-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by Dagstuhl Research Online Publication Server

Mind Change Speed-up for Learning Languages

_ *

from Positive Data

Sanjay Jain! and Efim Kinber?

1 School of Computing, National University of Singapore, Singapore 117417,
Republic of Singapore. sanjay@comp.nus.edu.sg

2 Department of Computer Science, Sacred Heart University, Fairfield, CT
06825-1000, U.S.A. kinbere@sacredheart.edu

—— Abstract

Within the frameworks of learning in the limit of indexed classes of recursive languages from
positive data and automatic learning in the limit of indexed classes of regular languages (with
automatically computable sets of indices), we study the problem of minimizing the maximum
number of mind changes Fyp(n) by a learner M on all languages with indices not exceeding n. For
inductive inference of recursive languages, we establish two conditions under which Fpp(n) can
be made smaller than any recursive unbounded non-decreasing function. We also establish how
Fn(n) is affected if at least one of these two conditions does not hold. In the case of automatic
learning, some partial results addressing speeding up the function Fpp(n) are obtained.

1998 ACM Subject Classification F.0 Theory of Computation ,1.2.6 Learning
Keywords and phrases Algorithmic and automatic learning, mind changes, speedup.

Digital Object Identifier 10.4230/LIPIcs.STACS.2012.350

1 Introduction

In this paper, we consider a popular model for learning languages in the limit from infinite
positive data (inductive inference), as defined by M. Gold in [13] (in the sequel, we refer to
it as TxtEx): a learner is an algorithmic device that, given access to potentially all positive
data (as a stream of data items, intermittent with a special character representing “no data
at this moment”), produces a (potentially infinite) sequence of conjectures, and eventually
stabilizes on a correct grammar for the target language. Specifically, we concentrate on
learnability of indezed classes of languages — represented by computable numberings of
languages with uniformly decidable membership problem; these classes represent practically
interesting families of languages, in particular, the class of regular languages as represented
by all finite automata or regular expressions and its practically important subclasses, and
the class of pattern languages represented by patterns [1].

There are many different measures of complexity for learning languages in the limit
[8, 9, 10, 22, 16, 12]. One obvious natural measure of complexity is the number of mind
changes that a learner makes on a target language before stabilizing on a correct grammar
for it. As there are infinitely many languages in the target class, it is natural to consider the
maximum number of mind changes that a learner M makes on the first n+1 languages in the
numbering defining the target class; in the sequel, we denote this number by Fyp(n) (another
approach to mind change complexity was suggested in [19]). This measure of complexity of

* Sanjay Jain was supported in part by NUS grant number C-252-000-087-001.

@@@@ © S. Jain and E. Kinber; L SYMPOSIUM
O™ licensed under Creative Commons License NC-ND V \n ON THEORETICAL
29th Symposium on Theoretical Aspects of Computer Science (STACS’12). n ASPECTS
Editors: Christoph Diirr, Thomas Wilke; pp. 350-361 - 7 / OF COMPUTER

\\v Leibniz International Proceedings in Informatics SCIENCE
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://core.ac.uk/display/62916824?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.STACS.2012.350
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

S. Jain and E. Kinber

inductive inference, in the context of learning indexed families of recursive functions, was
first suggested by J. Barzdip$ and R. Freivalds in [4], where they also initiated a study of
the bounds on the function Fpg(n). It is easy to see that Fyp(n) can be bounded by n — the
learner can use the “identification by enumeration” strategy, whereby all functions in the
numbering consistent with the input data seen so far are tried, starting from the first one,
until a (smallest) index of the target function is found. However, Barzdins and Freivalds
showed in [4] (providing full proof in [5]) that the linear upper bound on Fyp(n) can be
reduced exponentially — to logn + loglogn + o(loglogn), if the learner is allowed to use
programs of general type (from a universal acceptable numbering of all programs) rather
than indices in the numbering of the target class. They also established a nearly matching
lower bound for the function Fpg(n) (having shown that there exists an indexed class of
functions where no strategy can use less than nearly log n mind changes). In the paper [3],
J. Barzdins showed that the lower bound on the number of mind changes jumps to nearly
n, if the numbering defining the target class of functions is used as the hypotheses space.

In the paper [6], the authors studied the following problem: is it possible to “speed up”
learning of indexed classes of functions achieving as slow growth of the function Fy(n) as
possible? More specifically, if and when is it possible, given any total recursive function r(n)
and any learner M for an indexed class £, to find another learner M’ such that, for all n,
r(Fymr(n)) < max({Fm(n), c}), for some constant ¢? They suggested to call such a provable
statement for a class £ “absolute speed-up theorem” (AST, for brevity), and established
validity of AST for any class £ of recursive functions with decidable equivalence problem
and not learnable with a constant number of mind changes.

In this paper, we study possibilities of mind change speed-ups in two different contexts.
First, we consider TxtEx-learning (from all positive data) of indexed families of recursive
languages. Secondly, we consider learning in the limit, from positive data, automatic classes
of languages by automatic learners; such an indexed class of languages is defined by a finite
automaton (the study of inductive inference in this context was initiated in [15]).

In the general case of TxtEx-learning of indexed families, we establish the conditions
under which AST is possible: we show that AST holds if (a) the equivalence problem for the
languages in the class is decidable and (b) inclusion of one language in another one implies
their equality (Theorem 3). Note that the condition (a) typically holds for practically
important indexed families of languages (for example, the class of regular languages indexed
by finite automata and the class of pattern languages indexed by patterns). In light of
this, the condition (b) is really the important criterion deciding if the AST can work for an
indexed class. This condition is quite simple and can be typically tested for many practically
useful indexed classes. Now, we show that, if the condition (a) holds and the condition (b)
does not (and yet there are no subset chains of languages of length more than 2), then
Fa(n) can grow faster than any fixed recursive function (Theorem 6). We also consider the
case when the condition (b) holds, but (a) does not. It turns out, that, in this case, any
class can be learned with O(logn) upper bound on Fpp(n) (Theorem 8), and there exists a
class with the lower bound of logn — o(logn) on Fyp(n) for any learner M (Theorem 7).

Interestingly, if a learner witnessing AST is required to conjecture grammars only for
the languages in the class, then it cannot be made consistent with the input seen so far:
for such consistent learners, we show that, for some classes, the lower bound on Fp(n) is
logn + 1 (cf. Theorem 5).

For the automatic case, the definition of Fys needs to be readjusted, as indices of lan-
guages are strings, and the set of indices must be regular; in addition, we require learners
to be computable by finite automata (automatic). Accordingly, we consider a (natural) or-

351

STACS’'12

352

Mind Change Speed-up

dering of all indices and define Fps(w) as the maximum of the number of mind changes on
all languages with indices not length-lexicographically greater than w with respect to the
given ordering.

We have not been able to find a reasonable range of automatic classes for which AST
holds. Yet, we obtained some interesting partial results. First, we show that, for any
nondecreasing unbounded automatic function, there is an automatic class that can be learned
by an automatic learner with Fpp(w) not exceeding this function; yet AST is not possible for
this class, as the function provides also the matching lower bound on Fpp(w) (Theorem 10).
Then we show that, for a range of automatic classes satisfying a simple condition, Fyg(w)
can be made smaller than any unbounded non-decreasing recursive function if an automatic
learner uses fat texts, where every input datum appears infinitely many times (Theorem 12).
This result works also for automatic learners using arbitrary input texts if the languages in
the class satisfy the additional condition of being pairwise infinitely different. Although, our
results in this section do not directly deal with a more practically interesting AST problem
for learning automatic classes with no strong restrictions on either stream of input data or
the class to be learnt, they certainly shed light on the difficulties of solving the AST problem
without these restrictions.

Mind changes have played an important role in other fields besides inductive inference,
such as in computational complexity to determine the powers of Boolean Hierarchy, query
order, etc., see for example [7, 14].

2 Preliminaries

Let N denote the set of natural numbers. A language is a subset of N. The symbol
() denotes the empty set. Symbols C, D, C, D, respectively, denote subset, superset, proper
subset and proper superset. Furthermore, max(S), min(S) and card(S), respectively, denote
the maximum, minimum and cardinality of a set .S, where max(@)) = 0 and min((}) = occ.
We use card(S) < x to denote that the cardinality of S is finite.

We let (-, -) stand for an arbitrary, computable, one-to-one encoding of all pairs of natural
numbers onto N [21]. Similarly, one can define (-,-,...,-) coding multiple arguments. We
assume these pairing functions to be monotonically increasing in all their arguments.

We let ¢ denote a fixed acceptable programming system for the partial computable func-
tions [21]. The i-th partial computable function in the system ¢ is denoted by ¢;. The set
of all recursive functions is denoted by R. When considering partial computable functions
with multiple arguments, we assume that the inputs are coded using the pairing function
described above. We let W; = domain(yp;).

2.1 Learning Languages in the Limit

A finite sequence o is a mapping from an initial segment of N into (N U {#}). We let
A denote the empty sequence. The content of o, denoted content(c), is the set of natural
numbers in the range of 0. The length of o, denoted |o|, is the number of elements in the
domain of o. SEQ denotes the set of all finite sequences. A text T is a mapping from N to
(NU{#}). The content of T', denoted content(T'), is the set of natural numbers in the range
of T. A text T is for a language L iff content(7T") = L. T'[n] denotes the initial segment of
T of length n, and o[n| denotes the initial segment of o of length n. Intuitively, #’s denote
pauses in the presentation of data. A text T is called fat [20] if for every x € content(T),
there exist infinitely many n such that T'(n) = x.

S. Jain and E. Kinber

A language learning machine is an algorithmic mapping from SEQ to NU{?}. Intuitively,
? denotes that the learner does not have enough data to form a conjecture. We let M,
with or without decorations, range over learning machines. If, for all but finitely many n,
M(T[n]) = i, then we say that M(T)J =i (or simply, M(T) = 7). If there exists an ¢ such
that M(T)J = i, then we say that M(T) converges (written: M(T')]); otherwise, we say
that M(T') diverges or M(T) is undefined (written: M(T')?).

» Definition 1. [13] (a) M TxtEx-identifies a language L (written: L € TxtEx(M)) iff for
all texts T' for L, M(T'){ and Wy(r) = L.

(b) M TxtEx-identifies a class £ of languages iff M TxtEx-identifies each L € L.

(¢) TxtEx = {£ : (3M)[M TxtEx-identifies £]}.

For a learner M, a text T, and n € N, we let MCp(T'[n]) denote the number of mind
changes [9, 8] made by M on T'[n], that is, card({r < n :? # M(T[r]) # M(T[r + 1])}).
Similarly, MCpz(T') denotes the number of mind changes [9, 8] made by M on T, that is,
card({r :? # M(T[r]) # M(T'[r+1])}). We let MCp (L) denote the maximum over MCypg(T')
for all texts T for L. One can assume without loss of generality that, if M (o) #? and o C 7,
then M(7) #7.

A learner M is said to be consistent [1, 2] if for all o € SEQ, content(c) € Wiy(s).

An indexed family is a family £ = (L;);en of languages such that, {(i,z) : € L;} is
recursive. When dealing with indexed families, we let Fpg(i) = maximum over MCp(T') on
any input text 1" for a language Lj, 7 < 4.

Often, when learning indexed families, instead of using the acceptable programming sys-
tem Wy, Wy, ... as hypothesis space, we use an indexed family, (H;);cn, as hypothesis space.
That is, in Definition 1(a), we require Hyypy = L, instead of requiring Wyyry = L. This
model of learning is said to be class preserving [18, 23] if {H; : i € N} ={L; :i € N}. In
theorems in the sequel, for positive learnability statements, by default, we take the hypo-
thesis space H; = L;, unless specified otherwise. For non-learnability statements, we allow
acceptable programming system (W;);cn as hypothesis space, (and thus the diagonalization
works against arbitrary hypothesis spaces).

We now formally define AST.

» Definition 2. Suppose an indexed family £ = (L;);cn is given. We say that £ satisfies
absolute speed-up theorem (AST) if for any recursive function r(-) and a learner M for
L, there exists another learner M’ and a constant ¢ such that, for all n, r(Fy(n)) <

max({Fn(n), c}).

3 Mind Change Speed-up for Learning Recursive Languages

Our main goal in this section is to establish conditions under which AST holds for learning
an indexed class of languages. First note that AST does not hold for some indexed classes.
This follows from Theorem 9 below, for automatic families. The following theorem gives
conditions for AST holding for an indexed class (the actual AST is stated in the corollary).

Proof of the following theorem essentially uses the idea of delaying mind change until it
is safe, that is, until all grammars, except for at most one grammar, upto a sufficiently large
bound are found to be incompatible with the input data.

» Theorem 3. Suppose £ = (L;);cn is an indexed family for which the equivalence problem is
decidable. Furthermore, assume that L; C L; implies L; = L;. Suppose h is a monotonically
non-decreasing recursive function, with range(h) being unbounded.

Then, there exists a learner M which TxtEx-learns £ such that Far(n) < h(n).

353

STACS’'12

354

Mind Change Speed-up

Proof. Let H(k) = min({k’ : h(k') > k}). Let M(A) =?. Inductively, define M(T'[n + 1])
as follows.

If for all j < n, content(T'[n + 1]) € L;, then let M(T'[n + 1]) = M(T'[n]).

Otherwise, let j be least such that content(T'[n + 1]) C L;. If there exists a j/ <
H(MCwm(T'[n]) 4+ 1), such that L; # Lj (this can be tested, as the equivalence problem is
decidable) and content(T'[n + 1]) C Lj/, then let M(T'[n + 1]) = M(T'[n]) (the learner M
“does not want” to change mind to j, as there is a different language containing the same
initial segment of input data not “too far” from j — as defined by the function H); otherwise
let M(T[n+1]) =j

Note that if M(T'[n + 1]) = j, then for all j/ < HMCm(T[n]) + 1), L; = Lj or
content(T'[n + 1]) € Lj. That is, for all j* such that h(j’) < MCm(T[n]) +1, L; = Ly
or content(T'[n + 1]) Z Lj:. Thus, if content(T[n + 1]) € L; for an L; different from Lj,
¢ must be so large that MCM(T[n + 1]) < h(#). It follows that, given any L;, for any
text T for L;, MCm(T) < h(i). Furthermore, M TxtEx-identifies L; on a text T for L;,
as after it has received T'[n + 1] such that content(T'[n + 1]) € L; for any j' such that
h(y") < max({h(7),1}), we will have M(T'[n + 1]) = 1. <

» Corollary 4. Suppose £ = (L;);en is an indexed family for which the equivalence problem
is decidable. Furthermore, assume that L; C L; implies L; = L;. Then, AST holds for L.

Proof. Suppose M TxtEx-identifies £ and Fys is the corresponding mind change complex-
ity. The corollary is trivial if Fpg is bounded by a constant. So assume Fypp is unbounded.
Given a recursive function r, define the recursive function h such that, h(0) = 0, and
h(n+1) = h(n)+1if r(h(n)+1) < Fm(n+1) as can be verified by running M on some o of
length at most n, such that content(c) C {z : x < n} N L,;, for some i < n; h(n+ 1) = h(n)
otherwise. Thus, r(h(n)) < Fam(n). Now the corollary follows from Theorem 3. <

The above corollary immediately gives the result of Barzdips, Kinber and Podnieks [6]
that, in the case of inductive inference of indexed classes of recursive functions, decidability
of the equivalence problem for the functions in an indexed class suffices for AST.

It can be easily shown that the conditions of Theorem 3 are not necessary — for
example, one can easily transform any indexed class £ = (L;);en satisfying the con-
ditions of Theorem 3 into a class £ = (Lj);‘e n Wwith undecidable equivalence problem
and AST holding for it. For this, one takes either Ly, = L5, = {2v : € L;} or
Ly, ={2z:2 € L} U{2%(2j,rj) + 1} and Ly, = {22 : 2 € L;} U{2% (25 + 1,7y) + 1},
for some appropriate large enough r;, such that the i-th Turing Machine does not correctly
decide whether Lj; = L5, ;.

Note that the learner in the proof of Theorem 3 can be made consistent (for indexed
families), if the learner is allowed to output N as a conjecture. For this, if the conjecture of
the above learner is inconsistent (including for the initial conjecture ?), then it is replaced by
a conjecture for N. This doubles the number of mind changes made, however this problem
can be easily addressed by replacing h(i) by |(h(i) = 1)/2] in the above construction.
Then, the above result holds even for consistent learners, for any non-decreasing unbounded
recursive h which is > 1 on all inputs. However, the consistent learner outputting N from
time to time may not be class preserving. In case one requires class preserving consistency,
the following theorem holds.

» Theorem 5. Suppose L; = {(z,b;) : © € N}, where b, is the (r + 1)-th least significant bit
of 7 in binary representation (the least significant bit is bg).
Let £L={L; :i € N}. Then,

S. Jain and E. Kinber

(a) £ can be class-preservingly consistently learnt by a learner M which makes at most
[log(i + 1)] mind changes on L;;
(b) For any class-preserving consistent learner M for £, Fy(n) > [log(n + 1)].

Now we consider what happens if the conditions of Theorem 3 do not hold. First, we
consider the case when decidability of the equivalence problem still holds, but subset chains
of length more than 1 are allowed.

Proof of the following Theorem 6 essentially exploits the following idea. Note that for
any infinite set B and finite sequence o, if content(c) C B, and a learner learns both B
and B’, a finite subset of B containing content(c), then the learner makes a mind change,
beyond o, on some text for B extending o. For each learner M; the proof uses a set Lo;
(representing B above). It then constructs og,01,...,0,., with r < h(2i), by potentially
placing a finite subset of Lo; containing content(c;) into the class £ in order to force h(2i)
mind changes by M; (in case M; learns £). It will be the case that at most one of the above
finite sets is actually placed in £ and others are spoiled (by making them non-subset of Lo;),
thus satisfying the requirement of having a subset chain of length at most 2.

» Theorem 6. Suppose h is any recursive increasing function. There exists an indexed family
L, where the indexing is one-to-one, for which there is no subset chain of length more than
2, and there is no speedup. That is,

(a) L can be TxtEx-learnt, using a class preserving hypothesis space, by a learner M, such
that Fa (i) < ().

(b) For any M which TxtEx-identifies £, Fng(2¢) > h(2i).

Proof. For ease of notation we assume that h(0) > 1. Let Lo; = {(¢,) : = is odd}.

Let A7 = {(i,z) : © is odd and = < r}.

Let B["Y = {(i,z) : z is odd and = < r} U {(i,2(r,y))}.

We let £ ={L; : j € N}, where L;, for odd j, are defined below. They will be of the
form A7 or B]"Y which are chosen to be in the class based on the following construction
(where it can be easily ensured that if L; = A7 or B;"Y, then j > 2i).

It will be the case that, for any 4,r, £ contains at most one of A7 or B;"Y (for some y),
and there are at most h(2¢) many different r’s such that £ contains A7 or B;"Y (for some y).

We now give the construction for L;, for j being odd. The following process is run in
dovetailing fashion for each ¢. For a given ¢, the languages constructed below are of the form
Al or B]"Y. These are used to diagonalize against the learner M.

Whenever the process below needs to define a new language (L;), we assume that a j > 21
is allocated in some fashion so that all L;, j being odd, get defined when one considers the
processes for different i; note that for every i at least one language gets defined below.

Construction for the languages in £ which are of the form A7 or B;"Y.

Initially, let o9 = (7, 1).

For k =0 to h(2i) — 1 do:

1. Let w = max({w : (i,w’) € content(o)}).

2. Add a new language, say L;, to £. Initially, L; is A}". Define more and more
elements not in A} to be not in L; until step 3 succeeds. If and when step 3
succeeds, go to step 4.

3. Search for a 7 extending oy, such that content(7) C Lo;, and M; (o) # M; (7).

4. Let L; = B;"Y, for an even y such that L;((i,2(w,y))) has not been defined upto
now and y > w.

5. Let opy1 be an extension of 7 such that content(oy, 1) = AY', for some odd w’ > w
such that w’ bounds the time needed to get upto here in the construction.

EndFor

355

STACS’'12

356

Mind Change Speed-up

Note that if M; TxtEx-learns £, then the search in step 3 will succeed. Furthermore,
only the last incomplete iteration of the “for” loop may generate a subset of Lo;. All other
languages generated are incomparable to each other. Thus the languages in £ satisfy the
“subset” constraints of the theorem.

Furthermore, if M; TxtEx-learns £, then the above construction forces at least h(2¢)
mind changes for M; on some text for Ly;. Thus, the condition (b) of the theorem holds.

To see (a), let g(i, k) denote a program which decides L, for the j as in iteration k of
the for loop above if iteration k exists; otherwise it is a program which decides Lo;. Note
that such a grammar can be easily defined, as one can slowly follow Ls;, and if one observes
iteration k to have started, then follow L; as in there — see step 5 in the construction above
which allows us to do this.

Now, if (i,w) is the largest element seen in the input so far and w is even, then the
learner immediately knows the input language and can output a grammar appropriately.
On the other hand, if w is odd, then the learner simulates the construction (for parameter
1) above for w steps to find the largest k& such that the construction above, after w steps,
reaches iteration k in the loop. Now, if (i, w) belongs to L;, where j is as in iteration k of
the loop in the construction above, then the learner outputs ¢(i, k). Otherwise, it outputs

g(i,k+1).
It is easy to verify that the learner above TxtEx-learns the class £ and makes at most
h(k) mind changes on a text for the language Lj. <

Now we will study what can happen if the languages in an indexed class are equal or
incomparable, but the equivalence problem may be undecidable. Proofs of the next two
theorems are based on techniques used in [5, 11] for similar theorems for function learning.

» Theorem 7. Given any non-decreasing recursive function f with unbounded range, there
exists an indexed family £ = (L;);en, where, for all j and k, either L; = Ly or L; and
Ly, are incomparable, such that for all M TxtEx-identifying £, Fp(n) > logn — f(n) for
infinitely many n.

The next theorem shows that, yet, every indexed class with equal or incomparable lan-
guages can be learned using approximately log n mind changes.

» Theorem 8. Every indexed family £ = (L;);cn, such that for all 4, j, either L; = L; or
L; and L; are incomparable, can be TxtEx-learnt by a learner M, using a class preserving
hypothesis space, such that Fpyg(n) < logn + loglogn + o(loglogn).

(Here, for ease of notation, we take logn and loglogn to be 1, for n < 2).

One can improve the bound in the above theorem to Fyp(n) < logn + loglogn + ... +
o(logloglog...logn). Note that the above result does not hold if one requires that the
learner uses the given indexing of £ as the hypothesis space. This follows from the corres-
ponding result for function learning from [3].

4 Automatic Classes and Learning

In this section, we introduce necessary concepts for automatic learning of automatic classes.
Let ¥ denote a non-empty finite alphabet. Let ¥X* denote the set of all strings over the
alphabet . Let € denote the empty string. We let |w| denote the length of string w. We fix
some arbitrary order among the members of . For strings = and y, © <je; y denotes that x
is lexicographically (that is, in dictionary order) before y. The relation z <j; y denotes that x
is length-lexicographically before y, that is, either |z| < |y|, or |z| = |y| and & <jex y. When
we consider sets of strings, min(S) and max(S) denote the length-lexicographically minimal

S. Jain and E. Kinber

and maximal strings in S, where max((}) = € and min((}) is undefined. We let succy, (w) and
pred;, (w) denote the successor and predecessor of w in the length-lexicographical ordering of
the language L, where pred; (w) is undefined for the length-lexicographically least string in
L, and succy, (w) is undefined for the length-lexicographically maximal string in L (if any).
For a given ¥ and w € ¥*, let ord(w) denote the number of strings in £* which are <;; w.
We let cf;, denote the characteristic function of L.

The convolution (see [17]) of two strings z,y € ¥*, conv(z,y), is defined as the string
(2(0),y(0))(z(1),y(1)) ... (z(n — 1),y(n — 1)), where each pair is a symbol from (X U {o})?
and n = max(|z|, |y|). The special symbol ¢ ¢ ¥ is appended (as many times as needed) to
the shorter string in order to make both strings to be of the same length n. Similarly, conv
can be defined on multiple arguments. An n-ary relation R or an m-ary function f is called
automatic if the sets {conv(xy,za,...,2,) : R(x1, T2, ...,2,)} and {conv(xy, za,. .., Tm,y) :
f(z1,29,...,2m) = y}, respectively, are regular.

A family of languages over alphabet X, {L, : a € I} is said to be automatic (see [17])
iff T is a regular set, each L, C ¥*, and {conv(a,z) : x € Ly} is regular. When we
are considering learning of automatic classes, the elements of languages are strings rather
than natural numbers. Most of the definitions and notations discussed above for learning
languages over natural numbers carry over to the case of learning languages over strings, with
numbers being replaced by strings; we omit the details. Below we describe a special kind
of learner, called automatic learner ([15]). An automatic learner is an automatic mapping
from previous memory, current datum to new memory and new conjecture. Here memory
is a string over some alphabet I". Suppose T is the input text for the automatic learner Q.
Let (meml,, hypl ;) = Q(mem?!, T(n)), where mem{ and hyp{ are some default initial
memory memg and the default initial hypothesis hypg of the learner Q. We can consider the
hypothesis hypl of the learner Q as its output on the input 7'[n], and thus the learnability
notions discussed in Section 2.1 above can be taken over to the setting of automatic learners.
Below we let Q range over automatic learners.

When dealing with automatic families, we let Fpg(w) = maximum over the mind changes
made by the learner M on any input text for a language L,,, u <;; w. Note that for learning
automatic families, as long as memory is not restricted (except due to the definition of
automatic learner), one can assume the hypothesis space to be the same as the automatic
class being learnt. Thus, for the next section, for all the results the hypothesis space used
is the automatic family being learnt.

5 Mind Change Speed-up for Automatic Classes

In the sequel, pairing is assumed to be done via convolution. We begin with an example
of an automatic class containing languages over the unary alphabet with linear lower and
upper bounds on the number of mind changes.

» Theorem 9. Let Ly = {07 : j <i}. Let £L={Lg: :i € N}. Then,
(a) £ can be TxtEx-learnt by an automatic learner Q such that Fq(0") = n.
(b) Any learner M which TxtEx-learns £ has Fpg(0™) > n.

Proof. Consider an iterative learner QQ which starts with conjecture 0°. Q, on previous
conjecture 0 and new input 0%, outputs 0™2*({i+1.3}) Clearly, Q satisfies (a). Part (b)
follows easily as for any TxtEx-learner for £, one can construct o;, ¢ € N, such that
0; C 0441, content(o;) = Lgi, and M(o;) is a grammar for Lg:. Then MCpm(o;) > i. <

357

STACS’'12

358

Mind Change Speed-up

Now we show that, for any automatic function h (with the range containing strings over
a unary alphabet), there is an automatic class that can be learned automatically with h
(more precisely, ord(h(0°!,€) 4+ 1) being the tight bound on the number of mind changes.

» Theorem 10. Suppose & is a non-decreasing automatic function with range(h) C 07. Let
L(Oi+176) = {(0i+1,1j) 1] € N}, L(0i+171j+1)4 = {(OH_l,lT) tr < g+ 1}, L(e,e) = [Z), and
L= {L(e,e)} U {L(0i+l,1j) NS N,j < OTd(h(OH_l, 6))} Then7 ‘ .

(a) £ can be TxtEx-learnt by an automatic learner Q, such that Fq (0'™!, €) = ord(h(0"!¢))
+ 1.

(b) Any learner M which TxtEx-learns £ has Fy (0171 €) > ord(h(011€)) + 1.

Now our goal is to show that, under certain natural conditions, mind change speed-up for
automatic classes is possible if an automatic learner uses fat texts. Proofs of Theorems 11
and 12 are the most difficult in this paper. In these theorems, on one hand, the class
L considered is automatic (so equivalence, subset problem, etc., among languages in the
class are decidable), but, on the other hand, the learner is automatic and we also allow
some subset relations among languages. The main difficulty is because of the learner being
automatic, thus forgetting past data. The proof again uses delaying of mind change until
it is safe, by cancelling all but ¢ wrong grammars upto some large enough bound (in a way
similar to Proof for Theorem 3). Here c is a constant such that at most ¢ different languages
in the class are related by subset/superset relation with any particular language of the class.
Then, the learner finds upto ¢? many grammars which may be for the input language, in case
any of the languages, with indices below the large enough bound mentioned above, contains
the input language. The learner then proceeds to try these languages one by one (where
smaller languages are tried first). Due to forgetting of past data by automatic learners, one
needs a fat text to be able to cancel out wrong grammars. The proof for arbitrary speed-up
(Theorem 12) is technically involved, and thus we begin by showing a simpler version first.

» Theorem 11. Suppose L = {L, : @ € I} is an automatic family (without loss of generality,
assume one-to-one). Suppose constants k and c¢ are given, where for all L € £, card({L’ €
L:LCLorL/CL})<ec.

Then, there exists an automatic learner Q which learns £ from fat texts such that (for
learning from fat texts) Fq(a) < max({[|a|/k],1}) x ¢ — 1.

Proof. Without loss of generality assume that there are at least ¢ + 1 indices of length at
most k. The learner @ defined below operates in phases. Intuitively, memory of Q is of the
form (0%,07, a1, 9, ..., Qer1, B1, B2, - - -, Bz, preveony), where

(i) p=rk=i
(ii) a; <y ajy1, for 1 <j < ¢
(iii) o <y Qrey;
(iv) prevconj is the previous conjecture;
(v) Q has already made (i — 1)-phases (each producing upto ¢* conjectures), and is now
in its i-th phase;
(vi) for all a such that |a| <pand a € {o;: 1 <j<c}U{y:ac<u~vy <u acr1}, Qhas
already observed a string in the input which is not in Ly;
(vii) in case a. = aey1, Pi,-- -, B2 denote the ¢® possible members 3 of I such that Lg
is contained in one of Lo, 1 < j < ¢ (in case of < c? such members, we use # for the
remaining elements); furthermore, if Lg, C Lg,, then j < i

2

viii) in case a. = aey1, preveconj = [; for some j such that 1 < j < ¢*, and for
+ J j J J

1 < j" < j, Q has already observed a string in the input which is not in Lg ,.

S. Jain and E. Kinber

Initially, the memory of Q is (0%,0%, a1, a0, i3, . . ., e, Qg 1, #, 75 - -, 7, 7), Where aeq g
is the length-lexicographically largest element of I of length at most k, and ag,...,a. are
the ¢ length-lexicographically least elements of I. The initial conjecture of Q is ?.

At any point during the learning process, if the new input is w and the previous conjecture
is (04,07, ay, 9, ..., er1, B1, B, . . ., Be2, preveonyj), then Q behaves as follows:

1.) If ae # a1, and w & L. for some least 7 with 1 < j < c+ 1, then
+ j
(1.1.) If j = ¢+1, then let o, = pred (1), and o, = o, for 1 < r < ¢; otherwise,
let of =, for 1 <r < j, o = ay41, for j <r < ¢, and o), = succy (o).

(1.2.) If o # alyy, then let 31 = ... = B = #, and let new memory be
(04,07, 04,..., 0y, B1s-- -, Bez, preveonj) and let new conjecture be preveony.
(1.3.) else (i.e., al, = al,y), let B1,..., B2 denote the ¢ possible members 3 of I such

that Lg is contained in one of La;_, 1 < j < ¢; furthermore, if Lg, C Lg,,, then j < 3
If there are several possible orders to choose 3; satisfying the above, then choose the
lexicographically least order among them. (In case of < ¢ members 3 of I such that
Lg is comparable to some L, we use # for the remaining 3’s); Conjecture £, and
let new memory be (0,07, a,...,al, 1, B1,..., B, B1)-

(2.) else (if o = aeq1), then
if w ¢ Lprevconj, then

(2.1.) if prevconj = B;, and j < c?

and Bj41 # #, then let new memory be

(Oi, 0P, 1,9, oy Qet1, P1, B2, -+« Be2, 3j+1) and the new conjecture be ;1.
(2.2.) otherwise, let new memory be
(0FFL 0Ptk ol aby, ... by, #. #, . .., #, preveonj),

where o is the length-lexicographically largest element of I of length at most
p+k,and of,..., . are the ¢ length-lexicographically least elements of I.
else (i.e., W € Lprevconj) repeat the old memory and conjecture.
(3.) else (ie., ac # acy1, and w € Ly, for all j with 1 < j < ¢+ 1) repeat the old
memory and conjecture.

Intuitively, for any w, in step (1) the learner (over several inputs) tries to eliminate all
but ¢ of the potential conjectures of length at most p; all the eliminated conjectures do not
contain the input language (see steps 1, 1.1 and 1.2). Once the learner is left with only ¢
conjectures of length at most p, which may contain the input language, it finds the indices
of all the potential ¢> many languages which may be for the input language (unless none of
the languages, with index of length at most p, contain the input language) (see step 1.3).

After this, in steps 1.3, 2 and 2.1, the learner serially tries all the above ¢?
which could be the input language. (Note that, the testing of these languages is done in

many languages

a specific order so that subsets are tried earlier than the supersets.) Then, the learner
eliminates them one by one, until it finds the correct language or observes that none of
them could contain the input language (i.e., all languages in £ which contain the input have
indices of length larger than p). In which case the learner goes to the next (i + 1-th) phase
(step 2.2).

It is now easy to verify that the above learner TxtEx-identifies £ on fat texts, and on
L,, makes at most max({[|a|/k],1})* ¢ — 1 mind changes (using max({[|a|/k],1}) phases,
each of which may make upto ¢? conjectures). |

Note that the above proof uses fat texts to be able to check whether a language in the
automatic family contains the input language or not. In the above theorem, one can replace
c® by c¢, if, instead of using conjectures 3; one by one, the learner (i) keeps track of 3; such

359

STACS’'12

360

Mind Change Speed-up

that it hasn’t seen a non-element of Lg; , and (ii) outputs a conjecture 3; if the learner hasn’t
seen a non-element of Lg; and Lg, is contained in every other Lg , for which it hasn’t seen
a non-element. This ensures that in steps 1.3 and 2, for each i, at most ¢ conjectures are
output.

Furthermore, we can generalize the theorem above to beat (almost everywhere) mind
changes given by any non-decreasing unbounded recursive function as follows.

» Theorem 12. Suppose £ = {L,, : o € I} is an automatic family (without loss of generality
assume one-to-one). Suppose a non-decreasing unbounded recursive function h and a con-
stant ¢ are given, where for all L € £, card({L' € L: L C L' or L' C L}) < ¢. Then, there
exists an automatic learner Q which learns £ from fat texts such that (for learning from fat
texts) Fq(a) < max({h(|]ca]),1}) * ¢ — L.

The above result also works if, instead of using fat texts, the languages in the class
are required to be pairwise infinitely different or the alphabet size is 1 (in addition to the
requirement: for all L € £, card({L’ € L: L C L' or L' C L}) < ¢, for some constant c).

6 Conclusion

In 1972, Barzdins and Freivalds introduced the maximum number of mind changes on the
first n functions as a measure of efficiency of learning in the limit. Our interest in this
measure of complexity for learning indexed classes of languages was revived by growing
interest in automatic learning of automatic classes of languages. As mind change speed-up
effects, discussed and resolved for learning recursive functions in [6], surprisingly, have never
been explored for learning languages from positive data, we, first, considered these issues for
the corresponding framework. We also give a sufficient condition for a family of automatic
classes for which speed-up is possible if either an automatic learner uses fat texts, or the
languages in the classes in question differ infinitely. Yet the general problem of whether there
are wide natural automatic classes for which mind change speed-up is possible remains open.

One can note that the mind change speed-up in both frameworks considered in our paper
is achieved when a learner, choosing a new conjecture, accesses increasingly more data from
the underlying numbering of languages. It would be very interesting to find out if the amount
of such data can be measured in some form and what is the actual quantitative relationship
between this amount and the number of mind changes.

Acknowledgements We thank the anonymous referees for several helpful comments.

—— References

1 D. Angluin. Finding patterns common to a set of strings. Journal of Computer and System
Sciences, 21(1):46-62, 1980.

2 J. Barzdigs. Inductive inference of automata, functions and programs. In Proceedings
of the 20th International Congress of Mathematicians, Vancouver, pages 455460, 1974.
In Russian. English translation in American Mathematical Society Translations: Series 2,
109:107-112, 1977.

3 J. Barzdips. Limiting synthesis of 7 numbers. In Theory of Algorithms and Programs,
vol. 1, pages 112-116. Latvian State University, Riga, Latvia, 1974. In Russian.

4 J. Barzdins and R. Freivalds. On the prediction of general recursive functions. Soviet
Mathematics Doklady, 13:1224-1228, 1972.

S. Jain and E. Kinber

5

10

11

12

13

14

15

16

17

18

19

20

21

22

23

J. Barzdins and R. Freivalds. Prediction and limiting synthesis of recursively enumerable
classes of functions. In Theory of Algorithms and Programs, vol. 1, pages 101-111. Latvian
State University, Riga, Latvia, 1974. In Russian.

J. Barzdins, E. Kinber, and K. Podnieks. Concerning synthesis and prediction of functions.
In Theory of Algorithms and Programs, vol. 1, pages 117-128. Latvian State University,
Riga, Latvia, 1974. In Russian.

R. Beigel. Bounded queries to SAT and the boolean hierarchy. Theoretical Computer
Science, 84:199-223, 1991.

J. Case and C. Lynes. Machine inductive inference and language identification. In
M. Nielsen and E. M. Schmidt, editors, Proceedings of the 9th International Colloquium on
Automata, Languages and Programming, volume 140 of Lecture Notes in Computer Science,
pages 107-115. Springer-Verlag, 1982.

J. Case and C. Smith. Comparison of identification criteria for machine inductive inference.
Theoretical Computer Science, 25:193-220, 1983.

R. Daley and C. Smith. On the complexity of inductive inference. Information and Control,
69:12-40, 1986.

R. Freivalds, J. Barzdins, and K. Podnieks. Inductive inference of recursive functions:
Complexity bounds. In J. Barzdins and D. Bjgrner, editors, Baltic Computer Science,
volume 502 of Lecture Notes in Computer Science, pages 111-155. Springer-Verlag, 1991.
R. Freivalds, E. Kinber, and C. Smith. On the intrinsic complexity of learning. Information
and Computation, 123(1):64-71, 1995.

E. M. Gold. Language identification in the limit. Information and Control, 10(5):447-474,
1967.

L. Hemaspaandra, H. Hempel, and G. Wechsung. Query order. SIAM Journal of Comput-
ing, 28:637-651, 1998.

S. Jain, Q. Luo, and F. Stephan. Learnability of automatic classes. In Language and
Automata Theory and Applications, 4th International Conference, LATA 2010, volume
6031 of LNCS, pages 321-332. Springer, 2010.

S. Jain and A. Sharma. The structure of intrinsic complexity of learning. Journal of
Symbolic Logic, 62:1187-1201, 1997.

B. Khoussainov and A. Nerode. Automatic presentations of structures. In Logical and
Computational Complexity, (International Workshop LCC 1994), volume 960 of Lecture
Notes in Computer Science, pages 367-392. Springer, 1995.

S. Lange and T. Zeugmann. Language learning in dependence on the space of hypotheses.
In Proceedings of the Sizth Annual Conference on Computational Learning Theory, pages
127-136. ACM Press, 1993.

S. Lange and T. Zeugmann. Language learning with bounded number of mind changes. In
Proceedings of the Tenth Annual Symposium on Theoretical Aspects of Computer Science,
pages 682-691. Springer-Verlag, 1993. Lecture Notes Computer Science, 665.

D. Osherson, M. Stob, and S. Weinstein. Systems that Learn: An Introduction to Learning
Theory for Cognitive and Computer Scientists. MIT Press, 1986.

H. Rogers. Theory of Recursive Functions and Effective Computability. McGraw-Hill, 1967.
Reprinted by MIT Press in 1987.

R. Wiehagen. On the complexity of effective program synthesis. In K. Jantke, editor,
Analogical and Inductive Inference, Proceedings of the International Workshop, volume 265
of Lecture Notes in Computer Science, pages 209-219. Springer-Verlag, 1986.

T. Zeugmann and S. Zilles. Learning recursive functions: A survey. Theoretical Com-
puter Science A, 397(1-3):4-56, 2008. Special Issue on Forty Years of Inductive Inference.
Dedicated to the 60th Birthday of Rolf Wiehagen.

361

STACS’'12

	Introduction
	Preliminaries
	Learning Languages in the Limit

	Mind Change Speed-up for Learning Recursive Languages
	Automatic Classes and Learning
	Mind Change Speed-up for Automatic Classes
	Conclusion

