 1)-stacks.

We describe the ε∗-labelled first part of the run from A to L as an ε∗-fall and the
ε∗a-labelled component from L to B as an ε∗a-climb. These two components are simulated by
an n-PDA using two different methods. First consider the climb. Due to L being the ‘lowest
stack’ in the run, it is possible to construct the stack of B from L without destroying any
(n− 1)-stacks and in particular without having to perform collapse. Of course the original
n-CPDA might have a more complex run between L and B that does need to use collapse,
but we show that it is possible to adjust the automaton so that it ‘can smooth out’ its run
during the ε∗a-climb and avoid destroying any (n− 1)-stacks. This means that climbs can
be implemented directly by an n-PDA.

For the fall we exploit the fact that the stack of L is a prefix of the stack of A. The
idea is that each (n− 1)-stack t in an n-stack s will be annotated with information about
the climbs that could be performed from the prefix of s ending in t. We then adjust the
automaton further so that it is always aware of those annotations to which it has an ε∗-fall.
This means that it can exploit the information in the annotations indirectly without actually
having to ‘physically’ perform the ε∗-fall. Again this means that physical use of the collapse
operation can be avoided.

In order to keep the annotations concerning climbs finite, it is necessary to fix in advance

STACS’12

598 The Limits of Decidability for First Order Logic on CPDA Graphs

a finite number of stacks to which one might eventually want to climb. These stacks will be
possible witnesses to our Σ1-sentence and so there will be one for each variable therein; the
requirement to fix these is the reason why the proof does not generalise to more complex
sentences. It is also impossible for an n-PDA to correctly provide such annotations itself and
so, as with the undecidability proofs, it is necessary for it to guess these annotations and
then use MSO to verify correctness externally.

So let us fix an nn-CPDA A and a Σ1-sentence ∃x1∃x2 · · · ∃xk.χ(x1, x2, . . . , xk) to be
interpreted over Gε(A) where χ(x1, x2, . . . , xk) is quantifier free.

4.1 Simulating the Climb

An ε∗a-climb is a run of the form: (q, [s1 s2 · · · sk t])
ε∗a−−−→ (q′, [s1 s2 · · · sk t′ t1 t2 · · · tm])

that never descends below t so that for all stacks s occurring in the run, [s1 s2 · · · sk] @ s.
Our first step is to construct a modified ‘monotonic’ automaton A↑ that can climb from the
configuration transition to the last without ever destroying any (n− 1) stacks in the process.

We are able to construct A↑ using logical reflection [2]. Given µ-calculus sentences
φ1, . . . , φk, logical reflection allows a CPDA to be augmented so that it ‘knows’ (by reference
to its control-state and the top element of the stack) whether a particular φi holds in its
graph at its current configuration. In particular we can take the φi to be assertions of the
form: ‘If I were to to mark the current topn (n − 1)-stack and then perform a pushn into
control-state q, then I would be able to perform ε-transitions and end back at the marker
in control-state q′’. Given an automaton that is aware of the truth of such assertions, it
can be adapted so that instead of actually performing these ε-transitions, which grow the
stack before returning to the starting point, it can simply transition from control-state q
to control-state q′ without touching the stack. In this way it is able to carry out the climb
without creating an (n− 1)-stack only to destroy it later on, which is exactly what we want.

The CPDA produced by an application of logical reflection generates a graph isomorphic
to the original in a particularly strong way. That is if a CPDA B′ is produced from a CPDA
B by an application of logical reflection, then there is an isomorphism L : G(B) ∼= (B′)
that can be defined as a map on configurations of the form L(q, s) = (q, L(s)) where the
control-state is preserved and L preserves the structure of the stack (albeit adding information
to the atomic elements therein). Even though the evaluation of a µ-calculus formula will
be a function of both q and top1(L(s)) it is top1(L(s)) that contains all of the additional
information provided by logical reflection. (In actual fact this is a slight abuse of notation as
B′ will need to store information concerning the stack s in its control-state as well. However,
since this information depends completely on the stack and not the control-state, it is safe
for our purposes to suppress it notationally and assume that it is ‘absorbed’ into the L(s)
component). This means that when A↑ transitions from control-state q to control-state q′
without touching the stack, the information that the stack contains remains correct.

Using a similar technique we also allow A↑ to construct all of its reachable configurations
from its initial state without destroying (n− 1)-stacks via transitions given a fresh label r.

4.2 Meta-Annotations—Towards simulating the Fall

Let Σ be the set of non-ε edge labels of A and let Q be its set of control-states, both of
which are shared by A↑. A k-meta-annotation (where k is the number of variables in the
formula) is a k.|Σ|-tuple M := ((Qa1)a∈Σ, (Qa2)a∈Σ, . . . , (Qak)a∈Σ) where Qai ⊆ Q for every i
and a with 1 ≤ i ≤ k and a ∈ Σ. We further adapt A↑ to non-deterministically choose some

C.H. Broadbent 599

meta-annotation M to push onto the stack before performing any pushn operation. Hence
every (n− 1)-stack in any reachable configuration is decorated with a meta-annotation.

The ‘meaning’ of meta-annotations is given with respect to a k-tuple of A↑ configurations
c1 = (q1, s1), c2 = (q2, s2), . . . , ck = (qk, sk). Suppose that t v si is a prefix of one of the
stacks of these configurations, then a ‘correct’ meta-annotation on top of t is one such that
its set Qaj contains a control-state p iff there is an ε∗a-climb from (p, t) to (qj , sj). Note in
particular that if popn(t) 6v sj then such a climb would be impossible and so Qaj = ∅.

If the meta-annotations contained in the stacks of c1, c2, . . . , ck are all correct in this sense,
then we say that this k-tuple of configurations is consistent. Consistency is not something
that can be guaranteed by the automaton itself, but will be asserted using MSO.

We now consider how to handle ε∗-falls. Formally an ε∗-fall is a run of the form:
(q, [s1 s2 · · · sk]) ε∗−−→ (q′, [s1 s2 · · · sk′]) where k′ < k and [s1 s2 · · · sk′] is a prefix of
every stack occurring in the run.

We make one final adjustment to A↑ by again applying logical reflection, this time with
µ-calculus assertions of the form ψM,q for each possible meta-annotation M and control-state
q. The sentence ψM,q says: ‘From my current configuration I could behave as A, without
deploying any new meta-annotations, and eventually reach a stack with the meta-annotation
M on top in control-state q’. Since no new meta-annotations are deployed, ψM,q effectively
says: ‘I have an ε∗-fall from my current configuration to a configuration with control-state q
and M on top of the stack’. Logical reflection gives the CPDA graph a unary predicate Mq

↓

that holds whenever ψM,q would hold.
The n-PDA A↑↓ is formed from A↑, adjusted as above, by removing all of the transitions

performing a popn or collapse operation. Note that the Mq
↓ predicates depend only on the

top1 element of the stack and current control-state—these thus remain in A↑↓. Moreover
since A↑ was adapted to perform all ε∗a-climbs without performing popn or collapse, then
despite the deletion of edges, if A↑ was able to perform an ε∗a-climb from a configuration c
to a configuration c′, then A↑↓ can also perform such a climb. Hence consistency is preserved.
The reachable configurations will also be unaffected by this deletion due to the r-transitions.

4.3 Σ1-Model Checking

Any run of the form (q, s) ε∗a−−−→ (q′, s′), which witnesses an a-labelled edge in the ε-closure,
is either a climb itself or else can be decomposed into (q, s) ε∗−−→ (p, t) ε∗a−−−→ (q′, s′) where
the component from (q, s) to (p, t) is an ε∗-fall and the component from (p, t) to (q′, s′) is an
ε∗a-climb. We can thus assert the existence of an a-edge in Gε(A) by asserting in G(A) the
existence of either a climb or else such a fall followed by a climb.

Given the quantifier-free first-order formula χ(x1, x2, . . . , xk), construct χ′(x1, x2, . . . , xk)
by replacing every occurence of an atomic formula xi

a−−→ xj with an MSO formula:

xi
ε∗a−−−→ xj ∨

∨
M=((Qa

1)a∈Σ,(Qa
2)a∈Σ,...,(Qa

k
)a∈Σ), p∈Qa

j

Mp
↓(xi)

where the reachability assertion xi
ε∗a−−−→ xj is MSO definable. Observe that in the n-PDA

A↑↓ the relation ε∗a−−−→ asserts precisely the existence of an ε∗a-climb and so if c′1, c′2, . . . , c′k
are consistent configurations of A↑↓ corresponding (via the isomorphism) to configurations
c1, c2, . . . , ck of A, then G(A↑↓) � χ′(c′1, c′2, . . . , c′k) iff Gε(A) � χ(c1, c2, . . . , ck). But
note further that since for every k-tuple of configurations of A there exists precisely one

STACS’12

600 The Limits of Decidability for First Order Logic on CPDA Graphs

corresponding consistent k-tuple of configurations of A↑↓ we have:

G(A↑↓) � ∃x1x2 · · ·xk.(con(x1, x2, . . . , xk) ∧ χ′(x1, x2, . . . , xk))
iff Gε(A) � ∃x1x2 · · ·xk.χ(x1, x2, . . . , xk)

where con(x1, x2, . . . , xk) asserts consistency. Note that con(x1, x2, . . . , xk) is also MSO
definable in G(A↑↓); one can quantify over prefixes of a stack by iterated popn, and reachability
in G(A↑↓) captures precisely the climbs in A. This completes the reduction.

5 Further Directions

Whilst it is very natural to restrict to configurations reachable from the origin of the graph, it
would also be interesting to investigate removing this restriction. For collapsible stacks there
would be two versions of this problem: allowing arbitrary stack contents in configurations or
restricting to stacks that could be constructed from the empty stack using stack operations.
We conjecture that the former is undecidable but that the latter is decidable.
Acknowledgement We thank the anonymous reviewers for helpful comments.

References
1 C.H Broadbent. On Collapsible Pushdown Automata, their Graphs and the Power of Links.

PhD thesis, 2011.
2 C.H. Broadbent, A. Carayol, C.-H.L. Ong, and O. Serre. Recursion Schemes and Logical

Reflection. In LICS, 2010.
3 T. Cachat. Higher order pushdown automata, the Caucal hierarchy of graphs and parity

games. In ICALP, 2003.
4 A. Carayol. Regular Sets of Higher-Order Pushdown Stacks. In MFCS, 2005.
5 A. Carayol and S. Wöhrle. The Caucal hierarchy of infinite graphs in terms of logic and

higher-order pushdown automata. In FSTTCS, 2003.
6 D. Caucal. On infinite transition graphs having a decidable monadic theory. Theoretical

Computer Science, 290(1):79–115, 2003.
7 M. Hague, A.S. Murawski, C.-H. L. Ong, and O. Serre. Collapsible Pushdown Automata

and Recursion Schemes. In LICS, 2008.
8 K. Aehlig, J. G. de Miranda, and C.-H. L. Ong. Safety is not a restriction at level 2 for

string languages. In FoSSaCS, 2005.
9 A. Kartzow. Collapsible Pushdown Graphs of Level 2 are Tree-Automatic. In STACS, 2010.
10 T. Knapik, D. Niwinski, and P. Urzyczyn. Higher-Order Pushdown Trees are Easy. In

FoSSaCS, 2002.
11 T. Knapik, D. Niwinski, P. Urzyczyn, and I. Walukiewicz. Unsafe Grammars and Panic

Automata. In ICALP, 2005.
12 N. Kobayashi. Types and higher-order recursion schemes for verification of higher-order

programs. In POPL, 2009.
13 C.-H.L. Ong and S.J. Ramsay. Verifying Higher-Order Functional Programs with Pattern-

Matching Algebraic Data Types. In POPL, 2011.
14 P. Parys. Collapse Operation Cannot Be Simulated Even By Using Higher Levels (Unpub-

lished). 2011.
15 P. Parys. Collapse Operation Increases Expressive Power of Deterministic Higher Order

Pushdown. In STACS, 2011.
16 E. Post. A variant of a recursively unsolvable problem. Bulletin of the American Mathem-

atical Society, 52(4):264–268, 1946.

	Introduction
	Preliminaries
	Higher-Order Stacks
	Collapsible Pushdown Stacks
	The Automata and their Graphs
	Logics

	Undecidability
	Post's Correspondence Problem
	Post's Correspondence Problem and 2-CPDA
	Undecidability for 32-CPDA and 42-CPDA
	The Non-Locality of 33-CPDA

	1 Decidability on nn-CPDA
	Simulating the Climb
	Meta-Annotations—Towards simulating the Fall
	1-Model Checking

	Further Directions

