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Abstract
We consider the monotone submodular k-set packing problem in the context of the more general
problem of maximizing a monotone submodular function in a k-exchange system. These systems,
introduced by Feldman et al. [9], generalize the matroid k-parity problem in a wide class of
matroids and capture many other combinatorial optimization problems. We give a deterministic,
non-oblivious local search algorithm that attains an approximation ratio of (k + 3)/2 + ε for the
problem of maximizing a monotone submodular function in a k-exchange system, improving on
the best known result of k + ε, and answering an open question posed by Feldman et al.
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1 Introduction

In the general k-set packing problem, we are given a collection G of sets, each with at most
k elements, and an objective function f : 2G → R+ assigning each subset of G a value and
seek a collection S ⊆ G of pairwise-disjoint sets maximizing f . In the special case that
f(A) = |A|, we obtain the unweighted k-set packing problem. Similarly, if f is linear function,
so that f(A) =

∑
e∈A w(e) for some weight function w : G → R+ we obtain the weighted

k-set packing problem. In this paper we consider the case in which f may be any monotone
submodular function.

For unweighted k-set packing, Hurkens and Schrijver [15] and Halldórsson [13] indepen-
dently obtained a k/2 + ε approximation via a simple local search algorithm. Using similar
techniques, Arkin and Hassin [1] obtained a k − 1 + ε approximation for weighted k-set
packing, and showed that this result is tight for their simple local search algorithm. Chandra
and Halldórsson [5] showed that a more sophisticated local search algorithm, which starts
with a greedy solution and always chooses the best possible local improvement at each stage,
attains an approximation ratio of 2(k + 1)/3 + ε. This was improved further by Berman [2],
who gave a non-oblivious local search algorithm yielding a (k + 1)/2 + ε approximation for
weighted k-set packing. Non-oblivious local search [16] is a variant of local search in which
an auxiliary objective function, rather than the problem’s given objective, is used to evaluate
solutions. In the case of Berman, the local search procedure repeatedly seeks to improve the
sum of the squares of the weights in the current solution, rather than the sum of the weights.

Many of the above local search algorithms for k-set packing yield the same approximations
for the more general problem of finding maximum independent sets in (k+1)-claw free graphs.
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Local search techniques have also proved useful for other generalizations of k-set packing,
including variants of the matroid k-parity problem [18, 20]. Motivated by the similarities
between these problems, Feldman et al. [9] introduced the class of k-exchange systems, which
captures many problems amenable to approximation by local search algorithms. These
systems are formulated in the general language of independence systems, which we now
briefly review.

An independence system is specified by a ground set G, and a hereditary (i.e. non-empty
and downward-closed) family I of subsets of G. The sets in I are called independent sets,
and the inclusion-wise maximal sets in I are called bases. Given an independence system
(G, I) and a function f : 2G → R+, we shall consider the problem of finding an independent
set S ∈ I that maximizes f .

The class of k-exchange systems satisfy the following additional property:

I Definition 1 (k-exchange system [9]). An independence system (G, I) is a k-exchange
system if, for all A and B in I, there exists a multiset Y = {Ye ⊆ B \ A | e ∈ A \ B},
containing a subset Ye of B \A for each element e ∈ A \B, that satisfies:

(K1) |Ye| ≤ k for each x ∈ A.
(K2) Every x ∈ B \A appears in at most k sets of Y .
(K3) For all C ⊆ A \B, (B \

(⋃
e∈C Ye

)
) ∪ C ∈ I.

We call the set Ye in Definition 1 the neighborhood of e in B. For convenience, we extend the
collection Y in Definition 1 by including the set Yx = {x} for each element x ∈ A ∩B. It is
easy to verify that the resulting collection still satisfies conditions (K1)–(K3).

The 1-exchange systems are precisely the class of strongly base orderable matroids
described by Brualdi [3]. This class is quite large and includes all gammoids, and hence all
transversal and partition matroids. For k > 1, the class of k-exchange systems may be viewed
as a common generalization of the matroid k-parity problem in strongly base orderable
matroids and the independent set problem in (k+ 1)-claw free graphs. Feldman et al. showed
that k-exchange systems encompass a wide variety of combinatorial optimization problems,
including k-set packing, intersection of k strongly base orderable matroids, b-matching (here
k = 2), and asymmetric traveling salesperson (here k = 3).

Our results hold for any k-exchange system, and so we present them in the general
language of Definition 1. However, the reader may find it helpful to think in terms of a
concrete problem, such as the k-set packing problem. In that case, the ground set G is the
given collection of sets, and a sub-collection of sets S ⊆ G is independent if and only if all
the sets in S are disjoint. Given A and B as in Definition 1, Ye is the set of all sets in B
that contain any element contained by the set e ∈ A (i.e. the set of all sets in B that are not
disjoint from e). Then, property (K3) is immediate, and (K1) and (K2) follow directly from
the fact that each set in G contains at most k elements.

1.1 Related Work
Recently, the problem of maximizing submodular functions subject to various constraints
has attracted much attention. We focus here primarily on results pertaining to matroid
constraints and related independence systems.

In the case of an arbitrary single matroid constraint, Calinescu et al. have attained a
e/(e− 1) approximation for monotone submodular maximization via the continuous greedy
algorithm. This result is tight, provided that P 6= NP [6]. In the case of k ≥ 2 simultaneous
matroid constraints, an early result of Fisher, Nemhauser, and Wolsey [10] shows that
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44 A (k + 3)/2-approximation algorithm for monotone submodular k-set packing

the standard greedy algorithm attains a k + 1 approximation for monotone submodular
maximization. Fischer et al. state further that the result can be generalized to k-systems
(a full proof appears in Calinescu et al. [4]). More recently, Lee, Sviridenko, and Vondràk
[19] have improved this result to give a k + ε approximation for monotone submodular
maximization over k ≥ 2 arbitrary matroid constraints via a simple, oblivious local search
algorithm. Feldman et al. [9] used a similar analysis to show that oblivious local search
attains a k+ε approximation for the class of k-exchange systems (here, again, k ≥ 2). For the
more general class of k-systems, Gupta et al. [12] give a (1 + β)(k + 2 + 1/k) approximation,
where β is the best known approximation ratio for unconstrained non-monotone submodular
maximization.

In the case of unconstrained non-monotone submodular maximization, Feige, Mirrokni,
and Vondrák [7] gave a randomized 2.5 approximation, which was iteratively improved
by Gharan and Vondrák [11] and then Feldman, Naor, and Shwartz [8] to ≈ 2.38. For
non-monotone maximization subject to k matroid constraints, Lee, Sviridenko, and Vondrák
[17] gave a k+2+1/k+ε approximation, and later improved [19] this to a k+1+1/(k−1)+ε
approximation. Again, the latter result is obtained by a standard local search algorithm.
Feldman et al. [9] apply similar techniques to yield a k + 1 + 1/(k− 1) + ε approximation for
non-monotone submodular maximization the general class of k-exchange systems.

1.2 Our Contribution
In the restricted case of a linear objective function, Feldman et al. [9] gave a non-oblivious
local search algorithm inspired by Berman’s algorithm [2] for (k + 1)-claw free graphs. They
showed that the resulting algorithm is a (k+1)/2+ε approximation for linear maximization in
any k-exchange system. Here we consider a question posed in [9]: namely, whether a similar
technique can be applied to the case of monotone submodular maximization in k-exchange
systems. In this paper, we answer this question affirmatively, giving a non-oblivious local
search algorithm for monotone submodular maximization in a k-exchange system. As in [9],
the k-exchange property is used only in the analysis of our algorithm. Our algorithm attains
an approximation ratio of k+3

2 + ε. For k > 3, this improves upon the k + ε approximation
obtained by the oblivious local search algorithm presented in [9]. Additionally, we note that
our algorithm runs in time polynomial in ε−1, while the k + ε approximation algorithm of [9]
requires time exponential in ε−1.

As a consequence of our general result, we obtain an improved approximation guarantee
of k+3

2 for a variety of monotone submodular maximization problems (some of which are
generalizations of one another) including: k-set packing, independent sets in (k + 1)-claw
free graphs, k-dimensional matching, intersection of k strongly base orderable matroids, and
matroid k-parity in a strongly base orderable matroid. In all cases, the best previous result
was k + ε.

2 A First Attempt at the Submodular Case

Before presenting our algorithm, we describe some of the difficulties that arise when attempting
to adapt the non-oblivious local search algorithm of [2] and [9] to the submodular case. Our
hope is that this will provide some intuition for our algorithm, which we present in the next
section.

We recall that a function f : 2G → R+ is submodular if f(A)+f(B) ≥ f(A∪B)+f(A∩B)
for allA,B ⊆ G. Equivalently, f is submodular if for all S ⊆ T and all x 6∈ T , f(S+x)−f(S) ≥
f(T + x) − f(T ). In other words, submodular functions are characterized by decreasing



J. Ward 45

marginal gains. We say that a submodular function f is monotone if it additionally satisfies
f(S) ≤ f(T ) for all S ⊆ T .

The non-oblivious algorithm of [9] for the linear case is shown in Algorithm 1. It repeatedly
searches for a k-replacement (A,B) that improves the non-oblivious potential function w2.
Formally, we call the pair of sets (A,B), where B ⊆ S and A ⊆ G \ (S \B) a k-replacement
if |A| ≤ k, |B| ≤ k2 − k + 1 and (S \ B) ∪ A ∈ I. If w(e) = f({e}) is the weight assigned
to an element e, then the non-oblivious potential function used by Algorithm 1 is given by
w2(S) =

∑
e∈S w(e)2. That is, our non oblivious potential function w2(S) is simply the sum

of the squared weights of the elements of S.1 We use the fact that w2(S) > w2((S \B) ∪A)
if and only if w2(A) > w2(B), to slightly simplify the search for an improvement.

Algorithm 1: Non-Oblivious Local Search for Linear Objective Functions
Input: Ground set G

Membership oracle for I ⊆ 2G
Value oracle for monotone submodular function f : 2G → R+
Approximation parameter ε ∈ (0, 1)

Let Sinit = {arg maxe∈G w(e)};
Let α = w(Sinit)ε/n;
Round all weights w(e) down to integer multiples of α;
S ← Sinit ;
Sold ← S;
repeat

foreach k-replacement (A,B) do
if w2(A) > w2(B) then

Sold ← S;
S ← (S \B) ∪A;
break;

until Sold = S;
return S;

In the monotone submodular case, we can no longer necessarily represent f as a sum of
weights. However, borrowing some intuition from the greedy algorithm, we might decide to
replace each weight w(e) in the potential function w with the marginal gain/loss associated
with e. That is, at the start of each iteration of the local search algorithm, we assign each
element e ∈ G weight w(e) = f(S+ e)− f(S− e), where S is the algorithm’s current solution,
then proceed as before. Note that w(e) is simply the marginal gain attained by adding e
to S (in the case that e 6∈ S) or the marginal loss suffered by removing e from S (in the
case that e ∈ S). We define the non-oblivious potential function w2 in terms of the resulting
weight function w as before.

Unfortunately, the resulting algorithm may fail to terminate, as the following small
example shows. We consider a simple, unweighted coverage function on the universe U =

1 To ensure polynomial-time convergence, Algorithm 1 first round the weights down to integer multiples
of a suitable small value α, related to the approximation parameter ε. The algorithm then converges in
time polynomial in ε−1 and n, at a loss of only (1 − ε)−1 in the approximation factor.
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46 A (k + 3)/2-approximation algorithm for monotone submodular k-set packing

{a, b, c, x, y, z}. Let:

S1 = {a, b} S3 = {x, y}
S2 = {a, c} S4 = {x, z}

Our ground set G is then {1, 2, 3, 4} and our objective function f(A) =
∣∣⋃

i∈A Si
∣∣ for all

A ⊆ G. We consider the 2-exchange system with only 2 bases: P = {1, 2} and Q = {3, 4}.
For current solution S = P we have w(1) = w(2) = 1 and w(3) = w(4) = 2. Since
w2({1, 2}) = 2 < 8 = w2({3, 4}), the 2-replacement ({3, 4}, {1, 2}) is applied, and the current
solution becomes Q. In the next iteration, we have S = Q, and w(1) = w(2) = 2 and
w(3) = w(4) = 1, so the 2-replacement ({1, 2}, {3, 4}) is applied by the algorithm. This
returns us to the solution to P , where the process repeats indefinitely.

3 The New Algorithm

Intuitively, the problem with this initial approach is that the weight function used at each step
of the algorithm depends on the current solution S (since all marginals are taken with respect
to S). Hence, it may be the case that a k-replacement (A,B) results in an improvement with
respect to the current solution’s potential function, but in fact results in a decreased potential
value in the next iteration after the weights have been updated. Surprisingly, we can solve
the problem by introducing even more variation in the potential function. Specifically, we
allow the algorithm to use a different weight function not only for each current solution S,
but also for each k-replacement (A,B) that is considered. We give the full algorithm at the
end of this section and a detailed analysis in the next.

First, we describe the general approach we use to generate the weights used in our
potential function. Rather than calculating all marginal gains with respect to S, we consider
elements in some order and assign each element a weight corresponding to its marginal
gain with respect to those elements that precede it. By carefully updating both the current
solution and its order each time we apply a local improvement, we ensure that the algorithm
converges to a local optimum.

The algorithm stores the current solution S as an ordered sequence s1, s2, . . . , s|S|. At
each iteration of the local search, before searching for an improving k-replacement, it assigns
a weight w(si) to each si ∈ S, as follows. Let Si = {sj ∈ S : j ≤ i} be the set containing the
first i elements of S. Then, the weight function w assigning weights to the elements of S is
given by

w(si) = f(Si−1 + si)− f(Si−1) = f(Si)− f(Si−1)

for all si ∈ S. Note that our weight function satisfies

∑
si∈S

w(si) =
|S|∑
i=1

[f(Si)− f(Si−1)] = f(S)− f(∅) ≤ f(S) . (1)

In order to evaluate a k-replacement (A,B), we also need to assign weights to the elements
in A ⊆ G\(S \B). We use a different weight function for each k-replacement (A,B), obtained
as follows. We order A according to an arbitrary ordering ≺ on G and ai be the ith element
of A and Ai = {aj ∈ A : j ≤ i}. Then, the weight function w(A,B) assigning weights to the
elements of A is given by

w(A,B)(ai) = f((S \B)∪Ai−1 +ai)−f((S \B)∪Ai−1) = f((S \B)∪Ai)−f((S \B)∪Ai−1)
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for all ai ∈ A. Note that for every k-replacement (A,B),

∑
x∈A

w(A,B)(ai) ≥
|A|∑
i=1

[f((S \B) ∪Ai)− f((S \B) ∪Ai−1)]

= f((S \ B) ∪ A) − f(S \ B) ≥ f(S ∪ A) − f(S) , (2)

where the last inequality follows from the submodularity of f . Note that since the function
f is monotone submodular, all of the weights w and w(A,B) that we consider will be non-
negative. This fact plays a crucial role in our analysis. Furthermore, the weights w assigned
to elements in S remain fixed for all k-replacements considered in a single phase of the
algorithm. Finally, we note that although both w and w(A,B) depend on the current solution
S, we omit this dependence from our notation, instead stating explicitly when there is a
chance of confusion which solution’s weight function we are considering.

Our final algorithm appears in Algorithm 2. We start from an initial solution Sinit =
arg maxe∈G f({e}), consisting of the single element of largest value. When applying a k-
replacement (A,B), the algorithm updates the ordered solution S in a fashion that ensures
all of the elements of S \B precede those of A, while all elements of S \B and, respectively, A
occur in the same relative order. As we shall see in the next section, this guarantees that the
algorithm will converge to a local optimum. As in the linear case, we use the sum of squared
weights w2(B) =

∑
b∈B w(b)2 and w2

(A,B)(A) =
∑
a∈A w(A,B)(a)2 to guide the search.

To ensure polynomial-time convergence, we round all of our weights down to the nearest
integer multiple of α, which depends on the parameter ε. This ensures that every improvement
improves the current solution by an additive factor of at least α2. Because of this rounding
factor, we must actually work with the following analogs of (1) and (2):

∑
x∈S

w(x) ≤
|S|∑
i=1

[f(Si)− f(Si−1)] = f(S)− f(∅) ≤ f(S) (3)

∑
x∈A

w(A,B)(x) ≥
|A|∑
i=1

[f((S \B) ∪Ai)− f((S \B) ∪Ai−1)− α]

= f((S \ B) ∪ A)− f(S \ B)− |A|α ≥ f(S ∪ A)− f(S)− |A|α (4)

4 Analysis of Algorithm 2

We now analyze the approximation and runtime performance of Algorithm 2. We consider
the worst-case ratio, or locality gap, f(O)/f(S) where S is any locally optimal solution (with
respect to Algorithm 2’s potential function) and O is a globally optimal solution. We shall
need the following technical lemma, which is a direct consequence of Lemma 1.1 in [19]. We
give a proof here for the sake of completeness.

I Lemma 2. Let f be a submodular function on G, Let T, S ⊆ G, and {Ti}ti=1 be a partition
of T . Then,

t∑
i=1

[f(S ∪ Ti)− f(S)] ≥ f(S ∪ T )− f(S)

STACS’12



48 A (k + 3)/2-approximation algorithm for monotone submodular k-set packing

Algorithm 2: Non-Oblivious Local Search
Input: Ground set G

Membership oracle for I ⊆ 2G
Value oracle for monotone submodular function f : 2G → R+
Approximation parameter ε ∈ (0, 1)

Fix an arbitrary ordering ≺ on the elements of G
Let Sinit = arg maxe∈G f({e})
Let δ =

(
1 + k+3

2ε
)−1 and α = f(Sinit)δ/n

S ← Sinit and Sold ← S

repeat
X ← ∅
for i = 1 to |S| do

w(si)← b(f(X + si)− f(X))/αcα
X ← X + si

foreach k-replacement (A,B) do
Let ai be the ith element in A according to ≺
X ← S \B
for i = 1 to |A| do

w(A,B)(ai)← b(f(X + ai)− f(X))/αcα
X ← X + ai

if w2
(A,B)(A) > w2(B) then
Sold ← S

Delete all elements in B from S

Append the elements of A to the end of S, in the order given by ≺.
break

until Sold = S

return S

Proof. Define A0 = S and then Bi = Ti \ S and Ai = Bi ∪ Ai−1, for all 1 ≤ i ≤ t. Then,
since S ⊆ Ai−1 for all 1 ≤ i ≤ t, submodularity of f implies

f(Ti ∪ S)− f(S) = f(Bi ∪ S)− f(S) ≤ f(Bi ∪Ai−1)− f(Ai−1) = f(Ai)− f(Ai−1)

for all 1 ≤ i ≤ t. Now, we have
t∑
i=1

[f(S ∪ Ti)− f(S)] ≥
t∑
i=1

[f(Ai)− f(Ai−1)] = f(At)− f(A0) = f(S ∪ T )− f(S) . J

4.1 Approximation Ratio of Algorithm 2
We now consider the approximation ratio of Algorithm 2. A general outline of the proof is as
follows: we consider only a particular set of k-replacements (A,B) and derive (in Lemma 3)
a relationship between the non-oblivious potential functions w2 and w2

(A,B) and the weight
functions w and w(A,B) for these k-replacements. We use this relationship to derive (in
Lemma 4) a lower bound on the weight w(x) of each element x in a locally optimal solution.
Finally, in Theorem 5 we combine these lower bounds to obtain a bound on the locality gap
of Algorithm 2.
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For the rest of this subsection, we consider an arbitrary instance (G, I, f) and suppose that
S is a locally optimal solution returned by the algorithm on this instance, while O is a global
optimum for this instance. Because S is locally optimal, we must have w2

(A,B)(A) ≤ w2(B)
for every k-replacement (A,B), where w and each w(A,B) are the weight functions determined
by S.

We now describe the set of k-replacements used in our analysis. We have S,O ∈ I for
the k-exchange system (G, I). Thus, there must be a collection Y assigning each e of O a
neighborhood Ye ⊆ S, satisfying the conditions of Definition 1. For each x ∈ S, let Px be the
set of all elements e ∈ O for which: (1) x ∈ Ye and (2) for all z ∈ Ye, w(z) ≤ w(x). That is,
Px is the set of all elements of O which have x as their heaviest neighbor in S. Note that the
construction of Px depends on the weights w assigned to elements in S being fixed throughout
each iteration and independent of the particular improvement under consideration.

We define Nx =
⋃
e∈Px

Ye, and consider (Px, Nx). From property (K2) of Y we have
|Px| ≤ k. Similarly, from property (K1) and the fact that all elements e ∈ Px have as a
common neighbor x ∈ Ye we have |Nx| ≤ 1 + k(k − 1) = k2 − k + 1. Finally, from property
(K3) we have (S \Nx) ∪ Px ∈ I. Thus, (Px, Nx) is a valid k-replacement for all of our sets
Px, x ∈ S. Furthermore, {Px}x∈S is a partition of O, and by the definition of Px, we have
w(x) ≥ w(z) for all z ∈ Nx. Again, this depends on the weights of elements in S being the
same for all k-replacements considered by the algorithm during a given phase.

The following extension of a theorem from [2], relates the squared weight potentials w2

and w2
(Px,Nx) to the weight functions w and w(Px,Nx) for each of our k-replacements (Px, Nx).

I Lemma 3. For all x ∈ S, and e ∈ Px,

w(Px,Nx)(e)2 − w2(Ye − x) ≥ w(x) ·
(
2w(Px,Nx)(e)− w(Ye)

)
.

Proof. First, we note that

0 ≤ (w(x)− w(Px,Nx)(e))2 = w(x)2 − 2w(x) · w(Px,Nx)(e) + w(Px,Nx)(e)2 . (5)

Additionally, since e ∈ Px, every element z in Ye has weight at most w(x), and so

w2(Ye − x) =
∑

z∈Ye−x
w(z)2 ≤ w(x)

∑
z∈Ye−x

w(z) = w(x) · w(Ye − x) . (6)

Adding (5) and (6) then rearranging terms using w(x) · w(Ye − x) + w(x)2 = w(x) · w(Ye)
gives the desired result. J

We now prove the following lemma, which uses the local optimality of S to obtain a lower
bound on the weight w(x) of each element x ∈ S.

I Lemma 4. For each x ∈ S, w(x) ≥
∑
e∈Px

[
2w(Px,Nx)(e)− w(Ye)

]
.

Proof. Because S is locally optimal with respect to k-replacements, including in particular
(Px, Nx), we must have

w2
(Px,Nx)(Px) ≤ w2(Nx) . (7)

First, we consider the case w(x) = 0. Recall that all the weights produced by the algorithm
are non-negative, and w(x) is the largest weight in Nx. Thus, w(e) = 0 for all e ∈ Nx and
w2(Nx) = 0. Moreover, (7) implies that w2

(Px,Nx)(Px) = 0 as well, and so w(Px,Nx)(e) = 0 for
all e ∈ Px. The claim then follows.
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50 A (k + 3)/2-approximation algorithm for monotone submodular k-set packing

Now, suppose that w(x) 6= 0, and so w(x) > 0. From (7), together with the fact that
x ∈ Ye for all e ∈ Px, we have:

w2
(Px,Nx)(Px) ≤ w2(Nx) ≤ w(x)2 +

∑
e∈Px

w2(Ye − x) . (8)

Rearranging (8) using w2
(Px,Nx)(Px) =

∑
e∈Px

w(Px,Nx)(e)2 we obtain:∑
e∈Px

[
w(Px,Nx)(e)2 − w2(Ye − x)

]
≤ w(x)2 . (9)

Applying Lemma 3 to each term on the left of (9) we have:∑
e∈Px

w(x) ·
[
2w(Px,Nx)(e)− w(Ye)

]
≤ w(x)2 . (10)

Dividing by w(x) (recall that w(x) 6= 0) then yields∑
e∈Px

[
2w(Px,Nx)(e)− w(Ye)

]
≤ w(x) . J

We now prove our main result, which gives an upper bound on the locality gap of
Algorithm 2.

I Theorem 5.
(
k+3

2 + ε
)
f(S) ≥ f(O)

Proof. Lemma 4 gives us one inequality for each x ∈ S. We now add all |S| inequalities to
obtain∑

x∈S

∑
e∈Px

[
2w(Px,Nx)(e)− w(Ye)

]
≤
∑
x∈S

w(x) . (11)

We have
∑
x∈S w(x) ≤ f(S) by (3). Additionally, from (4), f(S ∪ Px) − f(S) − |Px|α ≤∑

e∈Px
w(Px,Nx)(e) for every Px. Thus, (11) implies

2
∑
x∈S

[f(S ∪ Px)− f(S)− |Px|α ]−
∑
x∈S

∑
e∈Px

w(Ye) ≤ f(S) . (12)

Since P is a partition of O, (12) is equivalent to

2
∑
x∈S

[f(S ∪ Px)− f(S)]− 2|O|α−
∑
e∈O

w(Ye) ≤ f(S) . (13)

We have w(x) ≥ 0 for all x ∈ S, and there are at most k distinct e for which x ∈ Ye, by
property (K2) of Y . Thus∑

e∈O
w(Ye) ≤ k

∑
x∈S

w(x) ≤ kf(S) ,

by (3). Combining this with (13), we obtain

2
∑
x∈S

[f(S ∪ Px)− f(S)]− 2|O|α− kf(S) ≤ f(S) . (14)

Using again the fact that P is a partition of O, we can apply Lemma 2 to the remaining
sum on the left of 14, yielding

2 [f(S ∪O)− f(S)]− 2|O|α− kf(S) ≤ f(S) ,
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which simplifies to

f(S ∪O)− |O|α ≤ k + 3
2 f(S) . (15)

From the definition of α and the optimality of O, we have

|O|α ≤ nα = δf(Sinit) ≤ δf(O) .

Finally, since f is monotone, we have f(O) ≤ f(S ∪O). Thus, (15) implies

(1− δ)f(O) ≤ k + 3
2 f(S) ,

which is equivalent to f(O) ≤
(
k+3

2 + ε
)
f(S) by the definition of δ. J

4.2 Runtime of Algorithm 2
Now, we consider the runtime of Algorithm 2. Each iteration requires time O(n) to com-
pute the weights for S, plus time to evaluate all potential k-replacements. There are
O(nk+k(k−1)+1) = O(nk2+1) such k-replacements (A,B), and each one can be evaluated in
time O(k2), including the computation of the weights w(A,B). Thus, the total runtime of
Algorithm 2 is O(Ik2nk

2+1), where I is the number of improvements it makes. The main
difficulty remaining in our analysis is showing that Algorithm 2 constantly improves some
global quantity, and so I is bounded. Here, we show that although the weights w assigned
to elements of the current solution S change at each iteration, the non-oblivious potential
w2(S), is monotonically increasing.

I Lemma 6. Suppose that Algorithm 2 applies a k-replacement (A,B) to solution S to obtain
a new solution T . Let wS be the weight function w determined by solution S and wT be the
weight function w determined by solution T . Then, w2

T (T ) ≥ w2
S(S) + α2.

Proof. We first show that wS(si) ≤ wT (si) for each element si ∈ S \ B and w(A,B)(ai) ≤
wT (ai) for any element ai ∈ A. In the first case, let Si (respectively, Ti) be the set of all
elements in S (respectively T ) that come before si and Ai be the set of all elements of A that
come before ai (in the ordering ≺). When the algorithm updates the solution S, it places all
of A after S \B, removes all elements of B from S, and leaves all elements of S \B in the
same relative order. Thus, Ti ⊆ Si. It follows directly from the submodularity of f that

wS(x) =
⌊
f(Si + si)− f(Si)

α

⌋
α ≤

⌊
f(Ti + si)− f(Ti)

α

⌋
α = wT (x) .

Let w(A,B) be the weight function for k-exchange (A,B) and current solution S. We now
show that w(A,B)(ai) ≤ wT (ai) for each element ai ∈ A. In this case, we let Ai be the set of
all elements of A that come before ai (in the ordering ≺) and Ti be the set of all elements of
T that come before ai after applying (A,B) to S. When the algorithm updates the solution
S, it places all elements of A after all of S \ B, removes all elements of B from S, and
leaves all elements of A in the same relative order. Thus, Ti ⊆ (S \B) ∪Ai and so from the
submodularity of f

w(A,B)(ai)=
⌊
f((S\B) ∪Ai + ai)− f((S\B) ∪Ai)

α

⌋
α ≤

⌊
f(Ti + ai)− f(Ti)

α

⌋
α = wT (ai) .

STACS’12



52 A (k + 3)/2-approximation algorithm for monotone submodular k-set packing

Finally, since Algorithm 2 applied (A,B) to S, we must have w2
(A,B)(A) > w2

S(B), and since
all weights are integer multiples of α, we must in fact have w2

(A,B)(A) ≥ w2
S(B) + α2. From

this inequality, together with the above bounds on wS and w(A,B), we have

w2
S(S) =

∑
x∈S\B

wS(x)2 +
∑
x∈B

wS(x)2 ≤
∑

x∈S\B

wS(x)2 +
∑
y∈A

w(A,B)(y)2 + α2

≤
∑

x∈S\B

wT (x)2 +
∑
y∈A

wT (y)2 + α2 = w2
T (T ) + α2 . J

I Theorem 7. For any value ε ∈ (0, 1), Algorithm 2 makes at most O(n3ε−2) improvements.

Proof. Because f is submodular, for any element e and any set T ⊆ G, we have f(T + e)−
f(T ) ≤ f({e}) ≤ f(Sinit). In particular, for any solution S ⊆ G with associated weight
function w, we have

w2(S) =
∑
e∈S

w(e)2 ≤ |S|f(Sinit)2 ≤ nf(Sinit)2 .

Additionally, from Lemma 6, each improvement we apply must increase w2(S) by at least
α2, and hence the number of improvements that Algorithm 2 can make is at most

w2(S)− f(Sinit)2

α2 ≤ nf(Sinit)2 − f(Sinit)2

α2

= (n − 1)
(
f(Sinit)

α

)2
= (n − 1)n

2

δ2 = O(n3ε−2) . J

I Corollary 8. For any ε > 0, Algorithm 2 is a k+3
2 + ε approximation algorithm, running

in time O(ε−2k2nk
2+4).

5 Open Questions

We do not currently have an example for which the locality gap of Algorithm 2 can be as bad
as stated, even for specific k-exchange systems such as k-set packing. In the particular case
of weighted independent set in (k + 1)-claw free graphs, Berman [2] gives a tight example
that shows his algorithm can return a set S with k+1

2 w(S) = w(O). His example uses only
unit weights, and so the non-oblivious potential function is identical to the oblivious one.
However, the algorithm of Feldman et al. (given here as Algorithm 1) considers a larger class
of improvements than those considered by Berman, and so this example no longer applies,
even in the linear case. For the unweighted variant, Hurkens and Schrijver [15] give a lower
bound of k/2 + ε, where ε depends on the size of the improvements considered. Because the
non-oblivious local search routine performs the same as oblivious local search on instances
with unit weights (since 1 = 12), this lower bound applies to Algorithm 1 in the linear case.
From a hardness perspective, the best known bound is the Ω(k/ ln k) NP-hardness result of
Hazan, Safra, and Schwartz [14], for the special case of unweighted k-set packing.

Another interesting question is whether similar techniques can be adapted to apply to more
general problems such as matroid k-parity in arbitrary matroids (here, even an improvement
over k for the general linear case would be interesting) or to non-monotone submodular
functions. A major difficulty with the latter generalization is our proof’s dependence on the
weights’ non-negativity, as this assumption no longer holds if our approach is applied directly
to non-monotone submodular functions.
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