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Abstract
We investigate the problem asking whether the intersection of a context-free language (CFL) and a
Petri net language (PNL) (with reachability as acceptance condition) is empty. Our contribution
to solve this long-standing problem which relates, for instance, to the reachability analysis of
recursive programs over unbounded data domain, is to identify a class of CFLs called the finite-
index CFLs for which the problem is decidable. The k-index approximation of a CFL can be
obtained by discarding all the words that cannot be derived within a budget k on the number of
occurrences of non-terminals. A finite-index CFL is thus a CFL which coincides with its k-index
approximation for some k. We decide whether the intersection of a finite-index CFL and a PNL is
empty by reducing it to the reachability problem of Petri nets with weak inhibitor arcs, a class of
systems with infinitely many states for which reachability is known to be decidable. Conversely,
we show that the reachability problem for a Petri net with weak inhibitor arcs reduces to the
emptiness problem of a finite-index CFL intersected with a PNL.
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1 Introduction

Automated verification of infinite-state systems, for instance programs with (recursive) pro-
cedures and integer variables, is an important and a highly challenging problem. Pushdown
automata (or equivalently context-free grammars) have been proposed as an adequate form-
alism to model procedural programs. However pushdown automata require finiteness of the
data domain which is typically obtained by abstracting the program’s data, for instance,
using the predicate abstraction techniques [3, 9]. In many cases, reasoning over finite ab-
stract domains leads to too coarse an analysis and is therefore not precise. To palliate this
problem, it is natural to model a procedural program with integer variables as a pushdown
automaton manipulating counters. In general, pushdown automata with counters are Turing
powerful which implies that basic decision problems are undecidable (this is true even for
the case finite-state automata with counters).

Therefore one has to look for restrictions on the model which retain sufficient express-
iveness while allowing basic properties like reachability to be algorithmically verified. One
such restriction is to forbid the test of a counter and a constant for equality. In fact, for-
bidding test for equality implies the decidability of the reachability problem for the case of
finite-state automata with counters (i.e. Petri nets [13, 15]).
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The verification problem for pushdown automata with (restricted) counters boils down to
check whether a context-free language (CFL) and a Petri net language (PNL) (with reachabil-
ity as acceptance condition) are disjoint or not. We denote this last problem PNL∩CFL ?= ∅.

The decidability of PNL∩CFL ?= ∅ is open and lies at the very edge of our comprehension
of infinite-state systems. We see two breakthroughs contributing to this question. First,
determining the emptiness of a PNL was known to be decidable as early as the eighties.
Then, in 2008, Reinhardt [15] lifted this result to an extension of PN with inhibitor arcs
(that allow to test if a counter equals 0) which must satisfy some additional topological
conditions. By imposing a topology on the tests for zero, Reinhardt prevents his model to
acquire Turing powerful capabilities. We call his model PNW and their languages PNWL.

Our contribution to the decidability of PNL∩CFL ?= ∅ comes under the form of a partial
answer which is better understood in terms of underapproximation. In fact, given a PNL
L1 and a language L of a context-free grammar, we under-approximate L by a subset L′
which is obtained by discarding from L all the words that cannot be derived within a given
budget k ∈ N on the number of non-terminal symbols. (In fact, the subset L′ contains any
word of L that can be generated by a derivation of the context-free grammar that contains
at most k non-terminal symbols at each derivation step.) We show how to compute L′
by annotating the variables of the context-free grammar for L with an allowance. What is
particularly appealing is that the coverage of L increases with the allowance. Approximations
induced by allowances are non-trivial: every regular or linear language is captured exactly
with an allowance of 1, L′ coincides with L when the allowance is unbounded, and under
commutativity of concatenation L′ coincides with L for some allowance k ∈ N.

We call finite-index CFL, or fiCFL for short, a context-free language where each of its
words can be derived within a given budget. In this paper, we prove the decidability of
PNL ∩ fiCFL ?= ∅ by reducing it to the emptiness problem of PNWL. We also prove the
converse reduction; showing those two problems are equivalent. Hence, we offer a whole new
perspective on the emptiness problem for PNWL and PNL ∩ CFL.

To conclude the introduction let us mention the recent result of [2] which builds on [13]
to give an alternative proof of Reinhardt’s result (PNW reachability is decidable) for the
particular case where one counter only can be tested for zero.

2 Preliminaries

2.1 Context-Free Languages
An alphabet Σ is a finite non-empty set of symbols. A word w over an alphabet Σ is a finite
sequence of symbols of Σ where the empty sequence is denoted ε. We write Σ∗ for the set
of words over Σ. Let L ⊆ Σ∗, L defines a language.

A context-free grammar (CFG) G is a tuple (X ,Σ,P) where X is a finite non-empty
set of variables (non-terminal letters), Σ is an alphabet of terminal letters, and P ⊆

(
X ×

(X 2 ∪ Σ ∪ {ε})
)
is a finite set of productions (the production (X,w) may also be denoted

by X → w). For every production p = (X,w) ∈ P, we use head(p) to denote the variable
X. Observe that the form of the productions is restricted, but it has been shown in [12]
that every CFG can be transformed, in polynomial time, into an equivalent grammar of this
form.

Given two strings u, v ∈ (Σ∪X )∗ we define the relation u⇒ v, if there exists a production
(X,w) ∈ P and some words y, z ∈ (Σ ∪ X )∗ such that u = yXz and v = ywz. We use ⇒∗
for the reflexive transitive closure of ⇒. Given X ∈ X , we define the language LG(X), or
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154 Approximating Petri Net Reachability Along Context-free Traces

simply L(X) when G is clear form the context, as {w ∈ Σ∗ | X ⇒∗ w}. A language L is
context-free (CFL) if there exists a CFG G = (X ,Σ,P) and A ∈ X such that L = LG(A).

2.2 Finite-index Approximation of Context-Free Languages
Let k ∈ N, G = (X ,Σ,P) be a CFG and A ∈ X . A derivation from A given by A = α0 ⇒
α1 ⇒ · · · ⇒ αn is k-index bounded if for every i ∈ {0, . . . , n} at most k symbols of αi are
variables. We denote by L(k)(A) the subset of L(A) such that for every w ∈ L(k)(A) there
exists a k-index bounded derivation A⇒∗ w. We call L(k)(A) the k-index approximation of
L(A) or more generically we say that L(k)(A) is a finite-index approximation of L(A).1

Let us now give some known properties of finite-index approximations. Clearly
limk→∞ L(k)(A) = L(A). Moreover, let L be a regular or linear language2, then there exists
a CFG G′, and a variable A′ of G′ such that L(A′) = L = L(1)(A′). Also Luker showed in
[14] that if L(A) ⊆ L(w∗1 · · ·w∗n) for some wi ∈ Σ∗, then L(k)(A) = L(A) for some k ∈ N.
More recently, [6, 8] showed some form of completeness for finite-index approximation when
commutativity of concatenation is assumed. It shows that there exists a k ∈ N such that
L(A) ⊆ Π(L(k)(A)) where Π(L) denotes the language obtained by permuting symbols of w
for every w ∈ L. As an incompleteness result, Salomaa showed in [16] that for the Dyck
language LD∗1

over 1-pair of parentheses there is no CFG G′, variable A′ of G′ and k ∈ N
such that L(k)(A′) = LD∗1

.
Inspired by [5, 7, 6] let us define the CFG G[k] which annotates the variables of X with a

positive integer. With this annotation we can capture precisely finite-index approximations
of L(A) as given in Lem. 2.

I Definition 1. Let G[k] = (X [k],Σ,P [k]) be the context-free grammar defined as follows:
X [k] =

{
X [i] | 0 ≤ i ≤ k ∧X ∈ X

}
, and P [k] is the smallest set such that:

For every X → Y Z ∈ P, P [k] has the productions X [i] → Y [i−1]Z [i] and X [i] →
Y [i]Z [i−1] for every i ∈ {1, . . . , k}.
For every X → σ ∈ P with σ ∈ Σ ∪ {ε}, X [i] → σ ∈ P [k] for all i ∈ {0, . . . , k}.

What follows is a consequence of several results from different papers by Esparza et al.
Because of space constraints the proof is given in [1].

I Lemma 2. Let X ∈ X . We have L(X [k]) = L(k+1)(X).

2.3 Petri nets with Inhibitor Arcs
Let Σ be a finite non-empty set, a multiset (or a marking) m : Σ → N over Σ maps each
symbol of Σ to a natural number. Let M[Σ] be the set of all multisets over Σ.

Sometimes, we use m = Jq1, q1, q3K to denote the multiset m ∈ M[{q1, q2, q3, q4}] such
that m(q1) = 2, m(q2) = m(q4) = 0, and m(q3) = 1. The empty multiset is denoted ∅.

Given m,m′ ∈ M[Σ] we define m ⊕ m′ ∈ M[Σ] to be the multiset such that ∀a ∈
Σ: (m ⊕m′)(a) = m(a) + m′(a), we also define the natural partial order � on M[Σ] as
follows: m � m′ iff there exists m∆ ∈ M[Σ] such that m ⊕m∆ = m′. We also define
m	m′ ∈M[Σ] as the multiset such that (m	m′)⊕m′ = m provided m′ �m.

A Petri net with inhibitor arcs (PNI for short) N = (S, T, F = 〈Z, I,O〉,mı) consists
of a finite non-empty set S of places, a finite set T of transitions disjoint from S, a tuple

1 Finite-index approximations were first studied in the 60’s.
2 See [11] for definitions.
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F = 〈Z, I,O〉 of functions Z : T → 2S , I : T → M[S] and O : T → M[S], and an initial
marking mı ∈M[S]. A marking m (∈M[S]) of N assigns to each place p ∈ S m(p) tokens.

A transition t ∈ T is enabled at m, written m [t〉, if I(t) � m and m(p) = 0 for all
p ∈ Z(t). A transition t that is enabled at m can be fired, yielding a marking m′ such that
m′ = (m	 I(t))⊕O(t). We write this fact as follows: m [t〉m′. We extend enabledness and
firing inductively to finite sequences of transitions as follows. Let w ∈ T ∗. If w = ε we define
m [w〉m′ iff m′ = m; else if w = u · v we have m [w〉m′ iff ∃m1 : m [u〉m1 ∧m1 [v〉m′.

A marking m ∈ M[S] is reachable from m0 if and only if there exists w ∈ T ∗ such that
m0 [w〉m. Given a language L ⊆ T ∗ over the transitions of N , the set of reachable markings
from m0 along L, written [m0〉L, is defined by {m | ∃w ∈ L : m0 [w〉m}. Incidentally, if L
is unspecified then it is assumed to be T ∗ and we simply write [m0〉 for the set of markings
reachable from m0. To avoid ambiguities, we sometimes explicit the PNI, e.g. m1 ∈ [m0〉LN .

A Petri net with weak inhibitor arcs (PNW for short) is a PNI N = (S, T, F =
〈Z, I,O〉,mı) such that there is an index function f : S → N with the property:

∀p, p′ ∈ S : f(p) ≤ f(p′)→ (∀t ∈ T : p′ ∈ Z(t)→ p ∈ Z(t)) . (1)

A Petri net (PN for short) can be seen as a subclass of Petri nets with weak inhibitor
arcs where Z(t) = ∅ for all transitions t ∈ T . In this case, we shorten F as the pair 〈I,O〉.

The reachability problem for a PNI N = (S, T, F = 〈Z, I,O〉,mı) is the problem of
deciding, for a given marking m, whether m ∈ [mı〉 holds. It is well known that reachability
for Petri nets with inhibitor arcs is undecidable [10]. However, the following holds:

I Theorem 3. [15] The reachability problem for PNW is decidable.

2.4 The reachability problem for Petri nets along finite-index CFL

Let us formally define the problem we are interested in. Given: (1) a Petri net N =
(S, T, F,mı) where T 6= ∅; (2) a CFG G = (X , T,P) and A ∈ X ; (3) a marking mf ∈ M[S];
and (4) a value k ∈ N.

Does mf ∈ [mı〉L
(k)(A) hold ?

In what follows, we prove the interreducibility of the reachability problem for PN along
finite-index CFL and the reachability problem for PNW.

3 From PN reachability along fiCFL to PNW reachability

In this section, we show that the reachability problem for Petri nets along finite-index CFL
is decidable. To this aim, let us fix an instance of the problem: a Petri net N = (S, T, F,mı)
where T 6= ∅, a CFG G = (X , T,P), mf ∈ M[S], and a natural number k ∈ N. Moreover,
let G[k] = (X [k], T,P [k]) be the CFG given by def. 1.

Lemma 2 shows that mf ∈ [mı〉L
(k+1)(A) if and only if mf ∈ [mı〉L(A[k]). Then, our

decision procedure, which determines if mf ∈ [mı〉L(A[k]), proceeds by reduction to the
reachability problem for PNW and is divided in two steps. First, we reduce the question
mf ∈ [mı〉L(A[k]) to the existence of a successful execution in the program of Alg. 1 which,
in turn, is reduced to a reachability problem for PNW. Let us describe Alg. 1.
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Part 1. Alg. 1 gives the pro-
cedure traverse in which Mi
and Mf are global arrays of
markings with index ranging
from 0 to k (i.e., for every
j ∈ {0, . . . , k}, Mi[j],Mf [j] ∈
M[S]). We say that a call
traverse(X [`]) successfully re-
turns if there exists an execu-
tion which eventually reaches
line 22 (i.e., no assert fails)
and the postcondition Mi[j] =
Mf [j] = ∅ for every j ∈
{0, . . . , `} holds. Moreover we
say that a call traverse(X [`])
is proper if Mi[j] = Mf [j] =
∅ for all 0 ≤ j < `. Let
` ∈ {0, . . . , k}, we shall now
demonstrate that a proper call
traverse(X [`]) successfully re-
turns if and only if there ex-
ists w ∈ L(X [`]) such that
Mi[`] [w〉N Mf [`].
The formal statement is given
at Lem. 4. We give some ex-
planations about Alg. 1 first.

Algorithm 1: traverse
Input: A variable X [`] ∈ X [k] of G[k]

1 begin
2 Let p ∈ P [k] such that head(p) = X [`]

3 switch p do
4 case X [`] → σ /* σ ∈ Σ ∪ {ε} */
5 Mi[`] := (Mi[`]	 I(σ))⊕O(σ)
6 Choose non det qty ∈M[S]
7 (Mi[`],Mf [`]) := (Mi[`],Mf [`])	 qty
8 case X [`] → B[`]C [`−1]

9 transfer_from_to(Mf [`],Mf [`− 1])
10 Choose non det qty ∈M[S]
11 (Mf [`],Mi[`−1]) := (Mf [`],Mi[`−1])⊕qty
12 traverse(C [`−1])
13 assert Mi[j] = Mf [j] = ∅ for all j < `

14 traverse(B[`])
15 case X [`] → B[`−1]C [`]

16 transfer_from_to(Mi[`],Mi[`− 1])
17 Choose non det qty ∈M[S]
18 (Mi[`],Mf [`−1]) := (Mi[`],Mf [`−1])⊕qty
19 traverse(B[`−1])
20 assert Mi[j] = Mf [j] = ∅ for all j < `

21 traverse(C [`])

22 return

Instructions of the form (var1, var2) := (var1, var2)�qty where qty ∈M[S] and � ∈ {⊕,	}
stand for the two instructions var1 := var1 � qty; var2 := var2 � qty. Observe that, given
two markings m,m′, the subtraction operation m	m′ can be performed only when m′ �m
(i.e., assume every occurence of m	m′ is preceded by assert m′ �m).
The procedure transfer_from_to proceeds as
follows: (1) non deterministically choose a
marking qty ∈ M[S], (2) add qty to tgt, and
(3) subtract qty from src. Intuitively, it trans-
fers an arbitrary sub-marking qty of src to tgt.

Algorithm 2: transfer_from_to
Input: src, tgt
Choose non det. qty ∈ M[S]
tgt := tgt ⊕ qty
src := src 	 qty

Intuitively, traverse(X [`]) simulates the execution of N along a sequence of transitions
w such that X [`] ⇒∗ w. However as traverse simulates the derivation of w, it does not
necessarily follows a leftmost order but instead an order which guarantees that a bounded
amount of memory only is needed to derive w. This is needed for the translation to PNW.

To understand the correctness argument of Alg. 1, let us see why the call traverse(X [`])
successfully returns if there exists w ∈ L(X [`]) such that Mi[`] [w〉N Mf [`].

Let us start by assuming that X [`] ⇒ u⇒∗ w with u ∈ (Σ∪X [k])∗ and Mi[`] [w〉N Mf [`].
An execution of traverse(X [`]) is such that at line 2, some p = (X [`], u) ∈ P [k] is picked.
The choice of p yields three case studies.

The first case is given by p = (X [`], σ) ∈ P [k] (with σ ∈ Σ ∪ {ε}) which yields the case
of line 4 to be executed. It follows that X [`] ⇒ u = w = σ. Since Mi[`] [σ〉Mf [`] holds
by assumption there exists a marking qty such that (Mi[`],Mf [`]) := (Mi[`],Mf [`]) 	 qty
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has the effect to empty Mi[`] and Mf [`]. Finally, upon reaching line 22 we find that the
post condition Mi[`] = ∅ = Mf [`] for every j ∈ {0, . . . , `} holds. Therefore the call to
traverse(X [`]) successfully returns.

The second case is p = (X [`], B[`]C [`−1]) which yields line 9 is executed. We further
assume that Mi[`] [w1w2〉Mf [`] where w1 ∈ L(B[`]) and w2 ∈ L(C [`−1]). Hence, we find
that there is m ∈ M[S] such that Mi[`] [w1〉m [w2〉Mf [`] which, by monotonicity of PN, is
equivalent to:

∃m1,m2,m3 ∈M[S] : Mi[`] [w1〉m1 ∧m2 [w2〉m3 ∧m1 = m2 ⊕ (Mf [`]	m3) . (2)

Observe that, for (2) to be valid, we need m3 �Mf [`] to hold.
Let us resume the execution of traverse(X [`]) which now executes the call to the procedure

transfer_from_to(Mf [`],Mf [`−1]) of line 9. We assume the transfer is given by the marking
m3 so that when returning from Alg. 2 we have Mf [` − 1] = m3. Next the instruction
(Mf [`],Mi[` − 1]) := (Mf [`],Mi[` − 1]) ⊕ qty of line 11 executes. The effect is to add an
arbitrary value, say m2, to the markings Mf [`] and Mi[`−1]. Therefore, Mi[`−1] is updated
to m2 and Mf [`] to m1 (= m2 ⊕ (Mf [`]	m3)).

Now, a recursive proper call traverse(C [`−1]) takes place (see line 12) to determine if
there exists a word w′ ∈ L(C [`−1]) such that Mi[` − 1] [w′〉Mf [` − 1]. We conclude from
above that w2 is such a word: (Mi[` − 1] =)m2 [w2〉m3(= Mf [` − 1]) holds. Therefore the
call traverse(C [`−1]) successfully returns and we find that Mi[j] = Mf [j] = ∅ for all j < `

(assuming Alg. 1 is correct). This implies that the assert statement at line 13 succeeds.
Then, a recursive proper call traverse(B[`]) takes place (see line 14) to determine if there

exists a word w′ ∈ L(B[`]) such that Mi[`] [w′〉Mf [`]. We conclude from above that w1 is
such a word: Mi[`] [w1〉m1(= Mf [`]) holds. Therefore traverse(B[`]) successfully returns
(again assuming Alg. 1 is correct) and so is traverse(X [`]) and we are done.

The third case given by p = (X [`], B[`−1]C [`]) ∈ P [k] is treated similarly.

It is worth pointing that the control flow of traverse matches the traversal of a parse
tree of G[k] such that at each node traverse goes first to the subtree which carries the least
index. The tree traversal is implemented through recursive calls in traverse. To see that
the traversal goes first in the subtree of least index, it suffices to look at the ordering of the
recursive calls to traverse in the code of Alg. 1, e.g. in case the of line 8, traverse(C [`−1]) is
called before traverse(B[`]). Moreover, we have that the proper call traverse(X [`]) returns iff
there exists a parse tree t of G[k] with root variable X [`] such that the sequence of transitions
given by the yield of t is enabled from the marking stored in Mi[`] and its firing yields the
marking stored in Mf [`]. Because of the least index first tree traversal, it turns out that the
arrays Mi and Mf provide enough space to manage all the intermediary results.

Also, we observe that when the procedure traverse(X [`]) calls itself with the parameter,
say B[`], the call is a tail recursive call. This means that when traverse(B[`]) returns then
traverse(X [`]) immediately returns. It is known from programming techniques how to im-
plement tail recursive call without consuming space on the call stack. In the case of Alg. 1,
we can do so by having a global variable to store the parameter of traverse and by replacing
tail recursive calls with goto statements. For the remaining recursive calls (line 12 and 19),
because the index of the callee is one less than the index of the caller, we conclude that a
bounded space consisting of k frames suffices for the call stack.

Those two insights (two arrays with k entries and a stack with k frames) will be the key
to show, in Part 2, that traverse can be implemented as a PNW.

I Lemma 4. Let ` ∈ {0, . . . , k}, X [`] ∈ X [k], and m,m′ ∈ M[S]. Then, the proper call

FSTTCS 2011



158 Approximating Petri Net Reachability Along Context-free Traces

traverse(X [`]) with Mi[`] = m and Mf [`] = m′ successfully returns if and only if there exists
w ∈ L(X [`]) such that m [w〉N m′.

Proof. If. We prove that if there exists w ∈ L(X [`]) such that m [w〉m′ then the proper
call traverse(X [`]) with Mi[`] = m and Mf [`] = m′ successfully returns.

Our proof is done by induction on the length n of the derivation of w ∈ L(X [`]). For the
case n = 1, we necessarily have X [`] ⇒ w = σ for some (X [`], σ) ∈ P [k]. In this case, the
proper call traverse(X [`]) with Mi[`] = m and Mf [`] = m′ executes as follows: p = (X [`], σ)
is picked and the case of line 4 executes successfully since m = Mi[`] [σ〉Mf [`] = m′ holds.
In fact, after the assignment of line 5 we have Mi[`] = Mf [`]. Hence, by choosing the right
qty, the instruction (Mi[`],Mf [`]) := (Mi[`],Mf [`]) 	 qty of line 7 empties Mi[`] and Mf [`]
which shows that traverse(X [`]) successfully returns.

For the case n > 1, we have X [`] ⇒n w which necessarily has the form X [`] ⇒
B[`]C [`−1] ⇒n−1 w or X [`] ⇒ B[`−1]C [`] ⇒n−1 w by def. of G[k]. Assume we are in the latter
case. Thus there exists w1 and w2 such that X [`] ⇒ B[`−1]C [`] ⇒i w1C

[`] ⇒j w1w2 = w

with i + j = n − 1 and ∃m1 : m [w1〉m1 [w2〉m′. Observe that w1 ∈ L(B[`−1]) and
w2 ∈ L(C [`]) and so by induction hypothesis we find that the proper call traverse(B[`−1])
with Mi[`− 1] = m, Mf [`− 1] = m1 successfully returns. And so does, by induction hypo-
thesis, the proper call traverse(C [`]) with Mi[`] = m1, Mf [`] = m′. Therefore let us consider
the proper call traverse(X [`]) with Mi[`] = m, Mf [`] = m′. We show it successfully returns.

First observe that the call to the procedure traverse(X [`]) is proper. Next, at line 2, pick
p = (X [`], B[`−1]C [`]). Then the call transfer_from_to(Mi[`],Mi[`− 1]) of line 16 executes
such that Mi[`] is updated to ∅ and Mi[`− 1] to m. Next the non determisnistic choice of
qty and the instruction (Mi[`],Mf [`− 1]) := (Mi[`],Mf [`− 1])⊕ qty execute such that both
Mi[`] and Mf [`− 1] are updated to m1. Recall that m [w1〉m1 [w2〉m′.

Finally we showed above that the proper call traverse(B[`−1]) successfully returns, the
assert that follows too and finally the proper call traverse(C [`]). Moreover it is routine to
check that upon completion of traverse(C [`]) (and therefore traverse(X [`])) we have Mi[j] =
Mf [j] = ∅ for all j ≤ `.

The left case (i.e. p = (X [`], B[`]C [`−1]) ∈ P [k]) is treated similarly.
Only If. Here we prove that if the proper call traverse(X [`]) successfully returns then there
exists w ∈ L(X [`]) such that Mi[`] [w〉N Mf [`].

Our proof is done by induction on the number n of times line 2 is executed during the
execution of traverse(X [`]). In every case, line 2 is executed at least once. For the case
n = 1, the algorithm necessarily executes the case of line 4. In this case, the definition of
G[k] shows that along a successful execution of traverse(X [`]), the non deterministic choice
of line 2 necessarily returns a production of the form p = (X [`], σ) ∈ P [k]. Therefore, a
successful execution must execute line 5 to 7 and then 22 after which the postcondition
Mi[j] = Mf [j] = ∅ for all j ≤ ` holds. Because the postcondition holds, we find that
Mi[`] = Mf [`] holds before executing line 7, hence that Mf [`] = Mi[`]	 I(σ)⊕O(σ) before
executing line 5, and finally Mi[`] [σ〉Mf [`] by semantics of transition σ and we are done.

For the case n > 1, the first non deterministic choice of line 2 necessarily picks p ∈ P [k] of
the form (X [`], B[`]C [`−1]) or (X [`], B[`−1]C [`]). Let us assume p = (X [`], B[`]C [`−1]), hence
that the case of line 8 is executed. Let m and m′ be respectively the values of Mi[`] and
Mf [`] when traverse(X [`]) is invoked. Now, let m3,m∆ be such that m′ = m3⊕m∆ and such
that upon completion of the call to transfer_from_to at line 9 we have that Mf [`] = m∆
and Mf [` − 1] = m3. Moreover, let m2 be the marking such that Mi[` − 1] = m2 upon
completion of the assignment at line 11. Therefore we find that Mf [`] is updated to m∆⊕m2.
Next consider the successful proper call traverse(C [`−1]) of line 12 with Mi[`− 1] = m2,
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Mf [`− 1] = m3. Observe that because the execution of traverse(X [`]) yields the calls
traverse(C [`−1]) and traverse(B[`]), we find that the number of times line 2 is executed in
traverse(C [`−1]) and traverse(B[`]) is strictly less than n. Therefore, the induction hypothesis
shows that there exists w2 such that w2 ∈ L(C [`−1]) and m2 [w2〉m3. Then comes the
successful assert of line 13 followed by the successful proper call traverse(B[`]) of line 14
with Mi[`] = m and Mf [`] = m∆ ⊕m2. Again by induction hypothesis, there exists w1
such that w1 ∈ L(B[`]) and m [w1〉 (m∆ ⊕m2).

Next we conclude from the monotonicity property of PN that since m2 [w2〉m3 then
(m2⊕m∆) [w2〉 (m3⊕m∆), hence that m [w1〉 (m2⊕m∆) [w2〉 (m3⊕m∆) and finally that
m [w1 w2〉m′ because m′ = m3 ⊕ m∆. Finally since w1w2 ∈ L(X [`]) we conclude that
m′ ∈ [m〉L(X[`]) and we are done.

The left case (i.e. p = (X [`], B[`−1]C [`]) ∈ P [k]) is treated similarly. J

Part 2. In this section, we show that it is possible to construct a PNI N ′ such that
the problem asking if the call to traverse(A[k]) successfully returns can be reduced to a
reachability problem for N ′. Incidentally, we show that N ′ is a PNW, hence that the
reachability problem for PN along finite-index CFL is decidable.

To describe N ′ we use a generalization of the net program formalism introduced by
Esparza in [4] which enrich the instruction set with the test for 0 of a variable.

A net program is a finite sequence of labelled commands. Those commands have the
following form, where `, `′, `1, . . . , `k are labels taken from some arbitrary set, and x is a
variable over the natural numbers, also called a counter.

` : x := x− 1
` : x := x+ 1
` : assertx = 0

` : return
` : goto `1 or · · ·or goto `k (where k ≥ 1)
` : gosub `′

A net program is syntactically correct if the labels of commands are pairwise different,
and if the destinations of the goto and gosub commands corresponds to existing labels.
(goto commands correspond to a possibly non deterministic jump while gosub commands
correspond to a subroutine call.) A subroutine is a subsequence of the program commands
which has a unique entry label identified by a subroutine name, and a unique exit command of
the form ` : return. Also every command of the program belongs to exactly one subroutine.
No goto commands leaves its enclosing subroutine. Finally, we require the existence of a
level assignment to subroutines such that each subroutine only calls lower-level subroutines,
which in turn only call lower-level subroutines, etc so as to prevent recursion.

A net program can only be executed once its variables have received initial values which
we assume here to be 0. The semantics of net programs can be defined in a straightforward
manner from the syntax (see [4] for more information). The only point to be remarked is
that the command ` : x := x− 1 fails if x = 0, and causes abortion of the program.

The compilation of a syntactically correct net program to a PNI is straightforward and
omitted due to space constraints. See [4] for the compilation.

At Alg. 3, 4, 5 and 6 is the net program that implements Alg. 1. In what follows assume
S, the set of places of the underlying Petri net, to be {1, . . . , d} for d ≥ 1. The counter
variables of the net program are given by {x[i]}0≤i≤k,x∈X and Mf [0..k][1..d] Mi[0..k][1..d]
which arranges counters into two matrices of dimension (k + 1) × d. For clarity, our net
programs use some abbreviations whose semantics is clear from the syntax, e.g. Mi[`] :=
Mi[`]⊕m stands for Mi[`][1] := Mi[`][1] + m(1); [. . .]; Mi[`][d] := Mi[`][d] + m(d).
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Let us now make a few observations of Alg. 3, 4, 5 and 6
• the execution starts with the subroutine main which sets up Mi[`] and Mf [`], then
simulates the call traverse(X [`]) and finally checks that the postcondition holds (label 01)
before returning (label success).
• in subroutines traversej , [. . .] stands for the code which is given at Alg. 5 and 6 according
to the different cases that may occur. The code for the case pj

i = (X [j], B[j−1]C [j]) has been
omitted for space reasons but it is easily inferred.
• the counter variables {x[i]}0≤i≤k,x∈X record the parameters of the calls to traverse. For
instance, a call to traverse(X [j]) is simulated in the net program by incrementing counter x[j]

(which records that the parameter of traverse is X [j]) and then calling subroutine traversej .
When the call executes, the corresponding variable is decremented.
• the goto command at label traversej simulates the non deterministic selection of a
production rule pj

i = (X [j], w) which will be fired next (if enabled else the program fails).

Algorithm 3: main & tra-
versei=`,...,0

main: Mi[`] := Mi[`]⊕m;
Mf [`] := Mf [`]⊕m′;
x[`] := x[`] + 1;
gosub traverse`;

01 assert
Mi[0..`] = ∅ = Mf [0..`];

success: return;
traverse`: goto p`

1 or · · · or goto p`
n`
;

p`
1: [. . . ];

...
p`

n`
: [. . . ];

exit`: return;
...

traverse0: goto p0
1 or · · · or goto p0

n0 ;
p0

1: [. . . ];
...

p0
n0

: [. . . ];
exit0: return;

Algorithm 4: tr_f `_f `−1

tr_f`_f`−1: goto out or t1 or . . .or td ;
t1: Mf [`][1] := Mf [`][1]− 1;

Mf [`−1][1] := Mf [`−1][1]+1;
goto tr_f `_f `−1;
[. . . ];

td: Mf [`][d] := Mf [`][d]− 1;
Mf [`−1][d] := Mf [`−1][d]+1;
goto tr_f `_f `−1;

out: return;

Algorithm 5: if pj
i = (X [j], σ)

then
pj

i
: x[j] := x[j] − 1;

Mi[j] := Mi[j]	 I(σ);
Mi[j] := Mi[j]⊕O(σ);

loop: goto exitj or s1 or . . .or sd ;
s1: Mi[j][1] := Mi[j][1]− 1;

Mf [j][1] := Mf [j][1]− 1;
goto loop;
[. . . ];

sd: Mi[j][d] := Mi[j][d]− 1;
Mf [j][d] := Mf [j][d]− 1;
goto loop;

Algorithm 6: if pj
i =

(X [j], B[j]C[j−1]) then

pj
i
: x[j] := x[j] − 1;

gosub tr_f j_f (j−1);
loop: goto exitloop or s1 or . . .or sd ;

s1: Mi[j][1] := Mi[j][1] + 1;
Mf [j − 1][1] := Mf [j − 1][1] + 1;
goto loop;
[. . . ];

sd: Mi[j][d] := Mi[j][d] + 1;
Mf [j − 1][d] := Mf [j − 1][d] + 1;
goto loop;

exitloop: c[j−1] := c[j−1] + 1;
gosub traverse(j−1);

02 assert
Mi[0..j − 1]=∅=Mf [0..j − 1];

l1: b[j] := b[j] + 1;
goto traversej ;

• the program is syntactically correct. First, observe that no goto commands leaves its
enclosing subroutine. Second, we assign levels to subroutines as follows: main has level
` + 1, traversej has level j for every 0 ≤ j ≤ ` and tr_f j_f j−1 has level j − 1. Then it
is routine to check that this level assignment satisfies the requirement. Moreover, thanks
to the programming techniques that allow to implement the tail recursive call as a goto
instead of gosub we find that the program is syntactically correct. (If we had used gosub
everywhere, then the net program would be syntactically incorrect because of the recursion).
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• the assert commands at labels 01 and 02 have a particular structure matching the level
of the subroutines (level `+ 1 for 01 and j for 02). So, after compilation of the net program
into a PNI N ′, if we set a mapping f from the places of N ′ to N such that c is mapped to i if
c ∈ {Mi[i][j] | j ∈ {1, . . . , d}} ∪ {Mf [i][j] | j ∈ {1, . . . , d}} and every other place is mapped
to `+2 then we find that N ′ is a PNW. Clearly, deciding whether main returns (i.e. reaches
success) reduces to PNW reachability. Therefore, by Thm. 3, it is decidable whether main
returns.

I Lemma 5. Let ` ∈ {0, . . . , k}, X [`] ∈ X [k], and m,m′ ∈ M[S]. Then the proper call
traverse(X [`]) with Mi[`] = m, Mf [`] = m′ successfully returns iff main returns.

Hence from Lem. 2, 4 and 5, we conclude the following.

I Corollary 6. The reachability problem for PN along finite-index CFL can be reduced to the
reachability problem for PNW.

4 From PNW reachability to PN reachability along fiCFL

In this section, we show that the reachability problem for PNW can be reduced to the reach-
ability problem of PN along finite-index CFL. To this aim, let N = (S, T, F = 〈Z, I,O〉,mı)
be a PNW, mf ∈M[S] a marking, and f : S → N an index function such that (1) holds.

Let S = {s1, . . . , sn+1} and T = {t1, . . . , tm}. Because it simplifies the presentation we
will make a few assumptions that yield no loss of generality. (i) For every i ∈ {1, . . . , n},
we have f(si) ≤ f(si+1), (ii) mı = Jsn+1K, mf = ∅, (iii) Z(t1) ⊆ Z(t2) ⊆ · · · ⊆ Z(tm) ⊆
{s1, . . . , sn}, and (iv) for every t ∈ T , if s ∈ Z(t) then O(t)(s) = 0 (see [15], Lemma 2.1).
Notice that the Petri net N can not test if the place sn+1 is empty or not.

In the following, we show that it is possible to construct a Petri net (without inhibitor
arcs) N ′, a marking m′f , and a finite-index CFL L such that: mf ∈ [mı〉T

∗

N iff m′f ∈ [m′ı〉
L
N ′ .

Constructing the Petri net N ′: Let N ′ = (S′, T ′, F ′ = 〈I ′, O′〉,m′ı) be a PN which
consists in n + 1 unconnected PN widget: the widget N0 given by N without tests for
zero (i.e. Z(t) is set to ∅ for every t ∈ T ) and the widgets N1, . . . , Nn where each Ni =
({ri}, {pi, ci}, Fi,∅) where Fi(pi) = 〈∅, JriK〉 and Fi(ci) = 〈JriK,∅〉. Ni is depicted as
follows:

pi

�→
ri

©→
ci

�. Finally, define m′ı ∈ M[S′] to be m′ı(s) = mı(s) for s ∈ S and 0
elsewhere; and m′f = ∅.

Since we have the ability to restrict the possible sequences of transitions that fire in N ′,
we can enforce the invariant that the sum of tokens in si and ri stays constant. To do so
it suffices to force that whenever a token is produced in si then a token is consumed from
ri and vice versa. Call L the language enforcing that invariant. Then, let m be a marking
such that m(si) = m(ri) = 0, observe that by firing from m a sequence of the form: (i) pi

repeated n times, (ii) any sequence w ∈ L and (iii) ci repeated n times; the marking m′
that is reached is such that m′(si) = m′(ri) = 0. This suggests that to simulate faithfully a
transition t0 of N that does test si for 0 we allow the occurrence of the counterpart of t0 in
N0 right before (i) or right after (iii) only. In what follows, we build upon the above idea
the language Ln which, as we we will show, coincides with the finite-index approximation
of some CFG.

We need the following notation. Given a word v ∈ Σ∗ and Θ ⊆ Σ, we define v|Θ to be
the word obtained from v by erasing all the symbols that are not in Θ. We extend it to
languages as follows: Let L ⊆ Σ∗. Then L|Θ = {u|Θ | u ∈ L}.
Constructing the language Ln: For every j ∈ {1, . . . ,m}, let uj = p i1

1 p
i2
2 · · · p in

n and
vj = c k1

1 c k2
2 · · · c kn

n be two words over the alphabet T ′ such that i` = I(tj)(s`) and k` =
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O(tj)(s`) for all ` ∈ {1, . . . , n}. Observe that firing the sequence of transitions uj (resp. vj)
will produce in (resp. consume from) the place r` (with 1 ≤ ` ≤ n) the same number of
tokens that the transition tj will consume from (resp. produce in) the place s`. Therefore,
firing the sequence of transitions vjtjuj keeps unchanged the total number of tokens in
{si, ri} for each i ∈ {1, . . . , n}.

Let L0 be a regular language over the alphabet T ′ defined as follows:
L0 = {vj · tj · uj | Z(tj) = ∅ in the Petri net N}∗ .

Next, we define the CFL L1, . . . , Ln such that for every ` ∈ {1, . . . , n} we have:
L` =

(
{p i

` · v · c i
` | i ∈ N, v ∈ L`−1} ∪ {vj · tj · uj | Z(tj) = {s1, . . . , s`} in N}

)∗ .
Observe that, for every j ∈ {1, . . . , n}, the sum of tokens in the places sj and rj is

preserved after firing a sequence of transitions in L`. Hence, the places r` and s` are empty
after firing a sequence of transitions w ∈ L` from a marking where these places are empty.
Also notice that these places can become non-empty during the execution of w. For instance,
if w fires pi

` · v · ci
` which first produces i tokens in r`, then executes v and finally consumes i

tokens from r`. It is worth pointing that along v transitions which produce and/or consume
tokens in s` can be fired. However, since v ∈ L`−1 no transition t such that s` ∈ Z(t) is
allowed, that is no test of s` for 0 is allowed along v. The language L` imposes that the
place s` can only be tested for 0 along vj · tj ·uj ∈ L` \L`−1. The underlying idea is that L`

allows to test s` for 0 provided the places s` and r` (and inductively all the places sj and
rj for j ≤ `) are empty.

It is routine to check that L0 ⊆ L1 ⊆ · · · ⊆ Ln (since L`−1 ⊆ {p i
` · v · c i

` | i ∈ N, v ∈
L`−1}) and Ln|T = T ∗ (since Ln ⊇

⋃n
i=0 {vj · tj · uj | Z(tj) = {s1, . . . , si}}3). Also, L0 is

a regular language and therefore there exists a CFG G0 and a variable A0 of G0 such that
L(1)(A0) = L0. Now, let us assume that for Li there exists a CFG Gi and a variable Ai such
that L(i+1)(Ai) = Li. From the definition of Li+1 it is routine to check that there exists a
CFG Gi+1 and a variable Ai+1 such that L(i+2)(Ai+1) = Li+1. Finally we find that Ln can
be captured by the n+ 1-index approximation of a CFG.

Let us make a few observations about the transitions of N ′ which were carrying out 0
test in N . In L` no transition t such that s`+1 ∈ Z(t) is allowed, that is no test of place
s`+1 for 0 is allowed along any word of L`. The language L` imposes that the place s` can
only be tested for 0 along T`. The intuition is that L` allows to test s` for 0 provided all
places sj and rj for j ≤ ` are empty.

The relation between the reachability problem for N and the reachability problem for
N ′ along Ln is given by the following lemma (whose proof can be found in [1]):

I Lemma 7. mf (= ∅) ∈ [mı〉N if and only if m′f (= ∅) ∈ [m′ı〉
Ln

N ′ .

As an immediate consequence of Lemma 7, we obtain the following result:

I Corollary 8. The reachability problem for PNW can be reduced, in polynomial time, to the
reachability problem for PN along finite-index CFL.

5 Conclusion

In this paper, we have shown that the problem of checking whether the intersection of a
finite-index context-free language and a Petri net language is empty is decidable. This result
is obtained through a non-trivial reduction to the reachability problem for Petri nets with

3 Note that if i = 0 then {s1, . . . , si} = ∅.
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weak inhibitor arcs. On the other hand, we have proved that the reachability problem for
Petri nets with weak inhibitor arcs can be reduced, in polynomial time, to the emptiness
problem of the language obtained from the intersection of a finite-index context-free language
and a Petri net language.
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