
Concurrency Makes Simple Theories Hard
Stefan Göller1 and Anthony Widjaja Lin2

1 Fachbereich Informatik, University of Bremen, Germany
2 Department of Computer Science, Oxford University, United Kingdom

Abstract
A standard way of building concurrent systems is by composing several individual processes by
product operators. We show that even the simplest notion of product operators (i.e. asynchron-
ous products) suffices to increase the complexity of model checking simple logics like Hennessy-
Milner (HM) logic and its extension with the reachability operator (EF-logic) from PSPACE to
nonelementary. In particular, this nonelementary jump happens for EF-logic when we consider
individual processes represented by pushdown systems (indeed, even with only one control state).
Using this result, we prove nonelementary lower bounds on the size of formula decompositions
provided by Feferman-Vaught (de)compositional methods for HM and EF logics, which reduce
theories of asynchronous products to theories of the components. Finally, we show that the same
nonelementary lower bounds also hold when we consider the relativization of such compositional
methods to finite systems.

1998 ACM Subject Classification F.4.1 Mathematical Logic, F.4.2 Grammars and Other Re-
writing Systems

Keywords and phrases Modal Logic, Model Checking, Asynchronous Product, Pushdown Sys-
tems, Feferman-Vaught, Nonelementary lower bounds

Digital Object Identifier 10.4230/LIPIcs.STACS.2012.148

1 Introduction

Concurrent systems are systems which consist of multiple processes that are simultaneously
executed and possibly interacting with each other. A standard way of designing concur-
rent systems is to compose together several individual processes by taking some “product”
operators. Various product operators have been introduced in concurrency theory and
verification ranging from synchronized products (the strongest form of products) to asyn-
chronous products (the weakest form of products). From the point of view of system design,
synchronized products are the most suitable form of compositional operators. Unfortunately,
from the point of view of system verification, they are known to be too powerful. For example,
while reachability is NL-complete for finite transition systems, it becomes PSPACE-complete
when the same problem is considered over synchronized products of finite transition systems
(a.k.a. communicating finite-state machines). In the case of infinite-state systems, we see
a more drastic change: while reachability is decidable in polynomial time for pushdown
systems (PDS), the same problem becomes undecidable when considered over synchronized
products of two PDS (note: these subsume Minsky’s counter machines).

In order to circumvent the problem of high complexity and undecidability in verifying
concurrent systems composed from individual processes via synchronized products, various
weaker notions of products were introduced. Apart from asynchronous products which
prohibit the processes to communicate, stronger product operators were introduced by
restricting the types of synchronization that are allowed among the processes. Several such
restrictions include bounded context switches [14], and finite synchronization [18]. These

© Stefan Göller and Anthony W. Lin;
licensed under Creative Commons License NC-ND

29th Symposium on Theoretical Aspects of Computer Science (STACS’12).
Editors: Christoph Dürr, Thomas Wilke; pp. 148–159

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62916883?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.STACS.2012.148
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

S. Göller and A. W. Lin 149

restricted product operators can serve as good underapproximations of synchronized products.
For example, a recent study of concurrency bugs conducted by the authors of [11] reveal that
many real-world concurrency bugs can be detected within a small number of context switches.
In addition, such restrictions also lead to decidability or lower computational complexity in
model checking. For example, checking reachability over communicating finite-state machines
and communicating pushdown systems with bounded context switches are both NP-complete
[14].

When we consider logic model checking, the situation is not as simple. Asynchronous
products do not make model checking easier than synchronized products when we use logics
like LTL and CTL (and, in fact, even their restrictions to LTL(F,X) and the logic EG).
Intuitively, the reason is that synchronization is easily embedded in such logics. Consequently,
reachability of 2-stack pushdown systems, which is well-known to be undecidable, easily
reduces to model checking any of aforementioned logics over asynchronous products of two
PDS. In contrast, the situation is substantially better when we consider simpler logics like
Hennessy-Milner (HM) Logic and its extension with the reachability operator (i.e. EF-logic).
In fact, powerful (Feferman-Vaught) compositional methods (e.g. [12, 15, 18]), which reduce
model checking of product structures to model checking of their components, can be used for
obtaining decidability or better upper complexity bounds of model checking HM-logic and
EF-logic. We now state the most basic form of such compositional methods from [15].

I Theorem 1 ([15]). For each HM/EF formula ϕ over the action labels A = A1 ∪ . . . ∪ Ak,
for nonempty disjoint sets A1, . . . ,Ak, one can compute k finite sets of HM/EF formulas
{ψ1

i }i∈I1 , . . . , {ψki }i∈Ik
over A1, . . . ,Ak respectively, and a positive boolean formula (i.e.

no negations) β with variables {x1
i }i∈I1 , . . . , {xki }i∈Ik

such that for all transition systems
T1, . . . , Tk with initial states s1, . . . , sk we have (

∏k
i=1 Ti, s̄) |= ϕ if and only if β[µ] is true,

where s̄ = (s1, . . . , sk) and µ assigns the variables of β as follows: µ(xji) = 1 if and only if
(Tj , sj) |= ψji .

Actually, a stronger version of Theorem 1 was proven in [15] (e.g. with atomic propositions).
In the statement of Theorem 1, the k sets of formulas and the positive boolean formula β
are referred to as the decomposition of ϕ. To give some concrete illustrations of the power of
this compositional theorem, Theorem 1 can be used to show that model-checking fixed EF
formulas (i.e. the complexity is only measured the size of the system) is: NL-complete for
asynchronous products of finite systems (c.f. PSPACE-completeness of communicating finite-
state systems), PSPACE-complete for asynchronous products of PDS [16], and P-complete
for asynchronous products of Basic Process Algebras (equivalently, one-state PDS).

Despite the aforementioned usefulness of Feferman-Vaught compositional methods, the
technique yields algorithms with nonelementary complexity in the size of the formula (see [15]),
which is not desirable from both theoretical and practical viewpoints. In fact, it was recently
shown that when we consider stronger logics like first-order logic, where Feferman-Vaught
compositional methods are also available (e.g. see [12]), this nonelementary complexity is
unavoidable [6]. It is natural to ask whether this nonelementary complexity is avoidable
when we consider simpler logics like HM-logic or EF-logic. In fact, this open question has
been posed in the literature (e.g. [7, 15]).

This open question actually brings us to a more fundamental open question: how do
asynchronous products affect the complexity of model checking of HM-logic and EF-logic?
This open question has manifested itself in the literature in various concrete forms. As an
example, take the result that model checking EF-logic over pushdown systems is PSPACE-
complete [20]. Over asynchronous products of two pushdown systems, the best algorithm for
model checking EF-logic runs in nonelementary time [16]. In fact, the same nonelementary

STACS’12

150 Concurrency Makes Simple Theories Hard

gap is currently present for asynchronous products of two BPAs. Failing to answer this
open question is also the reason for the existing nonelementary complexity gaps for several
verification problems for PA-processes [13], which are an extension of asynchronous products
of BPAs with process creations.

Contributions. In this paper, we provide answers to the above open questions. A main
contribution of this paper is to show that, for each integer k > 0, there exists an asynchronous
product of two BPAs whose EF-logic theory requires k-fold exponential time to solve. This
means that model checking EF-logic over the class of asynchronous products of two BPAs
requires nonelementary time, which is in stark contrast to PSPACE-completeness of EF model
checking over BPAs [20]. As an upshot of our result, it follows that model checking EF-logic
over PA-processes requires nonelementary time, which solves the open question posed by
R. Mayr [13].

We also show that similar results hold for HM-logic. More precisely, we prove that for
each integer k > 0 there exists an asynchronous product of two prefix-recognizable systems (an
extension of BPAs introduced by Caucal [5] by allowing infinitely many rewrite rules compactly
represented by regular languages) whose HM-logic theory requires k-fold exponential time to
solve. This means that model checking HM-logic over the class of asynchronous products of
two prefix-recognizable systems requires nonelementary time, which is in stark contrast to
PSPACE-completeness of HM-logic model checking over prefix-recognizable systems (which
easily follows1 from the result of [20]).

An important corollary of our two aforementioned results is that there is no elementary
algorithm for computing decompositions of formulas in HM-logic and EF-logic in the sense of
Theorem 1. We go one step further to show that no decompositions of formulas in HM-logic
and EF-logic of elementary size even exist in general. In other words, both descriptional
and computational complexity of compositional methods of HM-logic and EF-logic in the
sense of Theorem 1 are inherently nonelementary. Incidentally, this also entails the same
nonelementary lower bounds for compositional methods provided in [7] since they generalize
Theorem 1.

So far, our nonelementary lower bounds for compositional methods for HM-logic and
EF-logic require the use of infinite-state systems. This still leaves the possibility that Theorem
1 could hold when we restrict the transition systems under consideration to be finite-state.
Questions of this form are of particular interests in finite model theory (e.g. see [10]) and
in verification of finite-state systems. We show, however, that the same nonelementary
lower bounds relativize to the class of asynchronous products of finite systems. Whether the
nonelementary lower bounds hold when relativized to the class of asynchronous products of
finite trees is left for future work.

2 Preliminaries

General: By N = {0, 1, . . .} we denote the set of nonnegative integers. For each i, j ∈ N,
we define the interval [i, j] = {i, i + 1, . . . , j}. Let f : N → N be a function. We write
f(n) = poly(n) if there is some polynomial p(n) such that f(n) ≤ p(n) for all n ∈ N. We
write f(n) = exp(n) if there is some polynomial p(n) such that f(n) ≤ 2p(n) for all n ∈ N.
We define the standard Tower function Tower : N× N→ N inductively as Tower(0, n) = n

and Tower(k, n) = 2Tower(k−1,n), for each k > 0 and each n ∈ N.

1 On the same note, even µ-calculus over prefix-recognizable systems is only EXP-complete [9]

S. Göller and A. W. Lin 151

Automata: A deterministic finite automaton (DFA) is a tuple A = (Q,Σ, q0, δ, F), where
Q is a finite set of states, Σ is a finite alphabet, q0 ∈ Q is the initial state, δ : Q× Σ→ Q is
the transition function, and F ⊆ Q is the set of final states. By L(A) = {w ∈ Σ∗ | A accepts
w} we denote the language of A. The size of A is defined as |A| = |Q|.
Systems: Let us fix a countable set of action labels Act. A transition system is tuple
T = (S,A, { a−→| a ∈ A}), where S is a set of states, A ⊆ Act is a finite set of action labels,
and where a−→⊆ S × S is a set of transitions for each a ∈ A. We say T is finite if S is finite.
A pointed transition system is a pair (T , s), where T is a transition system and s is state
of T . We write s a−→ t to abbreviate (s, t) ∈ a−→. We apply similar abbreviations for other
binary relations over S. For each Γ ⊆ A, we define Γ−→=

⋃
a∈Γ

a−→.
Given k ≥ 1 transition systems T1 = (S1,A1, {

a−→1| a ∈ A1}), . . . , Tk = (Sk,Ak, {
a−→k|

a ∈ Ak}), where the Ai ∩ Aj = ∅ for each i 6= j, we define its asynchronous product∏k
i=1 Ti = (S,A, { a−→| a ∈ A}), where S =

∏k
i=1 Si, A =

⋃k
i=1 Ai, and where for each a ∈ A

we have (s1, . . . , sk) a−→ (s′1, . . . , s′k) if and only if si
a−→i s

′
i for some i ∈ [1, k] with a ∈ Ai

and sj = s′j for each j ∈ [1, k] \ {i}.
Logic: Formulas of EF-logic over a finite set A ⊆ Act of labels are given by the following
grammar ϕ ::= > | ¬ϕ | ϕ ∧ ϕ | 〈Γ〉ϕ | 〈Γ∗〉ϕ, where Γ ⊆ A:
We introduce the usual abbreviations ⊥ = ¬>, ϕ1∨ϕ2 = ¬(¬ϕ1∧¬ϕ2), ϕ1 → ϕ2 = ¬ϕ1∨ϕ2,
ϕ1 ↔ ϕ2 = (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1), [Γ]ϕ = ¬〈Γ〉¬ϕ, and [Γ∗]ϕ = ¬〈Γ∗〉¬ϕ. We also write
〈Γ〉n (resp. [Γ]n) as an abbreviation for a sequence of n consecutive 〈Γ〉’s (resp. [Γ]’s). By
|ϕ| we denote the size of each EF formula |ϕ| defined as usually. Hennessy-Milner logic (HM)
is the syntactic fragment of EF that one obtains by forbidding formulas of the kind 〈Γ∗〉ϕ.
Since we allow formulas of the form 〈Γ∗〉ϕ for subsets Γ of the action labels (instead of only
〈A∗〉), our version of EF is slightly more general than the standard definition of EF-logic.
However, our results easily carry over to the standard definition of EF-logic.

For each transition system T = (S,A, { a−→| a ∈ A}) and each EF-formula ϕ (over A)
define the set of states [[ϕ]]T ⊆ S that satisfy ϕ by induction on the structure of ϕ as follows:

[[>]]T = S [[〈Γ〉ϕ]]T = {s ∈ S | ∃t ∈ [[ϕ]]T : s Γ−→ t}
[[¬ϕ]]T = S \ [[ϕ]]T [[〈Γ∗〉ϕ]]T = {s ∈ S | ∃t ∈ [[ϕ]]T : s Γ−→

∗
t}

[[ϕ1 ∧ ϕ2]]T = [[ϕ1]]T ∩ [[ϕ2]]T
We also write (T , s) |= ϕ whenever s ∈ [[ϕ]]T or simply s |= ϕ when T is clear from the
context.
Infinite-state models: A pushdown system (PDS) is a tuple P = (Σ,A,∆), where
Σ is a finite set of process constants, A ⊆ Act is a finite set of action labels and ∆ is a
finite set of rewrite rules of the form u 7→a v, where a ∈ A, u ∈ Σ∗ and v ∈ Σ∗. A basic
process algebra (BPA) is PDA P = (Σ,A,∆), where for each u 7→a v ∈ ∆ we have |u| = 1.
The associated transition system T (P) is defined as T (P) = (Σ∗,A, { a−→| a ∈ A}), where
a−→= {(uw, vw) | u 7→a v ∈ ∆, w ∈ Σ∗} for each a ∈ A. The size of a PDS is defined as
|P| = |Σ|+ |A|+

∑
u 7→av∈∆(|u|+ |v|).

3 Hardness of asynchronous product

We start by proving a nonelementary lower bound for the problem of model checking EF
on BPA×BPA: given two BPAs P = (Σ,A,∆), P ′ = (Σ′,A′,∆′) with A ∩ A′ = ∅, a pair
of process constants 〈X,X ′〉 ∈ Σ × Σ′, and an EF formula ϕ over A ∪ A′, check whether
(T (P)× T (P ′), 〈X,X ′〉) |= ϕ.

STACS’12

152 Concurrency Makes Simple Theories Hard

I Theorem 2. Model checking EF on BPA×BPA is nonelementary.

We then show that this lower bound implies a nonelementary lower bound for model checking
HM-logic over the class of asynchronous products of two prefix-recognizable systems (a precise
definition is given below).

3.1 Proof of Theorem 2
The structure of the proof of Theorem 2 is as follows. We first show how to encode large
counters as EF formulas evaluated over the class of asynchronous products of two BPAs. Such
large counters are enforced by the two stacks in the two BPAs, which alternately “guess” an
encoding of a counter and “check” the correctness of the encoding. As we will see later, this
encoding of large counters can be used to encode memberships of Tower(k, cn) space-bounded
Turing machines for any fixed k > 0.
Large counters: The following encoding of large numbers is from [19, 3]. In the following,
the notations n and ` will range over N. We define the alphabets Ω` = {0`, 1`} and the
values val(0`) = 0 and val(1`) = 1 for each ` ≥ 0.

A (1, n)-counter is a word from Ωn0 . The value val(c) of some (1, n)-counter c = σ0 · · ·σn−1
is defined as val(c) =

∑n−1
i=0 2i · val(σi) ∈ [0, 2n − 1]. So the set of values val(c) for (1, n)-

counters c equals [0, 2n − 1] = [0,Tower(1, n) − 1]. An (`, n)-counter with ` > 1 is a word
c = c0σ0c1σ1 . . . cmσm, where m = Tower(`− 1, n)− 1, each ci is an (`− 1, n)-counter with
val(ci) = i and σi ∈ Ω`−1 for each i ∈ [0,m]. We define val(c) =

∑m
i=0 2i · val(σi). Observe

that val(c) ∈ [0,Tower(`, n)− 1] and the length of each (`, n)-counter is uniquely determined
by ` and n.

In the following, we define Ω′` = {0′`, 1′`} to be a fresh copy of Ω`; moreover define
Σ` =

⋃`
i=0 Ωi and analogously Σ′` =

⋃`
i=0 Ω′i.

Definition of the two BPAs: For each integer ` > 0, let us define the following simple
BPAs P` = (Σ`,L`,∆`), where

L` = Σ` ∪ Σ`, where Σ` = {σ | σ ∈ Σ`} is a dual copy of Σ`.
∆` = {τ 7→σ στ | σ, τ ∈ Σ`} ∪ {σ 7→σ ε | σ ∈ Σ`}.

The transition system T (P`) has a fairly regular behavior. The set of states is Σ∗` . Executing
an action σ ∈ Σ` from a state u ∈ (Σ`)∗ allows to remove exactly this leftmost symbol σ from
u if u begins with σ, otherwise σ cannot be executed from u. Dually, from every nonempty
state u ∈ (Σ`)+ of T (P`) we can execute every action σ ∈ Σ` yielding the state σu; the only
state from which the σ ∈ Σ` are not executable is the empty word ε. We define the BPA P ′`
analogously to P` but by priming every symbol. Formally, P ′` = (Σ′`,L′`,∆′`), where

L′` = Σ′` ∪ Σ′`, where Σ′` = {σ′ | σ′ ∈ Σ′`} is a dual copy of Σ′`.
∆′` = {τ ′ 7→σ′ σ

′τ ′ | σ′, τ ′ ∈ Σ′`} ∪ {σ′ 7→σ′ ε | σ
′ ∈ Σ′`}.

Note that the set of states of T (P`)×T (P ′`) is (Σ`)∗ × (Σ′`)∗. Given a state s = (u, u′) ∈
(Σ`)∗ × (Σ′`)∗, we call u the left stack of s and u′ the right stack of s. So we treat the words
u and u′ as stacks with their left-most symbols being the top of the stack. Recall that every
(`, n)-counter is in particular a word over Σ`−1. We extend this notion to words over Σ′`−1 in
the usual way. So each (`, n)-counter will in particular be either a word over Σ`−1 or over
Σ′`−1, depending on whether we address the left stack or the right stack. Note that if some
word over Σk (resp. over Σ′k) has an (`, n)-counter as a prefix, then the length of this prefix
is uniquely determined by ` and n, namely Tower(` − 1, n). An extended (`, n)-counter is
either a string cσ, where either c ∈ Σ∗`−1 is an (`, n)-counter and σ ∈ Ω`, or a string c′σ′,
where c′ ∈ (Σ′`−1)∗ is an (`, n)-counter and σ′ ∈ Ω′`.

S. Göller and A. W. Lin 153

Next, we define some EF formulas (with primed counterparts for the right stack) for each
`, n ∈ N:

1. countσ(`,n) for each σ ∈ Ω` such that (T (P`)× T (P ′`), (u, u′)) |= countσ(`,n) if and only if
for some (`, n)-counter c we have cσ is a prefix of u.

2. countσ′(`,n) for each σ′ ∈ Ω` such that (T (P`)× T (P ′`), (u, u′)) |= countσ′(`,n) if and only if
for some (`, n)-counter c′ we have c′σ′ is a prefix of u′.

3. xcount(`,n) such that (T (P`)× T (P ′`), (u, u′)) |= xcount(`,n) if and only if some extended
(`, n)-counter cσ (for σ ∈ Ω`) is a prefix of u.

4. xcount′(`,n) such that (T (P`)× T (P ′`), (u, u′)) |= xcount′(`,n) if and only if some extended
(`, n)-counter c′σ′ (for σ′ ∈ Ω′`) is a prefix of u′.

5. first(`,n) (resp. first′(`,n)) such that (T (P`) × T (P ′`), (u, u′)) |= first(`,n) (resp. (T (P`) ×
T (P ′`), (u, u′)) |= first′(`,n)) if and only if some extended (`, n)-counter cσ (resp. c′σ′) with
val(c) = 0 (resp. val(c′) = 0) is a prefix of u (resp. u′).

6. last(`,n) (resp. last′(`,n)) such that (T (P`) × T (P ′`), (u, u′)) |= last(`,n) (resp. (T (P`) ×
T (P ′`), (u, u′)) |= last′(`,n)) if and only if some extended (`, n)-counter cσ (resp. c′σ′) with
val(c) = Tower(`, n)− 1 (resp. val(c′) = Tower(`, n)− 1) is a prefix of u (resp. u′).

7. eq(`,n) such that (T (P`) × T (P ′`), (u, u′)) |= eq(`,n) if and only if there exist extended
(`, n)-counters cσ ∈ (Σ`−1)∗Ω` and c′σ′ ∈ (Σ′`−1)∗Ω′` such that (i) cσ is a prefix of u, (ii)
c′σ′ is a prefix of u′, and (iii) val(c) = val(c′).

8. inc(`,n) (resp. inc′(`,n)) such that (T (P`)×T (P ′`), (u, u′)) |= inc(`,n) (resp. (T (P`)×T (P ′`),
(u, u′)) |= inc′(`,n)) if and only if there exist extended (`, n)-counters cσ ∈ (Σ`−1)∗Ω` and
c′σ′ ∈ (Σ′`−1)∗Ω′` such that (i) cσ is a prefix of u, (ii) c′σ′ is a prefix of u′, and (iii)
val(c) + 1 = val(c′) (resp. val(c′) + 1 = val(c)).

9. succ(`,n) (resp. succ′(`,n)) such that (T (P`)× T (P ′`), (u, u′)) |= succ(`,n) (resp. (T (P`)×
T (P ′`), (u, u′)) |= succ′(`,n)) if and only if there are extended (`, n)-counters c1σ1 and c2σ2
(resp. c′1σ′1 and c′2σ′2) with σ1, σ2 ∈ Ω` (resp. σ′1, σ′2 ∈ Ω′`) such that c1σ1c2σ2 is a prefix
of u and val(c1) + 1 = val(c2) (resp. val(c′1) + 1 = val(c′2)).

The formulas that we will define will be exponential in ` and polynomial in n (represented in
unary). This definition will be given by induction on `. We will start with the following simple
observations: xcount(`,n) =

∨
σ∈Ω`

countσ(`,n), and xcount′(`,n) =
∨
σ′∈Ω′

`
countσ′(`,n). We will

now construct several formulas ϕ that we evaluate on T (P`)× T (P ′`) expressing properties
of the left stack. Without making them explicit, we can construct corresponding analogs ϕ′
expressing the respective property on the right stack.

Let us proceed by defining the above formulas for the case of ` = 1. We define countσ(1,n)

and countσ′(1,n) as countσ(1,n) =
〈
Ω0
〉n 〈σ〉> and countσ′(1,n) =

〈
Ω′0
〉n
〈σ′〉>. We put first(1,n) =

〈00〉n〈Ω1〉>. The definition of last(1,n) is analogous. We also define eq(1,n) as xcount(1,n) ∧
xcount′(1,n)∧

∧n−1
i=0 〈Ω0〉i〈Ω′0〉i∧

∧
σ∈Ω0

(〈σ〉> ↔ 〈σ′〉>). The definitions of inc(1,n) and succ(1,n)
are analogous.

Let us now proceed to the case of ` > 1. We start by defining the formula countσ(`,n)
for each σ ∈ Ω`. We will achieve this, by making use of the formulas first(`−1,n), last(j,n)
with j ∈ [1, `− 1], xcount(`−1,n), and succ(`−1,n). The first two conjuncts of the definition of
countσ(`,n) are self-explanatory,

countσ(`,n) = first(`−1,n) ∧
[
Σ`−1

∗](xcount(`−1,n) →
(
last(`−1,n) ∨ succ(`−1,n)

))
∧ addσ,

STACS’12

154 Concurrency Makes Simple Theories Hard

whereas the formula addσ will express that the symbol σ follows after the top-most (`, n)-
counter. Formally we put addσ = ψσ`−1, where

ψσj =

[
Σj
∗] (last(j,n) → ψσj−1

)
if j > 1[

Σ1
∗] (last(1,n) →

〈
10
〉n 〈11〉〈12〉 · · · 〈1`−2〉〈Ω`−1〉〈σ〉>

)
if j = 1.

Intuitively, the formula ψσ`−1 jumps to last extended (1, n)-counter of the last extended (2, n)-
counter . . . of the last extended (`− 1, n)-counter and expresses that the correct sequence
follows from this position.

Define first(`,n) as first(`,n) = xcount(`,n) ∧
[
Σ`−1

∗] (〈Ω`−1
〉
> →

〈
0`−1

〉
>
)
, similarly we

define last(`,n). We set eq(`,n) as the conjunction of xcount(`,n) ∧ xcount′(`,n) and

[
Σ`−1

∗]xcount(`−1,n) →

〈Σ′`−1
∗〉eq(`−1,n) ∧

∧
σ∈Ω`−1

(〈Σ∗`−2〉〈σ〉> ↔ 〈Σ′∗`−2〉〈σ′〉>)

.
Let us give some intuition on the formulas eq(`,n) for each ` ∈ [2, k]: Whenever we pop from
the left stack some string from (Σ`−1)∗ until on top of the left stack there is some extended
(` − 1, n)-counter cσ, one can remove from the right stack a string from (Σ′`−1)∗ yielding
an extended (`− 1, n) counter c′τ ′ on top of the right stack such that val(c) = val(c′) and
moreover σ = τ holds.

In analogy to eq(`,n) one can define the formula inc(`,n). Finally, let us define succ(`,n).
We put

succ(`,n) = 〈Σ′`〉
〈
(Σ′`−1)∗

〉 (
eq(`,n) ∧

〈
Σ`−1

∗〉 〈Σ`〉 inc′(`,n)

)
Intuitively, we the formula succ(`,n) pushes onto the right stack some string that it checks to
be a copy of the topmost extended (`, n)-counter of the left stack via eq(`,n), then pops the
topmost extended (`, n)-counter of the left stack and then invokes the formula inc′(`,n).

It is easy to see that the formulas given above express the desired properties. Furthermore,
we note that the size of each formula is exponential in ` and polynomial in n.

By using standard arguments (e.g. see the proof of PSPACE-hardness of EF model checking
over pushdown systems in [2]), we can now complete the proof of Theorem 2. In the following,
we shall only provide a sketch. For each integer k > 0, there exists a fixed Turing machine
M operating with Tower(k − 1, cn) space (for a constant c) whose membership problem
is complete for SPACE(Tower(k − 1, poly(n))). Each such membership problem can easily
be reduced to EF model checking over the class of asynchronous products of two BPAs in
polynomial time as follows. For an input word w ofM of length n one can construct formulas
xcount(k,cn) and the pair of BPAs Pk+1 and P ′k+1 in time poly(n). Each computation ofM
can be viewed as a sequence of configurations (each being a (k, cn)-counters), which when
considered together is also a (k + 1, cn)-counter, satisfying the transition conditions ofM
(e.g. two consecutive configurations respect the transition function ofM). One can express
the computation ofM on w by an EF formula of the kind 〈Σ∗k+1〉ϕ, where 〈Σ∗k+1〉 aims at
pushing a sequence onto the left stack and where ϕ expresses that this sequence expresses
the desired properties.

We will make use of the following lemma in Section 4.

I Lemma 3. Every DFA accepting the regular language

L`,n = {u ∈ Σ∗` | ∃u′ ∈ (Σ′`)∗ : (T (P`)× T (P ′`), (u, u′)) |= xcount(`,n)}

has at least Tower(`− 1, n) + 1 states.

S. Göller and A. W. Lin 155

Proof. Recall that every extended (`, n)-counter has length exactly Tower(` − 1, n) + 1.
We have L`,n = {cσw | w ∈ Σ∗` , cσ is some extended (`, n)-counter}. The corollary now
follows from the following simple observation: Every DFA A over some alphabet Σ with
L(A) = U · Σ∗ for some ∅ (U ⊆ Σm has at least m states. J

3.2 Lower bounds for HM-logic
We conclude this section by showing how Theorem 2 implies a nonelementary lower bound
for model checking HM on the asynchronous product of two prefix-recognizable systems.
A prefix-recognizable system is a tuple R = (Σ,A,∆), where Σ is finite set of process
constants, A ⊆ Act is a finite set of action labels and ∆ is a finite set of rewrite rules
of the form U 7→a V , where a ∈ A, and where U, V ⊆ Σ∗ are regular languages given
as DFAs, say. The associated transition system is T (R) = (Σ∗,A, { a−→| a ∈ A}), where
a−→= {(uw, vw) | u ∈ U, v ∈ V,w ∈ Σ∗ for some rule U 7→a V ∈ ∆} for each a ∈ A.

Remark: One can construct from a given pair of BPAs P = (Σ,A,∆) and P ′ = (Σ′,A′,∆′)
and a given EF formula ϕ over A ∪ A′ a pair of prefix-recognizable systems R = (Σ,A,∆R)
and R′ = (Σ′,A′,∆′R) and some HM formula ϕ̃ such that [[ϕ]]T (P)×T (P) = [[ϕ̃]]T (R)×T (R′) as
follows: By [4] one can compute for each Γ ⊆ A (analogously for each Γ′ ⊆ A′) a pair regular
languages UΓ and VΓ (resp. UΓ′ and VΓ′) each accepted by DFAs of at most exponential
size such that the relation Γ−→

∗
over Σ∗ × Σ∗ (resp. Γ′−→

∗
over (Σ′)∗ × (Σ′)∗) is exactly

R(Γ̃) = {(uw, vw) | u ∈ UΓ, v ∈ VΓ, w ∈ Σ∗} (resp. R′(Γ̃′) = {(uw, vw) | u ∈ UΓ′ , v ∈
VΓ′ , w ∈ (Σ′)∗}). The latter is even shown for PDAs in [4]. Hence we can define the HM
formula ϕ̃ to emerge from ϕ by replacing each occurence of 〈Γ∗〉 by 〈Γ̃〉 and each occurrence
of 〈(Γ′)∗〉 by 〈Γ̃′〉.

Theorem 2 and the previous remark immediately imply the following corollary.

I Corollary 4. Model checking HM on the asynchronous product of two prefix-recognizable
systems is nonelementary.

We remark that model checking HM on a single prefix-recognizable system is only PSPACE-
complete; the upper bound can be shown via reduction to EF model checking pushdown
systems, which is in PSPACE by [20].

4 Lower bounds for compositional methods for HM and EF logics

We start by proving nonelementary lower bounds for Feferman-Vaught type of compositional
methods for HM and EF logics (i.e. Theorem 1) already over the the class of asynchronous
products of two transition systems. In Section 4.2 we will then show how our lower bounds
can be relativized to the class of all asynchronous products of two finite transition systems.

Let us briefly recall decompositions following Theorem 1 for EF logic of asynchronous
products of two transition systems. Analogously HM can be dealt with. A decomposition
of the asynchronous product of two transition systems, the first component being defined
over action labels A and the second one over A′ (we assume that any two such sets A and
A′ are non-empty and disjoint for the rest of this section) is a triple D = (Ψ,Ψ′, β), where
Ψ = {ψi}i∈I and Ψ′ = {ψ′j}j∈J for index sets I and J , where β is a positive boolean formula
with variables ranging over {xi}i∈I ∪ {x′j}j∈J , each ψ ∈ Ψ (resp. each ψ′ ∈ Ψ′) is an EF
formula that is interpreted on the first (resp. second) component, i.e. over A (resp. A′).

STACS’12

156 Concurrency Makes Simple Theories Hard

Recall that such a decomposition has the property that for every pointed transition system
(T , s) over A and every pointed transition system (T ′, s′) over A′ and every EF formula ϕ
over A ∪ A we have ((T × T ′), (s, s′)) |= ϕ if and only if β[µ] is true, where µ(xi) = 1 if and
only if (T , s) |= ψi and where µ(x′j) = 1 if and only if (T ′, s′) |= ψ′j . As expected, the size of
such a decomposition is defined as |D| =

∑
ψ∈Ψ |ψ|+

∑
ψ′∈Ψ′ |ψ′|+ |β| .

I Theorem 5. The size of decompositions for EF (resp. HM) formulas in the sense of
Theorem 1 cannot be bounded by an elementary function. More precisely, there is a family of
EF (resp. HM) formulas {ϕ` | ` ≥ 1} where ϕ` is defined over some action labels A` ∪ A′`,
such that |ϕ`| = exp(`), and such that for every elementary function f : N→ N there is some
h ∈ N such that every decomposition D for ϕh on the class of all asynchronous products of
two transition systems over, respectively, Ah and A′h satisfies |D| > f(h).

4.1 Proof of Theorem 5
The proof idea for Theorem 5 for the case of EF-logic is as follows (we will remark how to
adapt it for HM-logic later). We consider the sequence of pairs of BPAs {(P`,P ′`)}`≥1 defined
in the previous section, where the set of states of T (P`) (resp. T (P ′`)) is Σ∗` (resp. (Σ′`)∗).
We will show that if a small (i.e. of elementary size) decomposition for EF-formulas exists in
general, then there is a family of DFAs A` of size elementary in ` with L(A`) = L`,` for each
`, clearly contradicting Lemma 3. To this end, we invoke the result from [2] about the sizes
of automata expressing the sets of configurations of BPAs satisfying EF formulas combined
with standard constructions from automatic structures.

We first recall the following proposition from [2] about the size of DFAs representing the
set of configurations of BPAs satisfying EF formulas.
I Proposition 6 ([2]). Given an EF formula ϕ and a BPA P = (Σ,A,∆), there exists a DFA
Aϕ of size double exponential in |P|+ |ϕ| with L(Aϕ) = [[ϕ]]T (P), i.e. Aϕ accepts the set of
states u of T (P) with (T (P), u) |= ϕ.
Actually, in [2], the authors construct alternating finite automata with polynomially many
states, which can be translated to DFAs of double exponential size (e.g. see [17]).

Define {ϕ` | ` ≥ 1} as ϕ` = xcount(`,`) over the action labels A` = L` and A′` = L′`,
where recall that L` (resp. L′`) are the action labels of the BPA P` (resp. P ′`) defined in the
previous section.

To prove Theorem 5, assume to the contrary that the there exist decompositions for
EF formulas ϕ whose sizes can be bounded from above by an elementary function, say by
Tower(r, |ϕ|) for some fixed r ∈ N. Let h ∈ N be a sufficiently large number for the following
arguments to work. Let us fix a smallest possible decomposition D = (Ψ,Ψ′, β) for the
EF formula ϕh = xcount(h,h) over Lh ∪ L′h. Thus by assumption |D| ≤ Tower(r, |ϕh|). Let
Ψ = {ψi}i∈I and Ψ′ = {ψ′j}j∈J . Recall that each ψi ∈ Ψ is an EF formula over Lh, and each
ψ′j ∈ Ψ′ is an EF formula over L′h. Moreover β is a positive boolean formula over the variables
{xi}i∈I ∪ {x′j}j∈J such that for every state (u, u′) ∈ (Σh)∗ × (Σ′h)∗ of T (Ph) × T (P ′h), it
is the case that (T (Ph) × T (P ′h), (u, u′)) |= ϕh if and only if β[µ] is true, where µ is the
assignment to β where we have µ(xi) = 1 if and only if (T (Ph), u) |= ψi and µ(x′j) = 1 if
and only if (T (P ′h), u′) |= ψ′j .

Next, we will use Proposition 6 and the small decomposition given by the assumption to
construct a DFA for the language Lh,h = {u ∈ Σ∗h | ∃u ∈ (Σ′h)∗ : (T (Ph)× T (P ′h), (u, u′)) |=
ϕh} with less than Tower(h− 1, h) + 1 states, which will contradict Lemma 3. To do so, we
first make the following simple observation that relates the decomposition D of ϕh and the
formula ϕh itself.

S. Göller and A. W. Lin 157

Define the EF formula β̃ over Lh ∪ L′h to be obtained from the boolean formula β by
replacing each variable xi by ψi and each variable x′j by ψ′j . Then, since all formulas ψi
and ψ′j are also formulas over Lh ∪ L′h, the EF formula β̃ is also a formula over Lh ∪ L′h.
Moreover, it is easy to see that by assumption we have [[ϕh]]T (Ph)×T (P′

h
) = [[β̃]]T (Ph)×T (P′

h
).

In fact, the latter immediately follows from the fact that

[[ψi]]T (Ph)×T (P′
h

) = [[ψi]]T (Ph) × (Σ′h)∗, and (1)
[[ψ′j]]T (Ph)×T (P′

h
) = Σ∗h × [[ψ′j]]T (P′

h
) (2)

which can easily be proven by induction on the structure of the formulas ψi and ψ′j since no
action labels of Ph (resp. P ′h) occur in the action labels of ψ′j (resp. ψi). Thus, the goal to
obtain a contradiction will be to show that we can find a small DFA for

L1(β̃) = {u ∈ Σ∗h | ∃u′ ∈ (Σ′h)∗ : (T (Ph)× T (P ′h), (u, u′)) |= β̃}.

Using Proposition 6 we obtain DFAs for [[ψi]]T (Ph) (for each i ∈ I) and [[ψ′j]]T (P′
h

) (for
each j ∈ J) each of size double exponential in, respectively, |ψi| + |Ph| and |ψj | + |P ′h|.
To obtain a small DFA for L1(β̃) from these DFAs, we will now perform some simple
constructions from automatic structures (e.g. see [16]). We first briefly recall the notion
of (binary) automatic relations. Fix a nonempty finite alphabet Σ. A pair of words
(u,w) = (a1 · · · am, b1 · · · bn) ∈ Σ∗ × Σ∗ can be represented as a word u ⊗ w = c1 · · · ck of
length k = max(m,n) in the new alphabet Σ⊥ ×Σ⊥, where Σ⊥ = Σ ∪ {⊥} with a “padding”
symbol ⊥ /∈ Σ, and where either ci = (ai, bi) if i ≤ m and i ≤ n, where ci = (ai,⊥) if
i ≤ m, i > n or where ci = (⊥, bi) otherwise. A (binary) relation R ⊆ Σ∗ × Σ∗ is said to
be automatic if the language {u⊗ v | (u, v) ∈ R} ⊆ (Σ⊥ × Σ⊥)∗ can be accepted by a DFA
(i.e. is regular). We also write π1(R) to be the projection of R to the first component, i.e.,
π1(R) = {u ∈ Σ∗ | ∃w : (u,w) ∈ R}. The following proposition is standard (e.g. see [16]):
I Proposition 7. Given two automatic relations R1, R2 accepted by DFAs A1 and A2,
respectively, we have (i) the relation R1 ∩ R2 can be accepted by a DFA of size at most
|A1| · |A2|, (ii) the relation R1 ∪ R2 can be accepted by a DFA of size at most |A1| · |A2|,
and (iii) the language π1(R1) ⊆ Σ∗ can be accepted by a DFA of size 2O(|A1|).

Observe now that [[ψi]]T (Ph)×T (P′
h

) (for each i ∈ I) and [[ψ′j]]T (Ph)×T (P′
h

) (for each j ∈ J)
is an automatic relation over the alphabet Σ = Σh ∪Σ′h that can be accepted by DFAs of size
double exponential in, respectively, |ψi|+ |Ph|+ |P ′h| and |ψ′j |+ |Ph|+ |P ′h| by Proposition
6. The construction of a small DFA A for the language L1(β̃) can be done in a bottom-up
fashion with respect to β̃ using Proposition 7 by firstly taking unions and intersections from
the DFAs recognizing [[ψi]]T (Ph)×T (P′

h
) (for each i ∈ I) and [[ψ′j]]T (Ph)×T (P′

h
) (for each j ∈ J),

and at the end projecting to the first component. All in all, there are constants c1, c2 with
c1 < c2 (both independent of h) such that

|A| ≤ Tower(c1, |ϕh|+ |Ph|+ |P ′h|) ≤ Tower(c2, h). (3)

The latter inequality follows from the fact that |Ph|+ |P ′h| = poly(h) and |ϕh| = exp(h). On
the other hand, due to [[ϕh]]T (Ph)×T (P′

h
) = [[β̃]]T (Ph)×T (P′

h
) and Lemma 3, we must have

|A| ≥ Tower(h− 1, h) + 1. (4)

It is clear that if we choose h sufficiently large, then inequalities (3) and (4) cannot hold at
the same time, a contradiction.
Remark. The proof above can be easily adapted to the case of HM-logic by taking prefix-
recognizable systems and the HM formulas of the form ˜xcount(`,`) defined in the remark given
at the end of previous section instead of BPAs and EF formulas of the form xcount(`,`).

STACS’12

158 Concurrency Makes Simple Theories Hard

4.2 Restricting to finite transition systems
Theorem 5 gives a nonelementary lower bound for decompositions over asynchronous products
of two general transition systems. This still leaves the possibility that better upper bounds
might be possible when we consider only asynchronous products of finite transition systems,
i.e., the version of Theorem 1 when transition systems under consideration are finite. The
following theorem shows that this is not the case.

I Theorem 8. The size of decompositions for EF (resp. HM) formulas in the sense of
Theorem 1 cannot be bounded by an elementary function when restricted to the class of finite
transition systems.

Roughly speaking, this theorem can be proven by combining Theorem 5 and the fact that HM
and EF logics satisfy “finite model property with respect to a finite set of formulas”: a logic
L is said to satisfy the finite model property with respect to a finite set of formulas whenever,
for every finite set Ξ of L-formulas and every pointed transition system (T , s) there exists a
finite pointed transition system (TΞ, sΞ) such that for all ψ ∈ Ξ we have (T , s) |= ψ if and
only if (TΞ, sΞ) |= ψ.

It simple to check that when restricted to logics that are closed under boolean operations
the finite model property with respect to a finite set of formulas is equivalent to the the finite
model property (for single formulas). To prove Theorem 8, the following technical lemma
suffices.

I Lemma 9. Let ϕ be an HM (resp. EF) formula over the action labels A∪A′ for nonempty
disjoint sets A and A′. Then, every decomposition of ϕ over all asynchronous products of two
finite systems over A and A, respectively, is also a decomposition of ϕ over all asynchronous
products of two general transition systems over A and A′, respectively.

Observe that Theorem 5 and the above lemma immediately imply Theorem 8. We shall
give the proof of Lemma 9 for EF-logic. In fact, HM-logic can be dealt with completely
analogously. We note that EF (analogously HM) has the finite model property with respect
to a finite set of formulas owing to the same property for Propositional Dynamic Logic (of
which EF-logic is a sublogic). The latter can be proven e.g. via filtration (e.g. see [8]).

Let us now proceed to the proof of Lemma 9. Let fix an arbitrary EF-formula ϕ.
Let C = (Φ,Φ′, α) be a decomposition of ϕ over the class asynchronous products of two
finite transition systems over A and A′, respectively. Let us assume Φ = {ϕk}k∈K and
Φ′ = {ϕ′m}m∈M for index sets K and M . We assume here that α is a boolean formula over
the variables {xk}k∈K and {x′m}m∈M . It is important to note here that we may only assume
here that C is a decomposition for ϕ on the class of asynchronous products of two finite
transition systems over A and A′, respectively.

In addition, we apply Theorem 1 to obtain a decomposition D = (Ψ,Ψ′, β) of ϕ over
the class of asynchronous products of two general transition systems, where Ψ = {ψi}i∈I
and Ψ′ = {ψj}j∈J . We assume that β is a boolean formula over the variables {yi}i∈I and
{y′j}j∈J .

Let us define the finite set of formulas Ξ = Φ ∪ Ψ over A and Ξ′ = Φ′ ∪ Ψ′ over A′.
Let us fix an arbitrary pointed transition system (T , s) over A and an arbitrary transition
system (T ′, s′) over A′. Let us moreover fix some finite pointed transition systems (TΞ, sΞ)
over A and (T ′Ξ′ , s′Ξ′) over A′ witnessing the finite model property with respect to Ξ and
Ξ′, respectively. To prove to lemma we will show that already C is a decomposition, so
we will show (T × T ′, (s, s′)) |= ϕ if and only if α is true, if xk = ((T , s) |= ϕk) and

S. Göller and A. W. Lin 159

x′m = ((T ′, s′) |= ϕ′m). The latter follows from the following equivalences:

(T × T ′, (s, s′)) |= ϕ ⇔ β is true if yi = ((T , s) |= ψi) and y′j = ((T ′, s′) |= ψ′j).
⇔ β is true if yi = ((TΞ, sΞ) |= ψi) and y′j = ((T ′Ξ′ , s′Ξ′) |= ψ′j).
⇔ (TΞ × T ′Ξ′ , (sΞ, s

′
Ξ′)) |= ϕ.

⇔ α is true if xk = ((TΞ, sΞ) |= ϕk) and x′m = ((T ′Ξ′ , s′Ξ′) |= ϕ′m).
⇔ α is true if xk = ((T , s) |= ϕk) and x′m = ((T ′, s′) |= ϕ′m).

Hence, C is a decomposition over all (both finite and infinite) transition systems, com-
pleting the proof of Lemma 9.

Acknowledgements: Anthony Lin thanks EPSRC (EP/H026878/1) for their support.

References
1 P. Blackburn, M. de Rijke, Y. Venema. Modal Logic. Cambridge University Press, 2001.
2 A. Bouajjani, J. Esparza, O. Maler. Reachability Analysis of Pushdown Automata: Ap-

plications to Model-Checking. In CONCUR’97, p. 135–150.
3 T. Cachat, I. Walukiewicz. The Complexity of Games on Higher Order Pushdown Auto-

mata. In arxiv http://arxiv.org/abs/0705.0262
4 D. Caucal. On the Regular Structure of Prefix Rewriting In CAAP’90, p. 87–102.
5 D. Caucal. On infinite transition graphs having a decidable monadic theory. In ICALP’96,

p. 194–205.
6 A. Dawar, M. Grohe, S. Kreutzer, N. Schweikardt. Model Theory Makes Formulas Large.

In ICALP’07, p. 913–924.
7 I. Felscher, W. Thomas. Compositionality and Reachability with Conditions on Path

Lengths. Int. J. Found. Comput. Sci. 20(5): 851–868 (2009)
8 D. Harel, D.Kozen, J. Tiuryn. Dynamic Logic. MIT Press, 2000.
9 O. Kupferman, N. Piterman, M. Y. Vardi. Model checking linear properties of prefix-

recognizable systems. In CAV’02, p. 371–385.
10 L. Libkin. Elements of Finite Model Theory. Springer, 2004.
11 S. Lu, S. Park, E. Seo, Y. Zhou. Learning from mistakes: a comprehensive study on real

world concurrency bug characteristics. In ASPLOS’08, p. 329–339.
12 J. A. Makowsky. Algorithmic uses of the Feferman-Vaught Theorem. Ann. Pure Appl.

Logic 126(1–3): 159–213 (2004)
13 R. Mayr. Decidability and Complexity of Model Checking Problems for Infinite-State Sys-

tems. PhD thesis, TU München, 1998.
14 S. Qadeer, J. Rehof. Context-Bounded Model Checking of Concurrent Software. In

TACAS’05, p. 93–107.
15 A. Rabinovich. On compositionality and its limitations. ACM TOCL 8(1): (2007)
16 A. W. To. Model Checking Infinite-State Systems: Generic and Specific Approaches. PhD

thesis, University of Edinburgh, 2010.
17 M. Vardi. An Automata-Theoretic Approach to Linear Temporal Logic In Banff Higher

Order Workshop ’95, p. 238-266.
18 S. Wöhrle, W. Thomas. Model Checking Synchronized Products of Infinite Transition

Systems. LMCS 3(4): (2007)
19 I. Walukiewicz. Difficult Configurations - On the Complexity of LTrL In ICALP ’98, p.

140–151.
20 I. Walukiewicz. Model Checking CTL Properties of Pushdown Systems. In FSTTCS’00, p.

127–138.

STACS’12

	Introduction
	Preliminaries
	Hardness of asynchronous product
	Proof of Theorem 2
	Lower bounds for HM-logic

	Lower bounds for compositional methods for HM and EF logics
	Proof of Theorem 5
	Restricting to finite transition systems

