
Using non-convex approximations for efficient
analysis of timed automata
Frédéric Herbreteau1, Dileep Kini2, B. Srivathsan1, and
Igor Walukiewicz1

1 Université de Bordeaux, IPB, CNRS, LaBRI UMR5800
2 Indian Institute of Technology Bombay, Department of Computer Science and

Engineering

Abstract
The reachability problem for timed automata asks if there exists a path from an initial state to
a target state. The standard solution to this problem involves computing the zone graph of the
automaton, which in principle could be infinite. In order to make the graph finite, zones are
approximated using an extrapolation operator. For reasons of efficiency in current algorithms
extrapolation of a zone is always a zone; and in particular it is convex.

In this paper, we propose to solve the reachability problem without such extrapolation oper-
ators. To ensure termination, we provide an efficient algorithm to check if a zone is included in
the so called region closure of another. Although theoretically better, closure cannot be used in
the standard algorithm since a closure of a zone may not be convex.

An additional benefit of the proposed approach is that it permits to calculate approximating
parameters on-the-fly during exploration of the zone graph, as opposed to the current methods
which do it by a static analysis of the automaton prior to the exploration. This allows for further
improvements in the algorithm. Promising experimental results are presented.

1998 ACM Subject Classification D.2.4 Software/Program Verification; F.3.1 Specifying and
Verifying and Reasoning about Programs; F.4.1 Mathematical Logic

Keywords and phrases Timed Automata; Model-checking; Non-convex abstraction; On-the-fly
abstraction

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2011.78

1 Introduction

Timed automata [1] are obtained from finite automata by adding clocks that can be reset
and whose values can be compared with constants. The crucial property of timed automata
is that their reachability problem is decidable: one can check if a given target state is
reachable from the initial state. Reachability algorithms are at the core of verification tools
like Uppaal [4] or RED [16], and are used in industrial case studies [11, 6]. The standard
solution constructs a search tree whose nodes are approximations of zones. In this paper
we give an efficient algorithm for checking if a zone is included in an approximation of
another zone. This enables a reachability algorithm to work with search trees whose nodes
are just unapproximated zones. This has numerous advantages: one can use non-convex
approximations, and one can compute approximating parameters on the fly.

The first solution to the reachability problem has used regions, which are equivalence
classes of clock valuations. Subsequent research has shown that the region abstraction is
very inefficient and an other method using zones instead of regions has been proposed. This

© Frédéric Herbreteau, Dileep Kini, B. Srivathsan, and Igor Walukiewicz;
licensed under Creative Commons License NC-ND

31st Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011).
Editors: Supratik Chakraborty, Amit Kumar; pp. 78–89

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62916769?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2011.78
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

F. Herbreteau, D. Kini, B. Srivathsan, and I. Walukiewicz 79

can be implemented efficiently using DBMs [10] and is used at present in almost all timed-
verification tools. The number of reachable zones can be infinite, so one needs an abstraction
operator to get a finite approximation. The simplest is to approximate a zone with the set
of regions it intersects, the so called closure of a zone. Unfortunately, the closure may
not always be convex and no efficient representation of closures is known. For this reason
implementations use another convex approximation that is also based on (refined) regions.

We propose a new algorithm for the reachability problem using closures of zones. To this
effect we provide an efficient algorithm for checking whether a zone is included in a closure
of another zone. In consequence we can work with non-convex approximations without a
need to store them explicitly.

Thresholds for approximations are very important for efficient implementation. Good
thresholds give substantial gains in time and space. The simplest approach is to take as a
threshold the maximal constant appearing in a transition of the automaton. A considerable
gain in efficiency can be obtained by analyzing the graph of the automaton and calculating
thresholds specific for each clock and state of the automaton [2]. An even more efficient
approach is the so called LU-approximation that distinguishes between upper and lower
bounds [3]. This is the method used in the current implementation of UPPAAL. We show
that we can accommodate closure on top of the LU-approximation at no extra cost.

Since our algorithm never stores approximations, we can compute thresholds on-the-fly.
This means that our computation of thresholds does not take into account unreachable
states. In consequence in some cases we get much better LU-thresholds than those obtained
by static analysis. This happens in particular in a very common context of analysis of
parallel compositions of timed automata.

Related work
The topic of this paper is approximation of zones and efficient handling of them. We show
that it is possible to use non-convex approximations and that it can be done efficiently.
In particular, we improve on state of the art approximations [3]. Every forward algorithm
needs approximations, so our work can apply to tools like RED or UPPAAL.

Recent work [15] reports on backward analysis approach using general linear constraints.
This approach does not use approximations and relies on SMT solver to simplify the con-
straints. Comparing forward and backward methods would require a substantial test suite,
and is not the subject of this paper.

Organization of the paper
The next section presents the basic notions and recalls some of their properties. Section 3
describes the new algorithm for efficient inclusion test between a zone and a closure of
another zone. The algorithm constructing the search tree and calculating approximations
on-the-fly is presented in Section 4. Some results obtained with a prototype implementation
are presented in the last section. All missing proofs are presented in the full version of the
paper [13].

2 Preliminaries

2.1 Timed automata and the reachability problem
Let X be a set of clocks, i.e., variables that range over R≥0, the set of non-negative real
numbers. A clock constraint is a conjunction of constraints x#c for x ∈ X, # ∈ {<,≤,=

FSTTCS 2011

80 Using non-convex approximations for efficient analysis of timed automata

,≥, >} and c ∈ N, e.g. (x ≤ 3 ∧ y > 0). Let Φ(X) denote the set of clock constraints over
clock variables X. A clock valuation over X is a function ν : X → R≥0. We denote RX≥0
the set of clock valuations over X, and 0 the valuation that associates 0 to every clock in
X. We write ν � φ when ν satisfies φ ∈ Φ(X), i.e. when every constraint in φ holds after
replacing every x by ν(x). For δ ∈ R≥0, let ν + δ be the valuation that associates ν(x) + δ

to every clock x. For R ⊆ X, let [R]ν be the valuation that sets x to 0 if x ∈ R, and that
sets x to ν(x) otherwise.

A Timed Automaton (TA) is a tuple A = (Q, q0, X, T,Acc) where Q is a finite set of
states, q0 ∈ Q is the initial state, X is a finite set of clocks, Acc ⊆ Q is a set of accepting
states, and T ⊆ Q × Φ(X) × 2X × Q is a finite set of transitions (q, g, R, q′) where g is a
guard, and R is the set of clocks that are reset on the transition. An example of a TA is
depicted in Figure 1. The class of TA we consider is commonly known as diagonal-free TA
since clock comparisons like x − y ≤ 1 are disallowed. Notice that since we are interested
in state reachability, considering timed automata without state invariants does not entail
any loss of generality. Indeed, state invariants can be added to guards, then removed, while
preserving state reachability.

A configuration of A is a pair (q, ν) ∈ Q × RX≥0; (q0,0) is the initial configuration. We
write (q, ν) δ,t−→ (q′, ν′) if there exists δ ∈ R≥0 and a transition t = (q, g, R, q′) in A such
that ν + δ � g, and ν′ = [R]ν. Then (q′, ν′) is called a successor of (q, ν). A run of
A is a finite sequence of transitions: (q0, ν0) δ0,t0−−−→ (q1, ν1) δ1,t1−−−→ · · · (qn, νn) starting from
(q0, ν0) = (q0,0).

A run is accepting if it ends in a configuration (qn, νn) with qn ∈ Acc. The reachability
problem is to decide whether a given automaton has an accepting run. This problem is
known to be Pspace-complete [1, 8].

2.2 Symbolic semantics for timed automata
The reachability problem is solved using so-called symbolic semantics. It considers sets of
(uncountably many) valuations instead of valuations separately. A zone is a set of valuations
defined by a conjunction of two kinds of constraints: comparison of difference between two
clocks with an integer like x−y#c, or comparison of a single clock with an integer like x#c,
where # ∈ {<,≤,=,≥, >} and c ∈ N. For instance (x − y ≥ 1) ∧ (y < 2) is a zone. The
transition relation on valuations is transferred to zones as follows. We have (q, Z) t−→ (q′, Z ′)
if Z ′ is the set of valuations ν′ such that (q, ν) δ,t−→ (q′, ν′) for some ν ∈ Z and δ ∈ R≥0. The
node (q′, Z ′) is called a successor of (q, Z). It can be checked that if Z is a zone, then Z ′ is
also a zone.

The zone graph of A, denoted ZG(A), has nodes of the form (q, Z) with initial node
(q0, {0}), and edges defined as above. Immediately from the definition of ZG(A) we infer
that A has an accepting run iff there is a node (q, Z) reachable in ZG(A) with q ∈ Acc.

Now, every node (q, Z) has finitely many successors: at most one successor of (q, Z) per
transition in A. Still a reachability algorithm may not terminate as the number of reachable
nodes in ZG(A) may not be finite [9]. The next step is thus to define an abstract semantics
of A as a finite graph. The basic idea is to define a finite partition of the set of valuations
RX≥0. Then, instead of considering nodes (q, S) with set of valuations S (e.g. zones Z), one
considers a union of the parts of RX≥0 that intersect S. This gives the finite abstraction.

Let us consider a bound function associating to each clock x of A a bound αx ∈ N. A
region [1] with respect to α is the set of valuations specified as follows:
1. for each clock x ∈ X, one constraint from the set:

F. Herbreteau, D. Kini, B. Srivathsan, and I. Walukiewicz 81

q0 q1 q2 q3
x ≤ 5

y ≥ 5, x := 0
x ≤ 14, y := 0

y ≥ 106

Figure 1 Timed automaton A.

{x = c | c = 0, . . . , αx} ∪ {c− 1 < x < c | c = 1, . . . , αx} ∪ {x > αx}

2. for each pair of clocks x, y having interval constraints: c− 1 < x < c and d− 1 < y < d,
it is specified if fract(x) is less than, equal to or greater than fract(y).

It can be checked that the set of regions is a finite partition of RX≥0.
The closure abstraction of a set of valuations S, denoted Closureα(S), is the union of

the regions that intersect S [7]. A simulation graph, denoted SGα(A), has nodes of the
form (q, S) where q is a state of A and S ⊆ RX≥0 is a set of valuations. The initial node of
SGα(A) is (q0, {0}). There is an edge (q, S) t−→ (q′,Closureα(S′)) in SGα(A) iff S′ is the set
of valuations ν′ such that (q, ν) δ,t−→ (q′, ν′) for some ν ∈ S and δ ∈ R≥0. Notice that the
reachable part of SGα(A) is finite since the number of regions is finite.

The definition of the graph SGα(A) is parametrized by a bound function α. It is well-
known that if we take αA associating to each clock x the maximal integer c such that x#c
appears in some guard of A then SGα(A) preserves the reachability properties.

I Theorem 1. [7] A has an accepting run iff there is a reachable node (q, S) in SGα(A)
with q ∈ Acc and αA ≤ α.

For efficiency it is important to have a good bound function α. The nodes of SGα(A)
are unions of regions. Hence the size of SGα(A) depends on the number of regions which is
O
(
|X|!.2|X|.

∏
x∈X(2.αx + 2)

)
[1]. It follows that smaller values for α yield a coarser, hence

smaller, symbolic graph SGα(A). Note that current implementations do not use closure but
some convex under-approximation of it that makes the graph even bigger.

It has been observed in [2] that instead of considering a global bound function αA for
all states in A, one can use different functions in each state of the automaton. Consider for
instance the automaton A in Figure 1. Looking at the guards, we get that αx = 14 and
αy = 106. Yet, a closer look at the automaton reveals that in the state q2 it is enough to
take the bound αy(q2) = 5. This observation from [2] points out that one can often get
very big gains by associating a bound function α(q) to each state q in A that is later used
for the abstraction of nodes of the form (q,Closureα(q)(S)). In op. cit. an algorithm for
inferring bounds based on static analysis of the structure of the automaton is proposed. In
Section 4.2 we will show how to calculate these bounds on-the-fly during the exploration of
the automaton’s state space.

3 Efficient testing of inclusion in a closure of a zone

The tests of the form Z ⊆ Closureα(Z ′) will be at the core of the new algorithm we propose.
This is an important difference with respect to the standard algorithm that makes the tests
of the form Z ⊆ Z ′. The latter tests are done in O(|X|2) time, where |X| is the number of
clocks. We present in this section a simple algorithm that can do the tests Z ⊆ Closureα(Z ′)
at the same complexity with neither the need to represent nor to compute the closure.

FSTTCS 2011

82 Using non-convex approximations for efficient analysis of timed automata

We start by examining the question as to how one decides if a region R intersects a zone
Z. The important point is that it is enough to verify that the projection on every pair of
variables is nonempty. This is the cornerstone for the efficient inclusion testing algorithm
that even extends to LU-approximations.

3.1 When is R ∩ Z empty
It will be very convenient to represent zones by distance graphs. Such a graph has clocks
as vertices, with an additional special clock x0 representing constant 0. For readability, we
will often write 0 instead of x0. Between every two vertices there is an edge with a weight
of the form (4, c) where c ∈ Z ∪ {∞} and 4 is either ≤ or <. An edge x 4c−→ y represents
a constraint y − x 4 c: or in words, the distance from x to y is bounded by c. Let [[G]] be
the set of valuations of clock variables satisfying all the constraints given by the edges of G
with the restriction that the value of x0 is 0.

An arithmetic over the weights (4, c) can be defined as follows [5].
Equality (41, c1) = (42, c2) if c1 = c2 and 41=42.
Addition (41, c1) + (42, c2) = (4, c1 + c2) where 4=< iff either 41 or 42 is <.
Minus −(4, c) = (4,−c).
Order (41, c1) < (42, c2) if either c1 < c2 or (c1 = c2 and 41=< and 42=≤).
Floor b(<, c)c = (≤, c− 1) and b(≤, c)c = (≤, c).
This arithmetic lets us talk about the weight of a path as a weight of the sum of its edges.
A cycle in a distance graph G is said to be negative if the sum of the weights of its edges is
at most (<, 0); otherwise the cycle is positive. The following useful proposition is folklore.

I Proposition 2. A distance graph G has only positive cycles iff [[G]] 6= ∅.

A distance graph is in canonical form if the weight of the edge from x to y is the lower
bound of the weights of paths from x to y. A distance graph of a region R, denoted GR, is
the canonical graph representing all the constraints defining R. Similarly GZ for a zone Z.

We can now state a necessary and sufficient condition for the intersection R ∩ Z to be
empty in terms of cycles in distance graphs. We denote by Rxy the weight of the edge
x

4xycxy−−−−−→ y in the canonical distance graph representing R. Similarly for Z.

I Proposition 3. Let R be a region and let Z be a zone. The intersection R ∩ Z is empty
iff there exist variables x, y such that Zyx +Rxy ≤ (<, 0).

A variant of this fact has been proven as an intermediate step of Proposition 2 in [7].

3.2 Efficient inclusion testing
Our goal is to efficiently perform the test Z ⊆ Closure(Z ′) for two zones Z and Z ′. We are
aiming at O(|X|2) complexity, since this is the complexity of current algorithms used for
checking inclusion of two zones. Proposition 3 can be used to efficiently test the inclusion
R ⊆ Closure(Z ′). It remains to understand what are the regions intersecting the zone Z
and then to consider all possible cases. The next lemma basically says that every consistent
instantiation of an edge in GZ leads to a region intersecting Z.

I Lemma 4. Let G be a distance graph in canonical form, with all cycles positive. Let x, y
be two variables, and let x 4xycxy−→ y and y 4yxcyx−→ x be edges in G. For every d ∈ R such that
d 4xy cxy and −d 4yx cyx there exists a valuation v ∈ [[G]] with v(y)− v(x) = d.

F. Herbreteau, D. Kini, B. Srivathsan, and I. Walukiewicz 83

Thanks to this lemma it is enough to look at edges of GZ one by one to see what regions
we can get. This insight is used to get the desired efficient inclusion test

I Theorem 5. Let Z,Z ′ be zones. Then, Z * Closureα(Z ′) iff there exist variables x, y,
both different from x0, such that one of the following conditions hold:
1. Z ′0x < Z0x and Z ′0x ≤ (≤, αx), or
2. Z ′x0 < Zx0 and Zx0 ≥ (≤,−αx), or
3. Zx0 ≥ (≤,−αx) and Z ′xy < Zxy and Z ′xy ≤ (≤, αy) + bZx0c.

Comparison with the algorithm for Z ⊆ Z ′

Given two zones Z and Z ′, the procedure for checking Z ⊆ Z ′ works on two graphs GZ
and GZ′ that are in canonical form. This form reduces the inclusion test to comparing the
edges of the graphs one by one. Note that our algorithm for Z ⊆ Closureα(Z ′) does not
do worse. It works on GZ and GZ′ too. The edge by edge checks are only marginally more
complicated. The overall procedure is still O(|X|2).

3.3 Handling LU-approximation
In [3] the authors propose to distinguish between maximal constants used in upper and lower
bounds comparisons: for each clock x, Lx ∈ N ∪ {−∞} represents the maximal constant c
such that there exists a constraint x > c or x ≥ c in a guard of a transition in the automaton;
dually, Ux ∈ N ∪ {−∞} represents the maximal constant c such that there is a constraint
x < c or x ≤ c in a guard of a transition. If such a c does not exist, then it is considered
to be −∞. They have introduced an extrapolation operator Extra+

LU (Z) that takes into
account this information. This is probably the best presently known convex abstraction of
zones.

We now explain how to extend our inclusion test to handle LU approximation, namely
given Z and Z ′ how to directly check Z ⊆ Closureα(Extra+

LU (Z ′)) efficiently. Observe that
for each x, the maximal constant αx is the maximum of Lx and Ux. In the sequel, this is
denoted Z ⊆ Closure+

LU (Z ′). For this we need to understand first when a region intersecting
Z intersects Extra+

LU (Z ′). Therefore, we study the conditions that a region R should satisfy
if it intersects Extra+

LU (Z) for a zone Z.
We recall the definition given in [3] that has originally been presented using difference

bound matrices (DBM). In a DBM (cij ,≺i,j) stands for xi− xj ≺i,j ci,j . In the language of
distance graphs, this corresponds to an edge xj

≺i,jci,j−→ xi; hence to Zji in our notation. Let
Z+ denote Extra+

LU (Z) and GZ+ its distance graph. We have:

Z+
xy =

(<,∞) if Zxy > (≤, Ly)
(<,∞) if − Zy0 > (≤, Ly)
(<,∞) if − Zx0 > (≤, Ux), y 6= 0
(<,−Ux) if − Zx0 > (≤, Ux), y = 0
Zxy otherwise.

(1)

From this definition it will be important for us to note that GZ+ is GZ with some weights
put to (<,∞) and some weights on the edges to x0 put to (<,−Ux). Note that Extra+

LU (Z ′)
is not in the canonical form. If we put Extra+

LU (Z ′) into the canonical form then we could
just use Theorem 5. We cannot afford to do this since canonization can take cubic time
[5]. The following theorem implies that we can do the test without canonizing Extra+

LU (Z ′).
Hence we can get a simple quadratic test also in this case.

FSTTCS 2011

84 Using non-convex approximations for efficient analysis of timed automata

I Theorem 6. Let Z,Z ′ be zones. Let Z ′+ denote Extra+
LU (Z ′) obtained from Z ′ using

Equation 1 for each edge. Note that Z ′+ is not necessarily in canonical form. Then, we get
that Z * Closureα(Z ′+) iff there exist variables x, y different form x0 such that one of the
following conditions hold:
1. Z ′+0x < Z0x and Z ′+0x ≤ (≤, αx), or
2. Z ′+x0 < Zx0 and Zx0 ≥ (≤,−αx), or
3. Zx0 ≥ (≤,−αx) and Z ′+xy < Zxy and Z ′+xy ≤ (≤, αy) + bZx0c.

4 A New Algorithm for Reachability

Our goal is to decide if a final state of a given timed automaton is reachable. We do it by
computing a finite prefix of the reachability tree of the zone graph ZG(A) that is sufficient
to solve the reachability problem. Finiteness is ensured by not exploring a node (q, Z) if
there exists a (q, Z ′) such that Z ⊆ Closureα(Z ′), for a suitable α. We will first describe a
simple algorithm based on the closure and then we will address the issue of finding tighter
bounds for the clock values.

4.1 The basic algorithm
Given a timed automaton A we first calculate the bound function αA as described just
before Theorem 1. Each node in the tree that we compute is of the form (q, Z), where q is a
state of the automaton, and Z is an unapproximated zone. The root node is (q0, Z0), which
is the initial node of ZG(A). The algorithm performs a depth first search: at a node (q, Z),
a transition t = (q, g, r, q′) not yet considered for exploration is picked and the successor
(q′, Z ′) is computed where (q, Z) t−→ (q′, Z ′) in ZG(A). If q′ is a final state and Z ′ is not
empty then the algorithm terminates. Otherwise the search continues from (q′, Z ′) unless
there is already a node (q′, Z ′′) with Z ′ ⊆ ClosureαA(Z ′′) in the current tree.

The correctness of the algorithm is straightforward. It follows from the fact that if
Z ′ ⊆ ClosureαA(Z ′′) then all the states reachable from (q′, Z ′) are reachable from (q′, Z ′′)
and hence it is not necessary to explore the tree from (q′, Z ′). Termination of the algorithm
is ensured since there are finitely many sets of the form ClosureαA(Z). Indeed, the algorithm
will construct a prefix of the reachability tree of SGα(A) as described in Theorem 1.

The above algorithm does not use the classical extrapolation operator named Extra+
M

in [3] and Extra+
α hereafter, but the coarser Closureα operator [7]. This is possible since the

algorithm does not need to represent Closureα(Z), which is in general not a zone. Instead of
storing Closureα(Z) the algorithm just stores Z and performs tests Z ⊆ Closureα(Z ′) each
time it is needed (in contrast to Algorithm 2 in [7]). This is as efficient as testing Z ⊆ Z ′

thanks to the algorithm presented in the previous section.
Since Closureα is a coarser abstraction, this simple algorithm already covers some of the

optimizations of the standard algorithm. For example the Extra+
α (Z) abstraction proposed

in [3] is subsumed since Extra+
α (Z) ⊆ Closureα(Z) for any zone Z [7, 3]. Other important

optimizations of the standard algorithm concern finer computation of bounding functions
α. We now show that the structure of the proposed algorithm allows to improve this too.

4.2 Computing clock bounds on-the-fly
We can improve on the idea of Behrmann et al. [2] of computing a bound function αq for
each state q. We will compute these bounding functions on-the-fly and they will depend also
on a zone and not just a state. An obvious gain is that we will never consider constraints

F. Herbreteau, D. Kini, B. Srivathsan, and I. Walukiewicz 85

Algorithm 1 Reachability algorithm with
on-the-fly bound computation and non-convex
abstraction.

1 function main():
2 push((q0, Z0, α0), stack)
3 while (stack 6= ∅) do
4 (q, Z, α) := top(stack); pop(stack)
5 explore(q, Z, α)
6 resolve()
7 return "empty"
8
9 function explore(q, Z, α):

10 if (q is accepting)
11 exit "not empty"
12 if (∃ (q, Z′, α′) nontentative
13 and s.t. Z ⊆ Closureα′ (Z′))
14 mark (q, Z, α) tentative wrt (q, Z′, α′)
15 α := α′; propagate(parent(q, Z, α))
16 else
17 propagate(q, Z, α)
18 for each (qs, Zs, αs) in children(q, Z, α) do

19 if (Zs 6= ∅)
20 explore(qs, Zs, αs)
21
22 function resolve():
23 for each (q, Z, α) tentative wrt (q, Z′, α′) do
24 if (Z 6⊆ Closureα′ (Z′))
25 mark (q, Z, α) nontentative
26 α := −∞; propagate(parent(q, Z, α))
27 push((q, Z, α), stack)
28
29 function propagate(q, Z, α):
30 α := max

(q,Z,α)
g;R−−→(q′,Z′,α′)

maxedge(g,R, α′)

31 if (α has changed)
32 for each (qt, Zt, αt) tentative wrt (q, Z, α) do
33 αt := α; propagate(parent(qt, Zt, αt))
34 if ((q, Z, α) 6= (q0, Z0, α0))
35 propagate(parent(q, Z, α))
36
37 function maxedge(g,R, α):
38 let αR = λx. if x ∈ R then −∞ else α(x)
39 let αg = λx. if x#c in g then c else −∞
40 return (λx. max(αR(x), αg(x)))

coming from unreachable transitions. We comment more on advantages of this approach in
Section 5.

Our modified algorithm is given in Figure 1. It computes a tree whose nodes are triples
(q, Z, α) where (q, Z) is a node of ZG(A) and α is a bound function. Each node (q, Z, α) has
as many child nodes (qs, Zs, αs) as there are successors (qs, Zs) of (q, Z) in ZG(A). Notice
that this includes successors with an empty zone Zs, which are however not further unfolded.
These nodes must be included for correctness of our constant propagation procedure. By
default bound functions map each clock to −∞. They are later updated as explained below.
Each node is further marked either tentative or nontentative. The leaf nodes (q, Z, α) of
the tree are either deadlock nodes (either there is no transition out of state q or Z is empty),
or tentative nodes. All the other nodes are marked nontentative.

Our algorithm starts from the root node (q0, Z0, α0), consisting of the initial state, initial
zone, and the function mapping each clock to −∞. It repeatedly alternates an exploration
and a resolution phase as described below.

Exploration phase
Before exploring a node n = (q, Z, α) the function explore checks if q is accepting and Z
is not empty; if it is so then A has an accepting run. Otherwise the algorithm checks if
there exists a nontentative node n′ = (q′, Z ′, α′) in the current tree such that q = q′ and
Z ⊆ Closureα′(Z ′). If yes, n becomes a tentative node and its exploration is temporarily
stopped as each state reachable from n is also reachable from n′. If none of these holds, the
successors of the node are explored. The exploration terminates since Closureα has a finite
range.

When the exploration algorithm gets to a new node, it propagates the bounds from this
node to all its predecessors. The goal of these propagations is to maintain the following
invariant. For every node n = (q, Z, α):
1. if n is nontentative, then α is the maximum of the αs from all successor nodes (qs, Zs, αs)

of n (taking into account guards and resets as made precise in the function maxedge);
2. if n is tentative with respect to (q′, Z ′, α′), then α is equal to α′.
The result of propagation is analogous to the inequalities seen in the static guard analysis [2],
however now applied to the zone graph, on-the-fly. Hence, the bounds associated to each

FSTTCS 2011

86 Using non-convex approximations for efficient analysis of timed automata

node (q, Z, α) never exceed those that are computed by the static guard analysis.
A delicate point about this procedure is handling of tentative nodes. When a node n is

marked tentative, we have α = α′. However the value of α′ may be updated when the tree
is further explored. Thus each time we update the bounds function of a node, it is not only
propagated upward in the tree but also to the nodes that are tentative with respect to n′.

This algorithm terminates as the bound functions in each node never decrease and are
bounded. From the invariants above, we get that in every node, α is a solution to the
equations in [2] applied on ZG(A).

It could seem that the algorithm will be forced to do a high number of propagations of
bounds. The experiments reported in Section 5 show that the present very simple approach
to bound propagation is good enough. Since we propagate the bounds as soon as they are
modified, most of the time, the value of α does not change in line 30 of function propagate.
In general, bounds are only propagated on very short distances in the tree, mostly along one
single edge. For this reason we do not concentrate on optimizing the function propagate. In
the implementation we use the presented function augmented with a minor “optimization”
that avoids calculating maximum over all successors in line 30 when it is not needed.

Resolution phase
Finally, as the bounds may have changed since n has been marked tentative, the function
resolve checks for the consistency of tentative nodes. If Z ⊆ Closureα′(Z ′) is not true
anymore, n needs to be explored. Hence it is viewed as a new node: the bounds are set to
−∞ and n is pushed on the stack for further consideration in the function main. Setting
α to −∞ is safe as α will be computed and propagated when n is explored. We perform
also a small optimization and propagate this bound upward, thereby making some bounds
decrease.

The resolution phase may provide new nodes to be explored. The algorithm terminates
when this is not the case, that is when all tentative nodes remain tentative. We can then
conclude that no accepting state is reachable.

I Theorem 7. An accepting state is reachable in ZG(A) iff the algorithm reaches a node
with an accepting state and a non-empty zone.

4.3 Handling LU approximations
Recall that Extra+

LU (Z) approximation used two bounds: Lx and Ux for each clock x. In
our algorithm we can easily propagate LU bounds instead of just maximal bounds. We can
also replace the test Z ⊆ Closureα′(Z ′) by Z ⊆ Closureα′(Extra+

L′U ′(Z ′)), where L′ and U ′
are the bounds calculated for (q′, Z ′) and α′x = max(L′x, U ′x) for every clock x. As discussed
in Section 3.3, this test can be done efficiently too. The proof of correctness of the resulting
algorithm is only slightly more complicated.

5 Experimental results

We have implemented the algorithm from Figure 1, and have tested it on classical bench-
marks. The results are presented in Table 1, along with a comparison to UPPAAL and
our implementation of UPPAAL’s core algorithm that uses the Extra+

LU extrapolation [3]
and computes bounds by static analysis [2]. Since we have not considered symmetry reduc-
tion [12] in our tool, we have not used it in UPPAAL either.

F. Herbreteau, D. Kini, B. Srivathsan, and I. Walukiewicz 87

Table 1 Experimental results: number of visited nodes and running time with a timeout (T.O.)
of 60 seconds. Experiments done on a MacBook with 2.4GHz Intel Core Duo processor and 2GB
of memory running MacOS X 10.6.7.

Model Our algorithm UPPAAL’s algorithm UPPAAL 4.1.3 (-n4 -C -o1)
nodes s. nodes s. nodes s.

A1 2 0.00 10003 0.07 10003 0.07
A2 7 0.00 3999 0.60 2003 0.01
A3 3 0.00 10004 0.37 10004 0.32

CSMA/CD7 5031 0.32 5923 0.27 − T.O.
CSMA/CD8 16588 1.36 19017 1.08 − T.O.
CSMA/CD9 54439 6.01 60783 4.19 − T.O.
FDDI10 459 0.02 525 0.06 12049 2.43
FDDI20 1719 0.29 2045 0.78 − T.O.
FDDI30 3779 1.29 4565 4.50 − T.O.
Fischer7 7737 0.42 20021 0.53 18374 0.35
Fischer8 25080 1.55 91506 2.48 85438 1.53
Fischer9 81035 5.90 420627 12.54 398685 8.95
Fischer10 − T.O. − T.O. 1827009 53.44

The comparison to UPPAAL is not meaningful for the CSMA/CD and the FDDI proto-
cols. Indeed, UPPAAL runs out of time even if we significantly increase the time allowed;
switching to breadth-first search has not helped either. We suspect that this is due to the or-
der in which UPPAAL takes the transitions in the automaton. For this reason in columns 4
and 5, we provide results from our own implementation of UPPAAL’s algorithm that takes
transitions in the same order as the implementation of our algorithm. Although RED also
uses approximations, it is even more difficult to draw a meaningful comparison with it, since
it uses symbolic state representation unlike UPPAAL or our tool. Since this paper is about
approximation methods, and not tool comparison, we leave more extensive comparisons as
further work.

The results show that our algorithm provides important gains. Analyzing the results
more closely we could see that both the use of closure, and on-the-fly computation of bounds
are important. In Fischer’s protocol our algorithm visits much less nodes. In the FDDI
protocol with n processes, the DBMs are rather big square matrices of order 3n+ 2. Never-
theless our inclusion test based on Closure is significantly better in the running time. The
CSMA/CD case shows that the cost of bounds propagation does not always counterbalance
the gains. However the overhead is not very high either. We comment further on the results
below.

The first improvement comes from the computation of the maximal bounds used for the
abstraction as demonstrated by the examples A2 (Figure 2), Fischer and CSMA/CD that
correspond to three different situations. In the A2 example, the transition that yields the
big bound 104 on y in q0 is not reachable from any (q0, Z), hence we just get the lower bound
20 on y in (q0, Z), and a subsequent gain in performance.

The automaton A1 in Figure 2 illustrates the gain on the CSMA/CD protocol. The
transition from q0 to q1 is disabled as it must synchronize on letter a!. The static analysis
algorithm [2] ignores this fact, hence it associates bound 104 to y in q0. Since our algorithm
computes the bounds on-the-fly, y is associated the bound 10 in every node (q0, Z). We
observe that UPPAAL’s algorithm visits 10003 nodes on ZG(A1) whereas our algorithm
only visits 2 nodes. The same situation occurs in the CSMA/CD example. However despite
the improvement in the number of nodes (roughly 10%) the cost of computing the bounds
impacts the running time negatively.

The gains that we observe in the analysis of the Fischer’s protocol are explained by the
automaton A3 in Figure 2. A3 has a bounded integer variable n that is initialized to 0.

FSTTCS 2011

88 Using non-convex approximations for efficient analysis of timed automata

Z

Z′

αx

αy

x

y

0
Z : x− y ≥ 1
Z′ : x > αx

A1
a!

q2

q1

q0

x<=1
x:=0
x==1

y<=10

y>=10000

A2 x:=0 x:=0

q0 y>=20 && x==2

y==10000

x==1x==5

q1

q3 q2

A3

n==10&&y>=10000

n==10&&y<=200

x:=0

x<=1

x==1
y<=10

q1q0 q2

Figure 2 Examples explaining gains obtained with the algorithm.

Hence, the transitions from q0 to q2, and from q1 to q2, that check if n is equal to 10 are
disabled. This is ignored by the static analysis algorithm that associates the bound 104 to
clock y in q0. Our algorithm however associates the bound 10 to y in every node (q0, Z).
We observe that UPPAAL’s algorithm visits 10004 nodes whereas our algorithm only visits
3 nodes. A similar situation occurs in the Fischer’s protocol. We include the last row to
underline that our implementation is not as mature as UPPAAL. We strongly think that
UPPAAL could benefit from methods presented here.

The second kind of improvement comes from the Closureα abstraction that particularly
improves the analysis of the Fischer’s and the FDDI protocols. The situation observed on
the FDDI protocol is explained in Figure 2. For the zone Z in the figure, by definition
Extra+

LU (Z) = Z, and in consequence Z ′ 6⊆ Z. However, Z ′ ⊆ Closureα(Z). On FDDI and
Fischer’s protocols, our algorithm performs better due to the non-convex approximation.

6 Conclusions

We have proposed a new algorithm for checking reachability properties of timed automata.
The algorithm has two sources of improvement that are quite independent: the use of the
Closureα operator, and the computation of bound functions on-the-fly.

Apart from immediate gains presented in Table 1, we think that our approach opens
some new perspectives on analysis of timed systems. We show that the use of non-convex
approximations can be efficient. We have used very simple approximations, but it may be
well the case that there are more sophisticated approximations to be discovered. The struc-
ture of our algorithm permits to calculate bounding constants on the fly. One should note
that standard benchmarks are very well understood and very well modeled. In particular
they have no “superfluous” constraints or clocks. However in not-so-clean models coming
from systems in practice one can expect the on-the-fly approach to be even more beneficial.

There are numerous directions for further research. One of them is to find other approxi-
mation operators. Methods for constraint propagation also deserve a closer look. We believe
that our approximations methods are compatible with partial order reductions [12, 14]. We
hope that the two techniques can benefit from each other.

References
1 R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science,

126(2):183–235, 1994.
2 G. Behrmann, P. Bouyer, E. Fleury, and K. G. Larsen. Static guard analysis in timed

automata verification. In TACAS, volume 2619 of LNCS, pages 254–270. Springer, 2003.

F. Herbreteau, D. Kini, B. Srivathsan, and I. Walukiewicz 89

3 G. Behrmann, P. Bouyer, K. G. Larsen, and R. Pelanek. Lower and upper bounds in
zone-based abstractions of timed automata. Int. Journal on Software Tools for Technology
Transfer, 8(3):204–215, 2006.

4 G. Behrmann, A. David, K. G Larsen, J. Haakansson, P. Pettersson, W. Yi, and M. Hen-
driks. UPPAAL 4.0. In QEST’06, pages 125–126, 2006.

5 J. Bengtsson and W. Yi. Timed automata: Semantics, algorithms and tools. Lectures on
Concurrency and Petri Nets, pages 87–124, 2004.

6 B. Bérard, B. Bouyer, and A. Petit. Analysing the PGM protocol with UPPAAL. Int.
Journal of Production Research, 42(14):2773–2791, 2004.

7 P. Bouyer. Forward analysis of updatable timed automata. Form. Methods in Syst. Des.,
24(3):281–320, 2004.

8 C. Courcoubetis and M. Yannakakis. Minimum and maximum delay problems in real-time
systems. Form. Methods Syst. Des., 1(4):385–415, 1992.

9 C. Daws and S. Tripakis. Model checking of real-time reachability properties using abstrac-
tions. In TACAS’98, volume 1384 of LNCS, pages 313–329. Springer, 1998.

10 D. Dill. Timing assumptions and verification of finite-state concurrent systems. In
AVMFSS, volume 407 of LNCS, pages 197–212. Springer, 1989.

11 K. Havelund, A. Skou, K. Larsen, and K. Lund. Formal modeling and analysis of an
audio/video protocol: An industrial case study using UPPAAL. In RTSS, pages 2–13,
1997.

12 M. Hendriks, G. Behrmann, K. G. Larsen, P. Niebert, and F. Vaandrager. Adding symmetry
reduction to UPPAAL. In Int. Workshop on Formal Modeling and Analysis of Timed
Systems, volume 2791 of LNCS, pages 46–59. Springer, 2004.

13 F. Herbreteau, D. Kini, B. Srivathsan, and I. Walukiewicz. Using non-convex approx-
imations for efficient analysis of timed automata. http://hal.archives-ouvertes.fr/inria-
00559902/en/, 2011. Extended version with proofs.

14 J. Malinowski and P. Niebert. SAT based bounded model checking with partial order
semantics for timed automata. In TACAS, volume 6015 of LNCS, pages 405–419, 2010.

15 G. Morbé, F. Pigorsch, and C. Scholl. Fully symbolic model checking for timed automata.
In CAV’11, volume 6806 of LNCS, pages 616–632. Springer, 2011.

16 Farn Wang. Efficient verification of timed automata with BDD-like data structures. Int.
J. on Software Tools for Technology Transfer, 6:77–97, 2004.

FSTTCS 2011

	Introduction
	Preliminaries
	Timed automata and the reachability problem
	Symbolic semantics for timed automata

	Efficient testing of inclusion in a closure of a zone
	When is RZ empty
	Efficient inclusion testing
	Handling LU-approximation

	A New Algorithm for Reachability
	The basic algorithm
	Computing clock bounds on-the-fly
	Handling LU approximations

	Experimental results
	Conclusions

