Variable time amplitude amplification and
quantum algorithms for linear algebra problems*

Andris Ambainis!

1 Faculty of Computing, University of Latvia,
Raina bulv. 19, Riga, LV-1586, Latvia,
ambainis@lu.lv

—— Abstract

Quantum amplitude amplification is a method of increasing a success probability of an algorithm
from a small € > 0 to ©(1) with less repetitions than classically. In this paper, we generalize
quantum amplitude amplification to the case when parts of the algorithm that is being amplified
stop at different times.

We then apply the new variable time amplitude amplification to give two new quantum
algorithms for linear algebra problems. Our first algorithm is an improvement of Harrow et al.
algorithm for solving systems of linear equations. We improve the running time of the algorithm
from O(xk%log N) to O(log® klog N') where & is the condition number of the system of equations.
Our second algorithm tests whether a matrix A is singular or far-from-singular, faster then the
previously known algorithms.

1998 ACM Subject Classification F.1.2 Modes of computation, F2.1 Numerical algorithms and
problems

Keywords and phrases quantum computing, quantum algorithms, amplitude amplification, lin-
ear equations

Digital Object Identifier 10.4230/LIPIcs.STACS.2012.636

1 Introduction

Large systems of linear equations arise in many situations and faster algorithms for solving
them are of great interest. For this reason, it would be very interesting to have a quantum
algorithms for this problem.

However, there are some substantial difficulties with designing such an algorithm. First,
if we have a system of linear equations Az = b with N equations and N unknowns, the
coefficient matrix A is of size N2. If a quantum algorithm accesses all or most of coefficients
in A, it would require time Q(N?). We could allow query access to the coefficient matrix
A (similarly to Grover’s algorithm [12] and other quantum query algorithms) but then we
run into a second problem. The quantum algorithm still has to output the solution vector
x. Since the solution vector = consists of values for N variables, this requires time Q(NV).

This argument suggests that quantum speedup for this problem can be at most polyno-
mial (because classical algorithms for systems of linear equations run in time O(N*)) where
w = 2.37... is the matrix multiplication constant.

* Supported by ESF project 1DP/1.1.1.2.0/09/APIA/VIAA /044, FP7 Marie Curie Grant PIRG02-GA-
2007-224886 and FP7 FET-Open project QCS.

@@@@ © Andris Ambainis; SYMPOSIUM
CATE™ licensed under Creative Commons License NC-ND ‘V \n ON THEORETICAL
29th Symposium on Theoretical Aspects of Computer Science (STACS’12). m }_ ASPECTS
Editors: Christoph Diirr, Thomas Wilke; pp. 636—647 1§ 7 / OF COMPUTER

\\v Leibniz International Proceedings in Informatics SCIENCE
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

A. Ambainis

Recently, Harrow, Hassidim and Lloyd [13] discovered a surprising quantum algorithm
that allows to bypass the limitations described above and to "solve" systems of linear equa-
tions in time O(log® N) - in an unconventional sense. Instead of outputting the solution vec-
tor z in a classical form, their algorithm generates the quantum state |z) = 32~ | ;]i) with
the coefficients z; being equal to the values of variables in the solution x = (z1, z32,...,ZN)
of the system Ax = b.

HHL algorithm has been quite controversial. On one hand, one cannot read the values
Z1,...,xN from the quantum state |z) = Zfil x;|1). Even to estimate them, one would
have to produce many copies of |z), increasing the running time of the quantum algorithm
many times.

On the other hand, the state |z) = va:l x;|) can be used to estimate expressions of the
form)", ¢;z; which depend on all z; simultaneously. Classically, it is intuitively unlikely
that one would be able to estimate expressions of this form without solving the system
and finding 1, ...,xy - which requires time ©(N¢). This intuition is substantiated by the
fact that estimating such expressions is BQP-complete [13]. Thus a classical algorithm for
evaluating expressions of the form)", ¢;x; in time O(log® N)) does not exist - unless P=BQP.

Another context in which the state |z) would be useful is if we wanted to test whether
the solutions of two systems of linear equations Az = b and A’z = b’ were close one to
another. In this case, we could generate the solution states |x) and |2’) for both systems
and then compare them using the SWAP-test [8]. (For example, we might be interested in
testing whether the stationary distributions of two Markov chains are close one to another
[13]. Then, each stationary distribution can be described as a solution to a system of linear
equations.)

Besides providing the output as a quantum state |z), another weakness of the HHL
algorithm is the dependence of its running time on parameters other than the size of the
system of equations N. In particular, its running time depends on k, the condition number
of matrix A. The condition number is defined as the ratio between the largest and the

smallest singular value of A: k = max; ; % where p; are the singular values of A.
J

When condition number & is taken into account, the running time of the HHL quantum
algorithm is O(k%log N). Thus, the speedup achieved by the HHL algorithm is exponential,
as long as kK = O(log® N). However, systems of linear equations with a polylogarithmic
condition number are quite rare. It is much more common for a system to have a condition
number that scales as O(N) or ©(N€). (We present some examples in section 4.5.) For this
reason, we think that it is important to improve the dependence of the HHL algorithm on
K.

In this paper, we present a better quantum algorithm of solving systems of linear equa-
tions in the sense of HHL, with the running time O(f{log3 klog N). It would be desirable
to have even better dependence on k but our algorithm is probably close to being optimal.
Harrow et al. [13] show that, unless BQP = PSPACE, time of Q(x'~°()) is necessary for
generating the state |x) that describes the solution of the system.

Our second result is a quantum algorithm for testing whether a matrix A is singular,
under a promise that A is either singular or far from being singular. (Here, “far from
singular' means that all singular values are at le&s)t €.) Under this assumption, we design

S

a quantum algorithm that runs in time! O(m) where k is the number of singular

1 Here, O notation ignores logarithmic factors.

637

STACS’12

638

Variable time amplitude amplification

values of A that are equal to 0 and

where p; are all the singular values of A.

Both of our results use a new tool, the wvariable-time quantum amplitude amplifica-
tion which allows to amplify the success probability of quantum algorithms in which some
branches of the computation stop earlier than other branches. The conventional amplitude
amplification [7] would wait for all branches to stop - possibly resulting in a substantial in-
efficiency. Our new algorithm amplifies the success probability in multiple stages and takes
advantage of the parts of computation which stop earlier.

The variable-time amplitude amplification is a generalization of variable time search of
Ambainis [2]. Variable time search was a generalization of Grover’s algorithm to the setting
when queries to different items take different time. In this paper, we improve variable time
search to deal with the more general setting of amplitude amplification.

We then apply the new variable-time amplitude amplification to design the quantum
algorithms for solving systems of linear equations and testing singularity. We expect that the
variable time amplitude amplification will be useful for building other quantum algorithms,
as well.

Related work After this work was completed, Belovs [4] discovered another algorithm
for testing the singularity. Belovs’ algorithm achieves similar running time, using a different
method (span programs) than our work (variable time eigenvalue estimation).

2 Methods and subroutines

Throughout the paper, we use two well known quantum algorithms: etgenvalue estimation
and amplitude amplification.
Eigenvalue estimation. Quantum eigenvalue estimation [15] is a quantum algorithm that,
given a Hamiltonian H (in form of a black box that allows by apply H for a time T that we
choose) and its eigenstate |¢) : H|i)) = A|¢)), outputs an unchanged eigenstate |1)), together
with an estimate A for the eigenvalue A.

We assume that 0 < A < 1. The standard version of eigenvalue estimation [14, p. 118]

performs the unitary U = e~ up to 2* times and outputs = € {0, = o 2k ey (2
probability
1 sin?2F(\ —z)
@)= o= (1)

22k sin?(\ —)

(equation (7.1.30) from [14]).

According to Theorem 7.1.5 in [14], if A € [2, 2], then the probability of outputting

one of the two closest estimates (g and mt1)) is at least %. We can increase this probability
to at least 1 — e by repeating the eigenvalue estimation algorithm O(log %) times and taking
the majority of answers.
Amplitude amplification. Another tool that we repeatedly use is quantum amplitude
amplification [7]. Quantum amplitude amplification takes an algorithm A that succeeds
with a small probability € and transforms it into an algorithm A’ that succeeds a probability
2/3 (or 1 — o(1)).

Classically, increasing the success probability from e to 2/3 requires repeating A @(l)
times. Quantumly, amplitude amplification allows to do that with just O(-) repetitions of

A. Ambainis

A. The algorithm A whose success probability is being increased can be either a classical
algorithm or a quantum algorithm.

3 Variable time amplitude amplification

Our first result is a generalization of the amplitude amplification. Consider a quantum algo-
rithm A which may stop at one of several times ¢y, ..., t,. (In the case of singularity-testing
or systems of linear equations, these times correspond to m runs of eigenvalue estimation
with increasing precision and increasing number of steps.) To indicate the outcome, A has
an extra register O with 3 possible values: 0, 1 and 2. 1 indicates the outcome that should
be amplified. 0 indicates that the computation has stopped at this branch but did not result
in the desired outcome 1. 2 indicates that the computation at this branch has not stopped
yet.

Let p; be the probability of the algorithm stopping at time ¢; (with either the outcome
0 or outcome 1). The average stopping time of A (the Iy average) is

Tow = lzpzt?

Tnae denotes the maximum possible running time of the algorithm (which is equal to ¢,,).
Let

CVgood|]->0 ngood> + abad|0>0 W}bad>

be the algorithm’s output state after all branches of the computation have stopped. Our
goal is to obtain [tgeoq) With a high probability. Let psuce = |@go0a|® be the probability of
obtaining this state via algorithm 4.

Our main result is
» Theorem 1. We can construct a quantum algorithm A’ invoking A several times, for total
time

T
O (Tmax log Tmaw + “]‘Og15 Tmam)
V pSUCC

that produces a state a|1) @ |1g00d) + 8|0) ® [¢') with probability |a|? > 1/2 as the output?.

Proof. The proof is given in the full version of the paper [3]. <
By repeating A’ O(log 1) times, we can obtain [1hge0q) With a probability at least 1 — e.
In contrast to our algorithm, the usual amplitude amplification [7] would run for time
O(f%) Our algorithm A’ provides an improvement whenever Ty, is substantially smaller
than T
Our algorithm A’ is optimal, up to the factor of log® Tya.. If the algorithm A has just
one stopping time T" = Ty, = Tyqq, then amplitude amplification cannot be performed with

fewer than O(\/pTi) steps. Thus, the term of %

If we would like to algorithm A" to be exact (to produce an output state that is exactly
[tg00a), conditional on the first bit being [1)), the term T),,, is also necessary because, in
some branch of computation, A can run for T}, steps and A’ needs the part of [¢4004) that
comes from this branch. If A’ only has to produce an approximation of |¢g004), & better
result is possible.

is necessary.

2 The first bit of the output state indicates whether we have the desired state [%good) Or not. Since
|a|? > 1/2, we get |1g004) With probability at least 1/2.

639

STACS’12

640

Variable time amplitude amplification

» Theorem 2. Let € > 0 be a constant. We can construct a quantum algorithm A" invoking
A several times, for total time

Too 1
O (log'® max <T,w, >>
V psucc psucc

that produces a state a|l) @ [¢},,4) + B0) @ [¢') with |a|* > 1/2 and [[¥go0d — Vpoeall < €
as the output.

Theorem 2 is a straightforward consequence of Theorem 1. We observe that the prob-

ability of an algorithm A running for more than Ty = \/(;L steps is at most dpsyce-
(Otherwise, we would have T2, > dpsuceTe = Tav.)
We set § = (¢/2)% and Tp = 6\/%#/2 and take a quantum algorithm .4; that runs A but

stops after Tp steps. Then, the output state of Ay is [¢7,,4) with?® ||%g00a — Vyooall < € and
Trnaz for the new algorithm A; is equal to Ty. Theorem 2 now follows by applying Theorem
1 to .A1.

4 Quantum algorithms for linear algebra problems

4.1 Preliminaries

We will consider two problems: testing whether a matrix A is singular and “solving" systems
of linear equations Az = b in the sense of [13].

Similarly to [13], we assume that the matrix A is Hermitian. This assumption is without
a loss of generality. For singularity testing, if A is not Hermitian, we can replace it by

(3 4)

where 0 denotes the all-zero matrix of the appropriate size. Then, A’ is singular if and only
if A is singular.

For systems of linear equations, we can replace Az = b by A’y = b where I/ = < 2)

The solution of this system is

()

which is essentially equivalent to x.
For both algorithms, the matrix A can be given in one of the following forms:

1. A black box implementing A (for Hermitian A) as a Hamiltonian;

2. A black box answering queries about the values of A, in one of the following two forms:
a. (for dense matrices) given ¢, j, the black box returns a;;;
b. (for sparse matrices) given 4, the black box returns a list of all values in the i*® row

(or i*" column) that are non-zero.

3 Removing the part of [%good) that corresponds to A running for more than Ty steps results in an

unnormalized state | ;’00d> with [[¢g00qd — Wg/ood” < ¢/2. Normalizing | lglood> results in a normalized

state [0/),oq) With [, — ¥ 00all < ¢/2 and [[Ygo0d — ¥)ooqll < e

A. Ambainis

The second case reduces to the first one, because, given a black box that answers queries
about values a;j, we can build a black box implementing A, by using one of methods for
simulating black-box Hamiltonians. In the sparse case, to simulate the Hamiltonian A for
time 7, it is sufficient to use the query black box for A O((T'log N)'*°(1)) times [5, 10].
In the dense case, the quantum-walk based methods by Childs [9] give an O(C(A)T) query
simulation of the Hamiltonian A for time T, with a somewhat complicated dependence of
C(A) on the matrix A.

For the rest of this paper, we assume that A is given via a Hamiltonian. We assume that
the evolution of the Hamiltonian A for time T can be simulated in time C'(A) min(7T, 1), for
some C(A) (as in the simulation by [9]). (Using a simulation method that works in time
O(C(A)T+°M) (as in [5, 10]) is also possible, with a corresponding increase in the running
times of our algorithms.)

4.2 Singularity testing

We consider the problem of testing whether a matrix A is singular. It is known that testing
the singularity of an n x n matrix requires 2(n?) queries in the quantum query model [11].

However, better quantum algorithms may be possible for restricted cases of the singu-
larity problem. A natural restriction is to consider the case when the matrix A is either
singular or far from being singular.

Namely, we consider the testing whether A is singular with a promise that ||A]| < 1 and
one of the following two is true:

A is singular;

All singular values of A are at least e.
We will refer to this problem as e-Singularity.

Let p1(A),...,pn(A) be the singular values of a matrix A. Let

641

If A is not Hermitian, we replace it by a Hermitian, as described in section 4.1. If p1(A), ..., pn(A)

are the singular values of a matrix A, then the eigenvalues of A" are +p1(A),...,+pn(A).

» Theorem 3. There is an algorithm A for e-singularity that runs in time O(C/(A)s(A) log"® s(A) log N)

if A is non-singular and time

C(A)s(A)log"® s(A)log N
o(Vi)

if A has k > 0 singular values that are equal to 0.

Proof. We apply variable time amplitude amplification to Algorithm 1.

To analyze this algorithm, we first observe that receiving the second part of a completely
mixed state as an input is equivalent to receiving the N-dimensional completely mixed state
pn as the input. The completely mixed state can be written as a mixture of eigenvectors
|v;) of A with equal coefficients:

N

o = 3 ool

i=1

STACS’12

642

Variable time amplitude amplification

Input: an N x N matrix A.
1. With probability ﬁ output "non-singular" and stop.
2. Prepare a bipartite state

A
;ﬁm@m.

3. Let k=1.
4. While k < [27], do:
a. On the second register, apply eigenvalue estimation for A with parameters chosen so
that, with probability at least 1 — ﬁ, the estimate is within 2% of being correct.
b. If the obtained estimate is at least € + 2%, output "fail" and stop.

c. If the obtained estimate is at most € — %, output "singular" and stop.

Algorithm 1 Algorithm for singularity testing.

If the input to eigenvalue estimation was |v;), the eigenvalue estimation loop would stop
after O(i log N) steps, with a high probability. Therefore, the ls-average stopping time
would be Ty, = O(*ALEX),

Let A be the algorithm obtained by applying Theorem 2 to Algorithm 1. If A has k
singular values that are equal to 0, then the success probability of Algorithm 1 is pgsyce =
% and the running time of A is

1.5
0 (5 tog™ max(Ty)) = O (HEHEHALER),
vV Psuce \/E

Conditional on the algorithm succeeding, the probability of the correct answer “singular" is

k 2
k+0.5 2 3"

If A has no singular value equal to 0, then the success probability of Algorithm 1 is
Dswce = ﬁ + O(ﬁ)7 with the O(ﬁ) term coming from the possibility that eigenvalue
estimation may output an incorrect estimate with probability (at most z). The running
time of A is

T,

0] (av log!® max Tav,psucc)) =0 (s(A)log"® s(A)logN) .
V pSUCC ((())

Conditional on the algorithm succeeding, the probability of the correct answer “non-singular”

1
is ;2= =1-o0(1). <

4.3 Systems of linear equations

We consider solving a system of linear equations Az = b where A = (a); jen], © =
(%3)ien]y b = (bi)ie[n]. As before, we assume that A is Hermitian.

Let |v;) be the eigenvectors of A and A; be their eigenvalues. Similarly to [13], we
assume that all \; satisfy % < |Ai] €1 for some known k. We can then transform the state
|b) =37 bili) into |z) = D1, a4]i) as follows:

1. If, in terms of eigenvectors |v;) of A, we have |b) =", ¢;|v;), then |z) =

ci

i i).
2. By eigenvalue estimation, we can create the state |V') =). ¢;[v;)|A\;) where \; are the
estimates of the true eigenvalues.

A. Ambainis

3. We then create the state

by = Zci|vi>\5\i> <H15\ 1) +4/1— ,@215\2 0>) . (3)

7 2

Conditional on the last bit being 1, the rest of state is >, f\—l|vz>\5\z> which can be
turned into an approximation of |z) by running eigenvalue estimation in reverse and
uncomputing i

4. We then amplify the part of state which has the last qubit equal to 1 (using amplitude
amplification) and obtain a good approximation of |x) with a high probability.

» Theorem 4. [13] Let Az = b be a system of linear equations. Then, we can generate |¢)
2
satisfying |[[¢)) — |2)]| < € where [z) = Y27 ;i) in time O(ZX% 1og N).

The main term in the running time, x? is generated as a product of two &’s. First, for
[[4) —|&)|| < e, it suffices that the estimates \; satisfy |X\; —A;| = O(e);). Since \; = Q(1/k),
this means |\; — \;| = O(£). To estimate \; within error O(<), we need to run H for time
O(%). Second, for amplitude amplification, we may need to repeat the algorithm generating
|b") O(k) times - resulting in the total running time O(k?/e).

For eigenvalue estimation, the worst case is when all of most of \; are small (of order
©(1/k)). Then, |A; — \;| = ©(£) and eigenvalue estimation with the right precision indeed
requires time ©(%).

For amplitude amplification, the worst case is if most or all of \; are large (constant).
Then, the coefficients k}\i can be of order ©(1/k) and O(k) repetitions are required for
amplitude amplification.

We now observe that the two O(k)’s appear in the opposite cases. One of them appears
when); is small (A\; & k) but the other appears when \; is large (A; = 1).

If all eigenvalues are of roughly similar magnitude (e.g., A € [a,2a] for some a), the
running time becomes O(k/€) because we can do eigenvalue estimation in time to error ea in
O(1/ae) and, for amplitude amplification, it suffices to repeat the generation of |b") O(ka)
times (since the amplitude of 1 in the last qubit of [b') is at least - for every v;). Thus,
the running time is

0 (;) o) =0 (%),

The problem is to achieve a similar running time in the general case (when the eigenvalues
A; can range from k to 1).

To do that, we run eigenvalue estimation several times. Each time, we double the
precision and double the running time (as in Algorithm 1 for singularity testing). This
gives a quantum algorithm in which different branches of computation stop at different
times. By applying our variable-time amplitude amplification to this quantum algorithm,
we get

» Theorem 5. Let Az = b be a system of linear equations. Then, we can generate |¢))
satisfying [||¢) — |z)|| < € in time

C(A)klog® & 1
O(%Ogelog2>,
€ €

For more details, we refer the reader to the full version of the paper [3].

643

STACS’12

644

Variable time amplitude amplification

4.4 Algorithm of Theorem 5

In this subsection, we describe the algorithm of Theorem 5. For its analysis, we refer the
reader to the full version of this paper [3].

For our algorithm, we need a version of eigenvalue estimation that is guaranteed to
output exactly the same estimate with a high probability. This can be achieved by running
the standard eigenvalue estimation (described in section 2) kyyiq times and takes the most
frequent answer T,,q;.

» Lemma 1. For kyniq = O(ei2 log%), we have
1. fA—2| < 21n;jl, then Pr{zme =] > 1—e.

2. If A€ [z + 35,0+ 3:55], then Prlzm,., € {z,o+1}]>1—e

Proof. Omitted. <
We refer to this algorithm as UniqueEst(H, 2", ¢).
When we use UniqueEst as a subroutine in algorithm 3, we need the answer to be
unique (as in the first case) and not one of two high-probability answers (as in the second
case). To deal with that, we will replace H with H + g—ZII for a randomly chosen ¢ € [0, 1].

The eigenvalue becomes N = \ + g—’; and, with probability 1 — €,
1—¢ 1—¢
’) T+ 5
MNoe on , o s

for some integer x. This allows to achieve the first case for all eigenvalues, except a small
random fraction of them.

We now show that Theorem 1 implies our main result, Theorem 5. We start by describing
a variable running time Algorithm 2. This algorithm uses the following registers:

The input register I which holds the input state |z) (and is also used for the output

state);

The outcome register O, with basis states |0), |1) and |2) (as described in the setup for

variable-time amplitude amplification);

The step register S, with basis states |1), |2), ..., |2m) (to prevent interference between

various branches of computation).

The estimation register F, which is used for eigenvalue estimation (which is a subroutine

for our algorithm).

Hr, Ho, Hs and Hg denote the Hilbert spaces of the respective registers.

From now on, we refer to € appearing in Theorem 5 as €f;nq;. € Without a subscript is
an error parameter for subroutines of algorithm 2 (which we will choose at the end of the
proof so that the overall error in the output state is at most €finar).

Our main algorithm is Algorithm 3 which consists of applying variable-time amplitude
amplification to Algorithm 2.

We claim that, conditional on the output register being |1)o, the output state of Algo-
rithm 2 is close to

i) = Y0l & <H1>\Z_1>o ® |2ji>s) . (5)

Variable-time amplitude amplification then generates a state that is close to % Fourier

transform in the last step of algorithm 3 then effectively erases the S register. Conditional

A. Ambainis

Input: parameters z1, ..., 2 € [0,1], Hamiltonian H.
1. Initialize O to |2), S to |1) and E to |0). Set j = 1.
2. Let m = [logy = 1.
3. Repeat until j > m:
Stage j:
a. Let H' = H + %7 1. Using the registers I and S, run UniqueEst(H’,27 ¢). Let X
be the estimate output by UniqueEst and let A = X' — 7.
b. If e > 21-%, perform the transformation

20 1)s = 710 ® 23)s + /1= 3 0)0 © 23)s. @

c. Run UniqueEst in reverse, to erase the intermediate information.

d. Check if the register E is in the correct initial state |0)g. If not, apply [2)o ® |1)s —
|0)o ® |25 + 1)s on the outcome register O.

e. If the outcome register O is in the state |2), increase j by 1 and go to step 2.

Algorithm 2 State generation algorithm

Input: Hamiltonian H.

1. Generate uniformly random 1, ..., 2, € [0,1].

2. Apply variable-time amplitude amplification to Algorithm 2, with H and xy,...,z,, as
the input.

3. Apply a transformation mapping |2j)s — |j)s to the S register. After that, apply
Fourier transform F}, to the S register and measure. If the result is 0, output the state
in the I register. Otherwise, stop without outputting a quantum state.

Algorithm 3 Main algorithm

on S being in |0)g after the Fourier transform, the algorithm’s output state is close to our
desired output state %, where

|1‘> = Z Ozi|’U1'>[.

Finally, performing Fourier transform and measuring produces |0)s with probability 1/m.
Because of that, the success probability of algorithm 3 needs to be amplified. This adds
a factor of O(y/m) to the running time, if we would like to obtain the result state with
probability (1) and a factor of O(y/mlog %) if we would like to obtain it with probability
at least 1 —e.

4.5 Examples of systems of linear equations

The Harrow-Hassidim-Lloyd algorithm achieves the biggest speedup when the condition
number r is small. If x is polylogarithmic in N, then O(k?log® N) = O(logcl N). The
Harrow-Hassidim-Lloyd algorithm then achieves an exponential speedup compared to the
classical algorithms which run in time that is polynomial in N.

In this case, the additional advantage provided by our algorithm is small. However,
systems of linear equations for which x = O(log® N) are quite rare. (We have looked at
possible applications of the HHL algorithms and it was difficult to find natural examples of

645

STACS’12

646

Variable time amplitude amplification

systems where k = O(log® N).) We illustrate this with several natural examples of systems
of linear equations.

Example 1: Assume that we have a system of equations Ax = b in which A and b are
random (for example, each entry is an i.i.d random variable which takes values +1 and -1
with probability 1/2 each).

With a high probability, the biggest singular value of A is of the order 9(\/]V) and the
smallest singular value of A is of the order ©(1/v/N) [16]. Hence, x = O(N).

Thus, the running time of the HHL algorithm would be

O(k*C(A)log® N) = O(N2C(A)log® N).

(For arbitrary A, with query access to A, C(A) = O(N) [9]. This would give the overall
running time of O(N?3log® N) - worse than classical algorithms for solving systems of linear
equations.)

Theorem 5 provides an improvement of the running time to

O(klog® kC(A)log® N) = O(NC(A)log® N).

Example 2: Consider a d-dimensional grid of size ¥/N x /N x ... x V/N, consisting of
locations (a1, ...,aq), a; € {1,2,...,¥/N}. Let L be the Laplacian of this grid, defined by

2d if(al,...,ad):(bl,...,bd)
Liay,....a0), (b1, ba) = —1 ifa; =b; £ 1 for one 7 and a; = b; for all other i
0 otherwise

Consider a system of linear equations of the form Lx = b.
We can express L = Ly + Lo + ...+ Lg where

2 if(al,...,ad):(bl,...,bd)
(Li)(a1,..A,ad),(bl,...,bd) = -1 if a; = bl + 1 and a; = bj for aﬂ] 75)
0 otherwise

For simplicity, we assume that the grid has periodic boundary conditions (i.e., location

V/N + 1 equals location 1). Then, the eigenvalues of L; are A\; = 2 — 2cos j’;v, for j =

0,1,..., VN —1. Since cosz ~ 1 — “2—2 for small x, the smallest non-zero eigenvalue is

2
U m 1
22 e ~2() -0 (m).

The largest eigenvalue is upper bounded by 4.

The eigenvalues of L are of the form A;, +X;, +...4+ A;, where);, are the eigenvalues of
1

~27a) While the largest eigenvalue is ©(d).

L;. Hence, the smallest non-zero eigenvalue is ©(
The condition number is O(dN?/4).

For d = log N, the condition number would be of the order O(log N) and both HHL and
our algorithm would run in polylogarithmic time. However, a more interesting case would be
d =2 or d = 3, since this would correspond to a discretization of actual physical processes
in 2 or 3 dimensions. Then, k = O(N) (for d = 2) or k = O(N?/3) (for d = 3).

In this case, the HHL algorithm would run in time O(N?) or O(N*/3). Our algorithm
would improve this to O(N) or O(N?/3). (Since the Laplacian L is sparse, the overhead due
to simulating Hamiltonian L is small.)

A. Ambainis

—— References

1

10

11

12

13

14

15

16

17

S. Aaronson, A. Ambainis, Quantum search of spatial regions. Theory of Computing, 1:47-
79, 2005. Also quant-ph/0303041.

A. Ambainis. Quantum search with variable times. Theory of Computing Systems, 47(3):
786-807, 2010. Earlier version in STACS’08 and quant-ph/0609188.

A. Ambainis. Variable time amplitude amplification and quantum algorithms for linear
algebra problems. arXiv:1010.4458.

A. Belovs. Span-program-based quantum algorithm for the rank problem. arXiv:1103.0842.
D.W. Berry, G. Ahokas, R. Cleve, and B.C. Sanders. Efficient Quantum Algorithms for
Simulating Sparse Hamiltonians. Communication in Mathematical Physics, 270(2):359-371,
2007. Also arXiv:quant-ph/0508139

D. Berry. Quantum algorithms for solving linear differential equations. arXiv:1010.2745.
G. Brassard, P. Hgyer, M. Mosca, A. Tapp. Quantum amplitude amplification and estima-
tion. In Quantum Computation and Quantum Information Science, AMS Contemporary
Mathematics Series, 305:53-74, 2002. Also quant-ph/0005055.

H. Buhrman, R. Cleve, J. Watrous, and R. de Wolf. Quantum fingerprinting. Physical
Review Letters, 87(16):167902, 2001. Also quant-ph/0102001

A. M. Childs. On the relationship between continuous- and discrete-time quantum walk,

Communications in Mathematical Physics, 294:581-603, 2010. Also arXiv:0810.0312.

A. M. Childs, R. Kothari. Simulating sparse Hamiltonians with star decompositions.
Proceedings of TQC 2010, Lecture Notes in Computer Science 6519:94-103, 2011. Also
arXiv:1003.3683.

S. Dérn, T. Thierauf. The quantum query complexity of the determinant. Information
Processing Letters, 109 (6):325-328, 2009.

Lov K. Grover. A fast quantum mechanical algorithm for database search. Proceedings of
STOC’96, pp. 212-219. Also quant-ph/9605043.

A. Harrow, A. Hassidim, S. Lloyd, Quantum algorithm for linear systems of equations.
Physical Review Letters, 15(103):150502, 2009. Also arxiv:0811.3171.

P. Kaye, R. Laflamme, M. Mosca. An Introduction to Quantum Computing. Cambridge
University Press, 2007.

M. Mosca, A. Ekert. The Hidden Subgroup Problem and Eigenvalue Estimation on a
Quantum Computer. Proceedings of QCQC’98, Lecture Notes in Computer Science, 1509:
174-188, 1998. Also quant-ph/9903071.

M. Rudelson, R. Vershynin. The Littlewood - Offord problem and invertibility of random
matrices. Advances in Mathematics, 218:600-633, 2008.

J. Shewchuk. An introduction to the conjugate gradient method without the agonizing
pain. Technical Report CMU-CS-94-125, School of Computer Science, Carnegie Mellon
University, 1994.

647

STACS’12

	Introduction
	Methods and subroutines
	Variable time amplitude amplification
	Quantum algorithms for linear algebra problems
	Preliminaries
	Singularity testing
	Systems of linear equations
	Algorithm of Theorem 5
	Examples of systems of linear equations

