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Abstract
We define and study a new approach to the implementability of timed automata, where the
semantics is perturbed by imprecisions and finite frequency of the hardware. In order to circum-
vent these effects, we introduce parametric shrinking of clock constraints, which corresponds to
tightening these. We propose symbolic procedures to decide the existence of (and then compute)
parameters under which the shrunk version of a given timed automaton is non-blocking and can
time-abstract simulate the exact semantics. We then define an implementation semantics for
timed automata with a digital clock and positive reaction times, and show that for shrinkable
timed automata, non-blockingness and time-abstract simulation are preserved in implementation.
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1 Introduction

Timed automata [3] are a well-established model in real-time system design. They offer
an automata-theoretic framework to design, verify and synthesize systems with timing
constraints. The theory behind timed automata has been extensively studied and mature
model-checking tools are available. However, this model makes unrealistic assumptions on
the system, such as the perfect continuity of clocks and instantaneous reaction times, which
are not preserved in implementation even in digital hardware with arbitrary finite precisions.
Often, the synchrony hypothesis allows one to ignore this issue and greatly simplifies the
design phase [7]. However, the synchrony hypothesis still needs to be formally validated
once the design phase is over. In fact, perturbations on clocks, either imprecisions or clock
drifts, however small they may be, may yield extra qualitative behaviours in some timed
systems [22, 14]; positive reaction times can also disable desired behaviours [11, 1].

This raises the question of implementability, i.e., whether the model can be implemented
on physical machines, preserving (the properties of) its exact semantics. In order to model
the behaviour of implementations of timed automata, and validate the synchrony hypothesis,
De Wulf et al. introduced the program semantics for timed automata, which defines the
behaviour of a timed automaton on a simple micro-processor with a digital clock [15]. This
semantics is a bit jagged, and the enlarged semantics has been proposed as a convenient
over-approximation: it models imprecisions by relaxing all guards, turning clock constraints
of the form x ∈ [a, b] into x ∈ [a−∆, b+ ∆] for some positive parameter ∆. Robust model
checking, which consists in deciding the existence of a value for ∆ under which a property is
satisfied in the enlarged semantics, has been proven decidable for safety properties [14], and
for richer linear-time properties [9, 10]. In this framework, the implementation (the program
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semantics) always has more behaviours than the abstract model (the exact semantics), due to
the relaxation of the timing constraints, and robust model-checking only ensures correctness
for properties preserved by timed simulation.

We adopt the following approach: instead of checking properties on the enlarged semantics
of a given timed automaton A, we look for a new timed automaton B whose semantics would
correspond to the (exact) semantics of A. To circumvent the effect of the imprecisions, our
idea is to construct B by shrinking the guards of A, which is the opposite to enlargement,
so that all behaviours of B under enlargement are included in those of A. The timed
automaton B constructed in this manner preserves in particular all universal properties (like
linear-time properties) proven (say, by model-checking) for A. This also means that all timing
requirements satisfied by A, such as critical deadlines, are strictly respected by B. However,
such a transformation may remove too many behaviours and even introduce deadlocks in B.
The preservation of the desired behaviours in B is the problem we are interested in.

A timed automaton A is said shrinkable if it can be shrunk into a timed automaton
that is non-blocking, and/or can time-abstract-simulate A. We do not restrict to one single
shrinking parameter, but to one parameter per atomic clock constraint in the automaton.
We give algorithms to decide the existence of these shrinking parameters, and compute
the least parameters when they exist. We show that shrinkability w.r.t. non-blockingness
can be checked in PSPACE, shrinkability w.r.t. simulation in EXPTIME, and shrinkability
(w.r.t. both requirements) in EXPTIME, by symbolic procedures manipulating difference
bound matrices.

As a second result, we define an implementation semantics of timed automata executed
by a digital system with a digital clock. Our semantics is similar to the program semantics
of [15] but it is valid under slightly different assumptions. We study the relations between
the exact semantics and the implementation semantics, and prove additional properties
besides the one given in [15]. We show that when a timed automaton A is shrinkable,
say to a timed automaton B, then the implementation semantics of B is non-blocking and
time-abstract-simulates the exact semantics of A. Thus, our framework allows not only to
obtain an implementation that contains no more behaviour than the abstract model but also
to ensure non-blockingness and time-abstract similarity. This provides a precise motivation
for the shrinkability problem: shrinkability is a sufficient condition for the correctness of the
implementation semantics.

Finally, notice that shrinkability is also an interesting property by itself, since it asks
whether the given automaton is vulnerable to infinitesimal shrinkings (which can be due
to imprecisions). Zeno behaviours and other different convergence phenomena [11] are also
naturally excluded in shrunk systems (see Section 3.2).

2 Preliminaries

A timed transition system (TTS) is a tuple (S, s0,Σ,→), where S is the set of states, s0 ∈ S
the initial state, Σ a finite alphabet, and → ⊆ S× (Σ×R≥0)×S the transitions. Transitions
are labelled by σ(T ), with T ∈ R≥0 the timestamp of action σ ∈ Σ. In all TTSs we consider,
the timestamps of consecutive actions are assumed to be nondecreasing. A TTS (S, s0,Σ,→)
is non-blocking if for any transition s1

σ(T )−−−→ s2, there exist σ′ ∈ Σ, T ′ ≥ T and s3 ∈ S
such that s2

σ′(T ′)−−−−→ s3. Notice that, in this definition, we do not require s1 to be reachable
from s0.

I Definition 1. Let S = (S, s0,Σ,→) be a TTS. A relation R ⊆ S × S is a timed (resp.
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92 Shrinking Timed Automata

time-abstract) simulation if for all (s1, s2) ∈ R, if s1
σ(T )−−−→ s′1 for some (σ, T ) ∈ Σ × R≥0,

then s2
σ(T )−−−→ s′2 (resp. s2

σ(T ′)−−−→ s′2 for some T ′ ∈ R≥0) for some s′2 with (s′1, s′2) ∈ R.
A state s2 timed-simulates (resp. time-abstract-simulates) a state s1 if there exists a timed
(resp. time-abstract) simulation R such that (s1, s2) ∈ R. In that case, we write s1 v s2
(resp. s1 vt.a. s2).

Given two TTSs S and T , we write S v T if the initial state of T timed-simulates that of S
in their disjoint union. We write S vt.a. T in case of an time-abstract simulation. For any
state s of S, we write ta-simT (s) for the set of states of T that time-abstract simulate s.
This set is called the (time-abstract) simulator set of s in T .

Given a finite set of clocks C, we call valuations the elements of RC≥0. For a subset R ⊆ C,
a real number α ∈ R≥0 and a valuation v, we write v[R← α] for the valuation defined by
v[R ← α](x) = v(x) for x ∈ C \ R and v[R ← α](x) = α for x ∈ R. Given d ∈ R≥0, the
valuation v + d is defined by (v + d)(x) = v(x) + d for all x ∈ C. We extend these operations
to sets of valuations in the obvious way.

Let Q∞ = Q ∪ {−∞,∞}. An atomic clock constraint is a formula of the form k ≤ x ≤ l
or k ≤ x − y ≤ l where x, y ∈ C and k, l ∈ Q∞. A guard is a conjunction of atomic clock
constraints. We denote by ΦC the set of guards on the clock set C. We define the enlargement
of atomic clock constraints by δ ∈ Q as follows: for x, y ∈ C and k, l ∈ Q>0, we let
〈k ≤ x− y〉δ = k − δ ≤ x− y, 〈x− y ≤ l〉δ = x− y ≤ l + δ.

(and similarly for 〈k ≤ x〉δ and 〈x ≤ l〉δ). The enlargement of a guard g, denoted by 〈g〉δ, is
obtained by enlarging all its atomic clock constraints. Notice that δ can be negative here;
this operation is then called shrinking. A valuation v satisfies a guard g, denoted v |= g, if
all constraints are satisfied when each x ∈ C is replaced by v(x). We denote by JgK the set of
valuations that satisfy g. We will write v |=δ g to mean v |= 〈g〉δ.

I Definition 2. A timed automaton A is a tuple (L, l0, C,Σ, E), with finite sets L of locations,
C of clocks, Σ of labels, E ⊆ L× ΦC × Σ× 2C × L of edges, with l0 ∈ L the initial location.
An edge e = (l, g, σ,R, l′) is also written as l g,σ,R−−−→ l′. Guard g is called the guard of e.

For any timed automaton A, let (gi)i∈I denote the vector of all atomic clock constraints
used in its guards. Given a vector of rational numbers δ = (δi)i∈I , we define Aδ as the timed
automaton obtained from A by replacing gi with 〈gi〉δi . For any ∆ ∈ Q, A∆ will denote the
timed automaton where all guards are enlarged by ∆.

I Definition 3. The semantics of a timed automaton A = (L, l0, C,Σ, E) is a TTS over
alphabet Σ, denoted JAK, whose state space is L × RC≥0 × R≥0. The initial state is
(l0, 0, 0), where 0 denotes the valuation where all clocks have value 0. There is a trans-
ition (l, v, T ) σ(T+τ)−−−−−→ (l′, v′, T + τ), for any edge l g,σ,R−−−→ l′ and τ ≥ 0, such that v + τ |= g

and v′ = (v + τ)[R← 0].

We assume familiarity with the usual notions of region equivalence and region automaton, and
refer to [3] for definitions. The important property used here is that time-abstract-simulating
a timed automaton is equivalent to (time-abstract-)simulating its region automaton.
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3 Shrinkability

3.1 Robustness and Shrinking
Robust model-checking, that is, the analysis of timed automata under clock imprecisions
have been studied in [22, 14, 9, 10, 21, 23]. It is shown in [15] how this framework allows
one to validate the synchrony hypothesis, that is, prove that the semantics is preserved in
a physical implementation with imprecisions. See [22, 14] for examples of timed automata
that are not robust: their behaviours change in presence of the slightest positive guard
enlargement. In a recent work [8], we defined transformations that provide, for any given
timed automaton A, a timed automaton A′ such that A and A′∆ are ε-bisimilar, that is,
there is a timed bisimulation in which the differences in delays are bounded by ε at each
step. The advantage of that approach is that it works for all timed automata, and that we
obtain an ε-bisimilar enlarged timed automaton, for any desired ε > 0. However, the timed
behaviour of the resulting automaton may not be included in the abstract model; it is only
preserved approximately. Also, the size of A′ is exponential, and we do not make the link
with an implementation semantics.

We now define shrinking of timed automata and show how it provides an alternative way
to construct robust systems. Our method provides a construction of the same size as the
initial automaton, and whose timed behaviour is always included in the abstract model. Our
algorithms then allow to decide whether further properties, such as non-blockingness and
time-abstract similarity, can be satisfied. In order to circumvent the effect of the imprecisions,
we propose to shrink any guard of the form “x ∈ [a, b]” into “x ∈ [a+ δ, b− δ]” for some δ > 0,
so that under a small enlargement parameter ∆ > 0, we have [a+ δ −∆, b− δ + ∆] ⊆ [a, b];
in other terms, the satisfaction of the enlarged guard implies the satisfaction of the original
guard. Formally, we will consider the shrunk timed automaton A−kδ where k = (ki)i∈I ∈ NI>0
and δ > 0. Clearly, if ∆ < maxi∈I(ki) · δ, A−kδ+∆ does not contain more behaviours than
A; in fact JA−kδ+∆K v JAK.

Shrinking is a natural idea when one is interested in the preservation of strict timing
constraints, such as critical deadlines. However, shrinking may remove too many behaviours
and the resulting automaton may even become blocking. We are interested in deciding
the existence of shrinking parameters k and δ, and in their computation, for which the
shrunk timed automaton is non-blocking and/or is able to time-abstract simulate the original
automaton. We will see in Section 6 that when the shrunk automaton satisfies these properties,
these are preserved in a concrete implementation semantics.

I Definition 4. A timed automaton A is shrinkable if there exists k ∈ NI>0 and δ0 ∈ Q>0
such that for all 0 ≤ δ ≤ δ0,

JA−kδK is non-blocking,
JAK vt.a. JA−kδK, with the following additional technical requirement: for each region
(l, r) of R(A), there is a guard g and a vector h of non-negative integers such that for all
0 ≤ δ ≤ δ0, the simulator set of (l, r) in JA−kδK equals J〈g〉−hδK.

We say that A is shrinkable w.r.t. non-blockingness (resp. w.r.t. simulation) if only the first
(resp. second) condition holds. The above k and δ0 are shrinking parameters for A.

We define shrinkability “for all 0 ≤ δ ≤ δ0”, so if an automaton is shrinkable, we require
it to remain correct when imprecisions are reduced, that is when δ is chosen smaller. In fact,
the shrunk automaton can be seen as an approximation of the initial automaton, and we
would like to be able to obtain arbitrarily close correct approximations by only adjusting δ.
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This requirement is also related to the property called “faster-is-better” [2, 15]. Notice also
that when a timed automaton is shrinkable w.r.t. simulation, then we require that for all
small enough δ, each simulator set can be expressed as shrinkings 〈g〉−hδ where h is the
same for all δ (that is, parameters h are uniform). Then, when we adjust the parameter δ,
the expressions of the simulator sets do not change. This is desirable for instance when one
needs to use these constraints in the system.

3.2 Shrinking as a Remedy to Unrealistic Behaviour

Shrinkability also excludes unrealistic timing constraints, such as Zeno behaviours. In fact,
for any timed automaton A, consider the automaton A′ obtained from A by adding a new
clock u, the constraint u ≥ 0 and the reset u := 0 at every edge. Clearly, A and A′ are
isomorphic. If automaton A′ is shrinkable, then A does not need Zeno strategies to satisfy
the properties proven for the exact semantics and preserved by time-abstract similarity (in
fact, each u ≥ 0 is shrunk to some u ≥ δi with δi > 0).

`1 `2

y≤1−δ1 ∧ 1+δ2≤x
x:=0

y≤1−δ3, y:=0

Figure 1 A shrunk timed automaton
that is blocking whenever δ2 > 0 or
δ3 > 0.

But unrealistic timing constraints are not limited to
Zeno behaviours. The automaton in Fig. 1 provides an
example of a timed automaton which is non-blocking
for δ1 = δ2 = δ3 = 0, and lets the time diverge but
it becomes blocking whenever δ2 > 0 or δ3 > 0, so
it is not shrinkable. A similar example was provided
in [11] but with equality constraints, so it is trivially
not shrinkable. In section 5, we give an example of a
shrinkable timed automaton (Fig. 3).

3.3 Decidability of Shrinkability

Our main result is the decidability of shrinkability:

I Theorem 5. Shrinkability w.r.t. non-blockingness can be decided in PSPACE, and in NP
if the number of outgoing transitions from each location is bounded. Shrinkability w.r.t.
simulation is decidable in EXPTIME. Finally, shrinkability is decidable in EXPTIME.

Moreover, we will show that when a given timed automaton is shrinkable, the least
shrinking parameters can be computed (see Section 5 for details). In the rest, we present
the proof of this result. We begin by defining parametric difference-bound matrices (DBMs)
and give tools for solving fixpoint equations on DBMs through max-plus equations. We then
explain how this can be used to decide shrinkability. In Section 6, we present a concrete
implementation semantics and prove that non-blockingness and simulation are preserved in
this semantics for all shrinkable timed automata.

4 Some algebraic tools

4.1 Parameterized Difference Bound Matrices

Difference bound matrices are data structures used to represent sets of clock valuations in
timed automata analysis [17]. Write C = {1, . . . , C}, and add an artificial clock of index 0,
that has constant value 0. We let C0 = C ∪ {0}. A difference bound matrix (DBM) over C0 is
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an element ofMC+1(Q∞)1. Each M ∈MC+1(Q∞) defines a zone, that is, a convex subset
of RC≥0 defined by JMK = {v ∈ RC≥0 | ∀x, y ∈ C0,−My,x ≤ v(x)− v(y) ≤Mx,y}. Clearly, each
DBM can be equivalently described by a guard, and conversely. A DBM M is normalized
when for all x, y, z ∈ C0, it holds Mx,y ≤Mx,z +Mz,y. Any non-empty DBM can be made
normalized in polynomial time, by interpreting it as an adjacency matrix of a weighted graph
and computing all shortest paths between any two clocks.

We define several elementary operations on DBMs. Given a DBM M , we let Pretime(M)
be the normalized DBM that describes the time predecessors of JMK, i.e., JPretime(M)K =
{v ∈ RC≥0 | ∃t ∈ R≥0 s.t. v+ t ∈ JMK}. Given R ⊆ C, we let UnresetR(M) be the normalized
DBM that defines {v ∈ RC≥0 | v[R← 0] ∈ JMK}. For two DBMs M and N , we write M ∩N
for the normalized DBM describing JMK ∩ JNK. A function f : MC+1(Q∞)n →MC+1(Q∞)
(for some n > 0), is said elementary if it combines its arguments using elementary operations.
Efficient algorithms exist for computing these operations on DBMs [6, 12].

We extend standard DBMs in order to manipulate sets of states in shrunk timed automata.
We fix a tuple of parameters k = (ki)i∈I , which will take nonnegative integer values. The
max-plus polynomials over k, denoted by G(k), are generated by the grammar φ ::= l ∈
N | ki, i ∈ I | φ+ φ | max(φ, φ). For any max-plus polynomial φ and valuation ν : k −→ N,
we denote by φ[ν] the value of formula φ replacing each parameter k by ν(k). A (resp.
positive, parameterized) shrinking matrix is an element of MC+1(N) (resp. MC+1(N>0),
MC+1(G(k))). If P is a parameterized shrinking matrix (PSM) and ν is a valuation, the
shrinking matrix P [ν] is defined in a natural way. Note that our definition of PSM is different
from parametric DBMs considered for instance in [20], since we use max-plus polynomials
instead of linear expressions and only consider natural number valuations. In what follows,
we manipulate parameterized DBMs, also called shrunk DBMs, of the form M − δ · P , where
δ is a fresh parameter, and P is a PSM. If M is a DBM for guard g, the shrunk guard 〈g〉−δ
will be represented by the shrunk DBM M − 1 · δ, where matrix 1 has 0’s on the diagonal
and 1’s everywhere else.

Shrunk DBMs will be used as a data structure for manipulating the state space of shrunk
timed automata. The following lemma explains how elementary operations can be computed
on shrunk DBMs. In particular, it shows how shrinking parameters (i.e., the PSM) can be
propagated in a backward analysis while staying in the max-plus theory.

I Lemma 6. Let M,M1, . . . ,Mn be non-empty normalized DBMs and f : MC+1(Q∞)n →
MC+1(Q∞) be an elementary function with M = f(M1, . . . ,Mn). Let P1, . . . , Pn be matrices
in MC+1(G(k)). Then, we can compute P ′ ∈ MC+1(G(k)) s.t. for all ν : k → N, there
exists a (computable) δ0 > 0 s.t. M − δP ′[ν] = f(M1 − δP1[ν], . . . ,Mn − δPn[ν]) for all
0 ≤ δ < δ0. All these computations can be achieved in polynomial time, and in particular
P ′ has size polynomial in the size of P1, . . . , Pn and f . If the above property holds, we write
M − δP ′ = f(M1 − δP1, . . . ,Mn − δPn).

For solving the shrinkability problems, we will use fixpoint equations on shrunk DBMs
(see Section 5). As a prerequisite, we therefore first investigate max-plus equations, and then
give a general theorem for solving those equations.

1 Mn(X) is the set of n× n matrices with coefficients in X, where all diagonal coefficients are 0.
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= Pretime

 ∩Unresety





Figure 2 Consider an edge ` g,σ,R−−−→ `′ in a timed automaton where g = 1 ≤ y ∧ 0 ≤ x− y and
R = {y}. For any pair of zones X,Y , the equation Y = Pretime(JgK∩Unresety(X)) expresses the fact
that X can be reached in one step starting from Y . Consider Y = J0 ≤ x, y ≤ 3∧0 ≤ x−y ≤ 2K, and
X = J1 ≤ x ≤ 4∧x− y ≤ 3K. In the figure, the union of dark gray and light gray areas illustrate this
equation while the dark gray areas illustrate the equation between shrunk zones. Let us assume that
we shrink g to g′ = 1+k1δ ≤ y∧k2δ ≤ x−y and X to X ′ = J1+k3δ ≤ x ≤ 4−k4δ∧x−y ≤ 3−k5δK,
for positive integers ki and δ > 0 small enough so that these sets are non-empty. Then, by Lemma 6,
we can compute the shrinking parameters for Y , so that the shrunk zone Y ′ satisfies the new equation
Y ′ = Pretime(Jg′K ∩Unresety(X ′)). We get:

Unresety(X ′) = J1 + k3δ ≤ x ≤ 3− k5δK,
Jg′K ∩Unresety(X ′) = J1 + max(k1 + k2, k3)δ ≤ x ≤ 3− k5δ

∧1 + k1δ ≤ y ≤ 3− (k2 + k5)δ
∧k2δ ≤ x− y ≤ 2− (k1 + k5)δK,

Y ′ = Pretime(Jg′K ∩Unresety(X ′)) = Jk2δ ≤ x ≤ 3− k5δ ∧ 0 ≤ y ≤ 3− (k2 + k4)δ
∧k2δ ≤ x− y ≤ 2− (k1 + k5)δK.

This equality holds for all 0 ≤ δ < min( 1
k4−k5

, 2
max(k1+k2,k3)+k5

, 3
k2+k5

, 2
k1+k2+k5

, 2
k1−k2+k5

), where
a term is +∞ if the denominator is zero.

4.2 Max-plus equations

In PSMs, formal expressions using maximization and sum are manipulated. The set R≥0
endowed with these operations is called the max-plus algebra. There is a well-established
theory on solving equations in this algebra, with applications to discrete-event systems [5].

Let k1, . . . , kn, kn+1, . . . , kn+n′ be parameters, and φ1, . . . , φn be max-plus polynomials.
We will be interested in computing solutions of fixpoint equations of the following form:

ki = φi(k1, . . . , kn, kn+1, . . . , kn+n′), ∀1 ≤ i ≤ n. (E)
Notice that variables kn+1, . . . , kn+n′ only appear at the right hand side of the equation.
Equation (E) defines a non-linear equation (polynomials φi have arbitrary degrees). Although
Tarski’s Theorem [24] guarantees the existence of fixpoint solutions in N ∪ {∞}, we are
interested in finite solutions, i.e., solutions in N which is not a complete lattice.

I Theorem 7. For any equation of the form (E), the existence of a solution in N is decidable
in polynomial time in the size of the equation. Moreover, assume there is a solution in N in
which kn+1, . . . , kn+n′ take positive values; then given any fixed positive values vn+1, . . . , vn+n′ ,
Equation (E) with the additional constraints kn+i = vn+i for all 1 ≤ i ≤ n′ has a least
solution, computable in polynomial time.

The second point of Theorem 7 states that the existence of solutions with positive values for
the unconstrained variables does not depend on their exact values. These results rely on an
analysis of max-plus graphs, that we associate to max-plus equations.
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4.3 Equations on shrunk DBMs
We now apply the previous results to solving equations on shrunk DBMs. We consider
fixpoint equations on DBMs of the form:

Mi = fi(M1, . . . ,Mn,Mn+1, . . . ,Mn+n′), ∀1 ≤ i ≤ n, (1)
where M1, . . . ,Mn+n′ are unknown normalized DBMs (Mn+1, . . . ,Mn+n′ are unconstrained)
and fi’s are elementary functions. We are interested in shrunk solutions defined as follows.

I Definition 8. Fix a solution (Mi)i of (1). A shrunk solution of (1) w.r.t. (Mi)i is a triple(
(Mi)i, (Qi)i, δ0

)
, where δ0 > 0 and Qi’s are shrinking matrices such that for all 0 ≤ δ ≤ δ0,

(Mi − δQi)i is a solution of (1). A shrunk solution is called the greatest shrunk solution if
(Qi)i are the least shrinking matrices which define a shrunk solution w.r.t. (Mi)i.

Assume that (1) has a solution and fix one, say (Mi)i. From Lemma 6, there exist matrices
(φi)1≤i≤n of max-plus polynomials s.t. for all shrinking matrices (Qi)i, there exists δ0 > 0
such that Mj − φj((Qi)i) · δ = fj((Mi −Qi · δ)i) for all 0 ≤ δ ≤ δ0 and all 1 ≤ j ≤ n. This
suggests that we study the following fixpoint equation on PSMs Pi’s, where each coefficient
is a fresh parameter and polynomials φi’s are those from Lemma 6 for these Pi’s:

Pi = φi(P1, . . . , Pn, Pn+1, . . . , Pn+n′), ∀1 ≤ i ≤ n. (2)
This is a max-plus equation (like (E)), whose size is polynomial in the size of (1). The
following lemma links the shrunk solutions of (1) with the solutions of (2).

I Lemma 9. Fix any solution (Mi)i of (1) and consider max-plus polynomial matrices
(φi)1≤i≤n as defined above. Then,

For all shrinking matrices (Qi)i, there exists δ0 > 0 s.t.
(
(Mi)i, (Qi)i, δ0

)
is a shrunk

solution of (1) if, and only if, (Qi)i is a solution of (2) in N.(
(Mi)i, (Qi)i, δ0) is the greatest shrunk solution of (1) iff (Qi)i is the least solution of (2).
If (2) has a solution (Qi)i where Qn+1, . . . , Qn+n′ have positive coefficients (except for
0 on the diagonal), then for any matrices Rn+1, . . . , Rn+n′ in MC+1(N>0), (2) with
the additional constraints Pn+i = Rn+i for all 1 ≤ i ≤ n′ has a least shrunk solution,
computable in polynomial time.

Notice that by Lemma 9, one can also decide the existence of a solution of (2), where
all Qn+1, . . . , Qn+n′ are positive shrinking matrices: it suffices to add to (2) the equalities
Qn+i = 1, where 1 is the matrix with 1’s everywhere except for 0’s on the diagonal.

5 Deciding shrinkability

We now apply the results we developed in previous sections to shrinkability. We fix a
non-blocking timed automaton A = (L, l0, C,Σ, E). We assume that all edges of A have
distinct labels, and identify edges with their labels. This is harmless for our purpose since
we compare an automaton to its shrinking that has the same structure. For any edge with
label σ ∈ Σ and guard gσ, let Gσ be the DBM that represents JgσK, and Rσ the reset set.

5.1 Shrinkability w.r.t. simulation.
Thanks to the hypothesis on distinct edge labels, the simulator sets of regions (l, r) in JAK
can be expressed by the following fixpoint equation:

JMl,rK =
⋂
σ∈Σ

⋂
(l,r)

σ==⇒(l′,r′)

Pretime(UnresetRσ (JMl′,r′K) ∩ JGσK), (3)
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for all (l, r) ∈ R(A), where (Ml,r)l,r are the unknown DBMs. In the greatest solution,
each Ml,r represents the simulator set of region (l, r) in JAK. Consider the greatest solution
(Ml,r)l,r ∪ (Gσ)σ, where we see Gσ’s as a part of the solution. Let (l0,~0) denote the initial
state of R(A). Solving shrinkability means deciding whether (3) has a shrunk solution with
respect to (Ml,r)l,r ∪ (Gσ)σ, such that Ml0,~0 is shrunk to a zone that contains ~0 (since (l0,~0)
is the initial state of any shrinking of A). For any shrinking matrix Pl0,~0, it can be checked in
polynomial time whether ~0 belongs to JMl0,~0 − δPl0,~0K for sufficiently small δ. Now, if there
is a shrunk solution to (3), then for any positive shrinking matrices (Kσ)σ Lemma 9 provides
a (greatest) shrunk solution where the shrinking matrices for (Gσ)σ are fixed to (Kσ)σ.
In particular, shrinkability w.r.t. simulation does not depend on how much guards are
shrunk: either all positive integer vectors k witness the shrinkability of A (into A−kδ), or A
is not shrinkable w.r.t. simulation for any value of k.

The simulator sets Ml,r can be computed in exponential time ([18]), and Equation (3) has
size polynomial in the size of these sets. By Lemma 9, the overall complexity is in EXPTIME.

5.2 Shrinkability w.r.t. non-blockingness.
Since automaton A is non-blocking, (Gσ)σ satisfies the following equation.

∀σ ∈ Σ, JGσK ⊆
⋃

σ′:(σ,σ′)∈ΣE◦E

UnresetRσ (Pretime(JGσ′K)), (4)

where we let ΣE◦E = {(σ, σ′) | ∃l, l′, l′′ ∈ L, l σ−→ l′
σ′−→ l′′ ∈ E}, that is the set of pairs of

labels of consecutive transitions in A. We rewrite this equivalently as follows.
∀σ ∈ Σ, JGσK =

⋃
σ′:(σ,σ′)∈ΣE◦E

UnresetRσ (Pretime(JGσ′K)) ∩ JGσK, (5)

Now, A is shrinkable w.r.t. non-blockingness if, and only if, this equation has a shrunk
solution w.r.t. (Gσ)σ. We can unfortunately not directly use our general results on shrunk
solutions since our equation contains a union. We instead apply transformations to this
equation in order to remove the union. We start by rewriting the above equation as follows:

∀σ ∈ Σ, JGσK =
⋃

σ′:(σ,σ′)∈ΣE◦E

JMσ,σ′K, JMσ,σ′K = UnresetRσ (Pretime(JGσ′K))∩ JGσK.

(6)
Fix a solution (Gσ)σ ∪ (Mσ,σ′)σ,σ′ , which exists again by the non-blockingness assumption.
We solve the max-plus equation corresponding to the right part of (6) by Lemma 9, but we
will add to this equation some inequalities which “encode" the left part of (6). We use the
following technical lemma to choose these inequalities.

I Lemma 10. Let C1, . . . , Cb and D be normalized DBMs s.t. JDK =
⋃

1≤i≤bJCiK and
P1, . . . , Pb and Q shrinking matrices s.t. for some δ0 > 0, D − δQ and Ci − δPi are
normalized for all δ ∈ [0, δ0]. Then, one can decide the existence of (and then compute) some
δ1 > 0 s.t. JD − δQK = ∪1≤i≤bJCi − δPiK for all 0 < δ < min(δ0, δ1), in polynomial space
and in time O(|C0|2bp(|A|)), where p(·) is a polynomial.

Moreover, in this case, for all shrinking matrices Q′, P ′1, . . . , P ′b s.t. Qx,y ./ (Pi)x,y ⇔
Q′x,y ./ (P ′i )x,y and (Pi)x,y ./ (Pj)x,y ⇔ (P ′i )x,y ./ (P ′j)x,y for all i, j ∈ {1, . . . , b}, x, y ∈ C0
and ./ ∈ {<,=}, it holds JD − δQ′K = ∪1≤i≤bJCi − δP ′i K for all small enough δ > 0.

Note that checking equality between a zone and a union of zones is a difficult problem; some
heuristics were suggested in [13]. The second point of the lemma says that the satisfaction
of the left part of (6) by a shrunk solution only depends on the relative ordering of the
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`1 `2 `3 `4
σ1,y≤1∧0≤u

y,u:=0

σ2,y≤1∧1≤x∧0≤u

x,u:=0

σ3,1≤y∧0≤u

y,u:=0

σ4,x,y,u:=0

Figure 3 A shrinkable timed automaton. One can in fact shrink guards gσi into g′σ1 = 3δ ≤
x ∧ y ≤ 1 − δ ∧ y − x ≤ 1 − 4δ ∧ f(δ), g′σ2 = 1 + δ ≤ x ∧ y ≤ 1 − 2δ ∧ 3δ ≤ x − y ∧ f(δ) and
g′σ3 = y ≤ 1− δ ∧ f(δ), where f(δ) = δ ≤ u ∧ y − u ≤ 1− 2δ, The resulting shrunk automaton can
be seen to be non-blocking and time-abstract similar to A for any δ ∈ [0, 1

4 ]. Notice how additional
constraints appear in the guards.

coefficients of the shrinking matrices. Therefore, we only need to guess the ordering between
all parameters (there is at least one if there exists a shrunk solution), and solve the right
part of (6) augmented with these guessed (in)equalities.

Formally, let Φ be the max-plus equation corresponding to the right part of (6), as given
by Lemma 9. Let k′ denote the set of all parameters that appear in Φ (there is one parameter
per element of each matrix Gσ and Mσ,σ′). Notice that k′ has size O

(
(|C0| · |L| · b)2), where

b is the maximal number of outgoing edges in A, and that Φ has size polynomial in the size
of A. Φ is a conjunction of equations k = φk(k′) for all k ∈ k′. For all pairs k, l ∈ k′, we
guess a relation among {<,=, >}, and define equation Φ′ by adding these relations to Φ.
This can be done, for the case k = l, by replacing the constraints on k and l respectively by
k = max(φk(k′), l) and l = max(φk(k′), k), and in the case k > l, by replacing the constraint
on k by k = max(φk(k′), l + 1). Notice that Φ′ is obtained from Φ in polynomial time and
with a polynomial number of guesses. We then solve Φ′ using Theorem 7. If we find a
solution, say (Pσ)σ ∪ (Pσ,σ′)σ,σ′ , we verify that JGσ− δPσK = ∪σ′JMσ,σ′ − δPσ,σ′K for small δ,
for all pairs (σ, σ′) ∈ ΣE◦E , in time O(|C0|2bp(|A|)) and in polynomial space by Lemma 10.
We accept if all verifications succeed and reject otherwise. If accepted, any solution provides
a shrunk solution of (6), by Lemma 9. Conversely, if there is a shrunk solution of (6), then,
Φ′ can be constructed for the guesses corresponding to this solution, and by Lemma 10, Φ′
has a solution. If b is fixed, this procedure is in NP. Otherwise, instead of making guesses, we
can deterministically try all possible guesses (the number of possible guesses is O(2(|C|·|L|·b)2)
and verify in polynomial space, so the procedure is then in PSPACE.

Finally, to decide shrinkability, one can first compute parameters k and δ0 for non-
blockingness, then check shrinkability w.r.t. simulation since the latter does not depend on
k and δ0. Figure 3 shows an example of a shrinkable timed automaton.

6 Implementation Semantics

In this section, we present an implementation semantics, which takes into account reaction
times and clock imprecisions. Our semantics corresponds to the execution of timed automata
by a digital system that has a single digital clock and nonzero reaction time. Our semantics
is closely related to the one studied in [15] with minor differences, but we prove additional
properties besides the one given there. We first define our semantics and state its properties,
then compare it with [15], and with other related work.

We describe a system which interacts, via sending and receiving signals, with a physical
environment (e.g. via sensors). We distinguish input and output actions, and define the
transitions of the system taking into account the imprecisions of the clock, the transmission
delay of signals and the reaction time of the system. When an event is generated at time T
by the environment, it is treated by the system at time T + ε, for some ε > 0 which will be
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bounded but unpredictable. Similarly, when the environment receives a signal at time T ,
it must have been sent at some time T − ε. We assume that the system ignores any signal
that is received during the treatment of the previous signal; this reaction time will be also
bounded but unpredictable. We define the timestamps of both input and output actions
as the reaction times of the environment, since we are interested in the behaviour of the
environment controlled by a digital timed system.

The implementation semantics has three parameters: a) ∆c is the clock period, b) ∆r is
the maximum reaction time, following each action, c) ∆t is the maximum transmission delay
of signals between the system and the environment (ε above). We suppose the system has a
∆c-periodic clock, whose value, at any real time T , is bT c∆c

= maxk≥0{k∆c | k∆c ≤ T}.

I Definition 11. Let A = (L, `0, C,Σ, E) be a TA with Σ = Σin ∪ Σout, and ∆r,∆c,∆t > 0.
The implementation semantics JAKImpl is the TTS (SA, s0,Σ, E) in which states are tuples
(`, T, v, u0): ` is a location, T ∈ R≥0 the current real time, v ∈ RC≥0 the timestamp of the
latest reset for each clock, and u0 ∈ [0,∆r] the reaction time following the latest location
change. From any state (`, T, v, u0), for any edge ` σ,g,R−−−→ `′ and T ′ ≥ T , we let,

if σ ∈ Σin, (`, T, v, u0) σ(T ′)−−−→ (l′, T ′+ε, v[R← T ′+ε], u′0), whenever bT ′+εc∆c
−bvc∆c

|= g

and T ′ + ε ≥ T + u0, where (ε, u′0) ∈ [0,∆t]× [0,∆r] is chosen non-deterministically,
if σ ∈ Σout, (`, T, v, u0) σ(T ′)−−−→ (`′, T ′, v[R← T ′−ε], u′0), whenever bT ′−εc∆c

−bvc∆c
|= g,

ε < (T ′ − T ), and T ′ − ε ≥ T + u0, where (ε, u′0) ∈ [0,∆t] × [0,∆r] is chosen non-
deterministically.

Notice that ε and u0 are bounded by known values but are unpredictable, so they cannot
be chosen by the system. We will consider scheduler functions ρ, which, depending on the
history of a given run, chooses (ε, u0) at each transition. For any scheduler ρ, we denote by
JAKImpl

ρ the implementation semantics, where (ε, u0) is given by ρ at each transition. We will
not formally define ρ here, but it can be done without difficulty.

The following proposition states the relation between the exact semantics and the
implementation semantics of timed automata. All properties hold under any scheduler ρ.
For any TTS T , let us write T ≥α, the TTS obtained from T where consecutive transitions
are separated by at least α time units.

I Proposition 12. Let A be a timed automaton s.t. JAK is non-blocking, and ∆r,∆c,∆t > 0.
Then, for any ∆ ≥ 2∆c + 4∆t + ∆r and scheduler ρ, JA∆KImpl

ρ is non-blocking and,
JAK≥2∆r+∆t v JA∆KImpl

ρ v JA∆+2∆c+4∆t
K.

Now, for any timed automaton A, consider A′ as defined in Section 3.2. We have
JA′−kδK v JA′−kδ+∆KImpl

ρ v JA′−kδ+∆′K v JA′K = JAK,

whenever ∆ ≥ 2∆c + 4∆t + ∆r, ∆′ = ∆ + 2∆c + 4∆t and δ ≥ max(2∆r + ∆t,∆′). In fact,
JA′−kδK

≥2∆r+∆t is equal to JA′−kδK whenever δ ≥ 2∆r + ∆t, and the rightmost simulation is
due to the fact that −kδ + ∆′ < 0. Thus, given appropriate parameters, the implementation
semantics of a shrunk automaton is always a refinement of the exact semantics of the original
automaton. Moreover, when A′ is shrinkable (say, with parameters kδ), then JA′−kδ+∆KImpl

ρ

is also non-blocking and JA′K vt.a. JA′−kδ+∆KImpl
ρ . Thus, the properties of shrinkable timed

automata are preserved in implementation.

6.1 Related Work
A similar semantics, called the program semantics, was defined in [15] and was proven to be
simulated by the enlarged semantics (as in the rightmost simulation in Proposition 12). Our
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definition follows their ideas, but the main difference is that our semantics is not input-enabled,
that is, it can ignore signals during the treatment of another signal, and has no buffer. Both
assumptions are applicable to different platforms (see [4, 16] for examples of systems that
ignore any signal unless it is maintained long enough). Moreover, instead of detailing the
reception and the treatment of the signals in several steps, we rather define action transitions
taking a positive unpredictable amount of time, during which computations take place. This
allows us to model the unpredictability using schedulers and state our properties for any
scheduler. Note that two results in Proposition 12 are new compared to [15]: the leftmost
simulation and the preservation of non-blockingness. Another recent work considers the
behaviour of timed automata when actions have long execution times [1] but it assumes
perfect clocks. A different line of work considers the implementability of timed automata
extended with tasks but imprecisions and reaction times are not considered [19].
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