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Abstract
We consider the process of forming outbound trains from cars of inbound trains at rail-freight
hump yards. Given the arrival and departure times as well as the composition of the trains, we
study the problem of allocating classification tracks to outbound trains such that every outbound
train can be built on a separate classification track. We observe that the core problem can be
formulated as a special list coloring problem in interval graphs, which is known to be NP-complete.
We focus on an extension where individual cars of different trains can temporarily be stored on
a special subset of the tracks. This problem induces several new variants of the list-coloring
problem, in which the given intervals can be shortened by cutting off a prefix of the interval. We
show that in case of uniform and sufficient track lengths, the corresponding coloring problem can
be solved in polynomial time, if the goal is to minimize the total cost associated with cutting off
prefixes of the intervals. Based on these results, we devise two heuristics as well as an integer
program to tackle the problem. As a case study, we consider a real-world problem instance from
the Hallsberg Rangerbangård hump yard in Sweden. Planning over horizons of seven days, we
obtain feasible solutions from the integer program in all scenarios, and from the heuristics in
most scenarios.
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1 Introduction

A rail-freight transportation network is used to transport goods between two points in the
network. Described in a very simplified way, such a network consists of terminals connected
with tracks. Besides freight trains that consist only of cars going from one origin to one
destination (e.g., trains transporting coal or ore), most freight trains consist of cars with
various origins and destinations. In order to transport each car to its destination, the freight
trains are disassembled into individual cars from which new outbound trains are formed.
This process is called classification (also marshalling or shunting), and is conducted in so
called classification yards (also known in the literature as marshalling or shunting yards),
which are intermediate stops (terminals) in the network.
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Figure 1 A schematic layout of a typical hump yard.

Train classification is a crucial element in the overall goal of an efficient rail-freight
transportation as this process is often the bottleneck of the freight transportation and
naturally limits the throughput in the network. In this paper, we study one specific process
of forming outbound trains from the cars of inbound trains within a classification yard.

A classification yard typically consists of an arrival yard, a hump track with a hump, a
classification bowl, and a departure yard. Therefore, classification yards with a hump are
often called hump yards. A typical layout of a hump yard is illustrated in Figure 1. The
arrival yard is a composition of tracks used for storing cars of inbound trains, where all
cars of an inbound train are decoupled and stored on a single track. Similarly, a departure
yard is a composition of tracks for storing outbound trains. The outbound trains are formed
in the classification bowl, which consists of classification tracks. The hump is connected
to the classification tracks by a set of switches such that a car or an engine can reach
any classification track from the hump. To form the desired composition of cars on the
classification tracks, two operations are used: the pull-out and the roll-in operation. In the
pull-out operation, the cars of a specified classification track are coupled and pulled by the
engine over the hump onto the hump track; there, the cars are decoupled and are ready for
the subsequent roll-in. During the roll-in operation, the (decoupled) cars on the hump track
are pushed over the hump and roll into the classification bowl by means of gravity only; each
individual car is guided to a desired classification track by appropriately setting the switches
of the classification bowl. In a hump yard, a pull-out operation is always followed by a roll-in
operation. When the formation of an outbound train is finished, its cars are coupled and
moved by an engine to the departure yard.

Given the arrival and departure times of the inbound and outbound trains, respectively,
as well as the cars belonging to these trains, the operational plan of a hump yard needs to
decide the movements of every car in the hump yard by the means of roll-ins and pull-outs
in order to achieve the desired formation of every outbound train before its departure time.
There may be various constraints on the formation of the outbound trains. In particular,
there are situations when the order of cars within a train is important. In this paper we
only consider the case in which no particular order of cars within an outbound train is
required. This is usually the case for freight trains which are not delivering goods to the
final destination but to another classification yard. A general operational plan would also
need to decide the time points when cars enter (from the arrival yard) and leave (to the
departure yard) the classification bowl. In this paper we consider a less ambitious goal, and
only consider the case when these time points have been decided. We thereby focus solely on
planning the movements of the cars within the classification bowl.

In this paper, we restrict ourselves to a particular class of operational plans which is a
generalization of current customs that are used in several hump yards in Europe. In these
operational plans, most classification tracks are reserved for at most one outbound train at
any point in time. Furthermore, a few classification tracks, called mixed tracks, are used
to store a mix of cars (which may arrive long before their planned departure) of different
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outbound trains in order to increase the capacity of the classification bowl. These mixed
tracks are pulled-out, e.g., at some fixed time-points per day, in order to distribute cars
onto classification tracks. A car can only go to its track once it is reserved for its outbound
train. The remaining cars go back to the mixed tracks. At present, operational plans are
hand-made. In order to compute such plans automatically, we present several results in
this paper, including our modeling approach, relation to algorithmic theory, and initial
computational results suggesting that operational plans can be found in less than 20 minutes.

The paper is structured as follows. We first define the mixing problem formally in
Section 1.1, and then review the related work and the best practice in Section 1.2. We
connect the mixing problem to various coloring problems of intervals in Section 2, where we
also develop two heuristics for the problem. We then present our mixed-integer program for
the mixing problem in Section 3. The experimental results are discussed in Section 4.

1.1 Problem definition
We consider a classification bowl consisting of k classification tracks θ1, . . . , θk, where a
classification track θ has length `θ. Furthermore, some of the tracks of the classification bowl
are used for mixing cars of different outbound trains. We denote the sum of their lengths
as `mix and refer to them simply as the mixed track. There are nin inbound trains, which
are to be formed into n outbound trains, where each car of an inbound train belongs to
exactly one outbound train. Individual cars having the same inbound and outbound trains
are handled as a single unit, a car group g, which has physical length `g. Hence, an outbound
train j consisting of a set Gj of car groups has length

∑
g∈Gj

`g. For each outbound train
j we need to assign a classification track θ to j on which it will be formed. The track θ
has to have sufficient length, i.e., the length `θ must be at least the length of the outbound
train. Every outbound train j has a fixed time oj when it leaves the classification bowl (to
the departure yard). Thus, by this time, all cars of the train j have to be on its assigned
track. For each outbound train j we need to decide a time interval (sj , oj) during which
the respective assigned track θ is reserved solely for cars of train j. Every inbound train i
has a roll-in time ri at which the cars of the inbound train are rolled in (from the arrival
yard) over the hump (into the classification bowl). Each car group g is rolled-in either to
the mixed track, or to the classification track θ assigned to the outbound train j, to which
group g belongs: if at time ri the assigned track θ is already reserved (i.e., if ri > sj) then
group g is rolled-in to the classification track θ, otherwise it is rolled-in to the mixed track.
A car that is rolled-in to the mixed track needs to be pulled-back from the mixed track over
the hump and rolled-in to the assigned track during the time interval that is reserved for its
outbound train on that track. For this purpose, the mixed track is pulled out at fixed times
p1, . . . , pm. At such a time, all cars of the mixed track are subsequently rolled-in either to
a classification track (if the respective assigned track has been already reserved), or back
to the mixed track (if the respective track has not yet been reserved). We call each time
interval between two consecutive pull-outs a period.

In this paper we consider the problem of assigning a classification track θ to every
outbound train j, as well as deciding the time sj when the assigned classification track should
be reserved for train j, such that all outbound trains can be formed. We will refer to this
problem as the mixing problem. Observe that the schedule of the hump, which specifies the
times of the roll-in and pull-out operations as well as the time oj of each outbound train
j, is fixed. Thus, the set of cars which are stored on the mixed track is determined by the
choice of sj for each outbound train j.
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1.2 Related work

The particular problem that we consider in this paper has, as far as we know, not been
studied before. There are various papers related to the problem of shunting both freight and
passenger trains, but the solutions techniques are not applicable to the shunting problem
when mixing is taken into account.

Many research efforts related to the operation of classification yards have been put in
sorting schemes for sorting cars inside a classification bowl. Given a sequence of n cars labeled
from 1 to n, the general goal of a sorting scheme is to form, by roll-in and pull-out operations,
a sorted sequence of cars. Early literature considers sorting schemes that essentially perform
the same sorting steps for any input sequence of a given length [11]. More recently, it has
been studied how to utilize the “pre-sortedness” of the input in order to minimize the number
of pull-out operations [6, 10], as well as variants thereof [5]. A recent survey by Gatto et al.
[8] gives an overview of this topic.

A related problem is the parking of trams in the evening on tracks in depots such that the
trams can leave the depot in the morning without any shunting operation [2, 7, 12]. Another
related problem is the train scheduling at yards, i.e., the problem of assigning trains and
train times for a set of rail lines and station stops. This problem was considered by He et
al. [9], together with some operational planning at classification yards in China, although
under different considerations than in our case.

In the problem considered in this paper, we have to decide for each outbound train both
the classification track on and the time at which it will be formed. A related problem for
passenger trains has been considered [4], in which more than one inbound train can be
assigned to a track of a train station. The problem asks for an assignment of tracks to
inbound trains such that the trains do not block each other when departing the train station.

Best Practice Today, the planning of hump yard operations is to a large extent done
manually. In the Hallsberg yard in Sweden, where the data for our experimental evaluation
was collected, detailed planning is done by the hump-yard staff one day at a time, usually
during the morning when fewer trains arrive than in the afternoon. The allocation of tracks
at the arrival yard and departure yard is performed manually, independently from other
operations, and in advance by traffic-planning personnel, who are not directly involved with
hump yard operation and detailed planning. However, frequent communication between
the different groups happens, since the allocation of arrival and departure yards and the
yard operation planning is interdependent and cannot be done in full isolation. The typical
practice at Hallsberg is to use the same roll-in order as the arrival time order and the same
roll-out order (onto the departure yard) as the departure time order. In this paper we follow
this practice in that we assume the roll-in times and roll-out times (into and out of the
classification bowl, respectively) to be given as part of the input. For the experimental
evaluation where we do not have this data, we compute these times as described in Section 4.2.
Also, a common practice is to pull-out all mixed tracks together, although it could be beneficial
to pull-out the mixed tracks independently. For our purposes, we treat these mixed tracks as
one virtual mixed track, where we set the length of the track and the duration of a pull-out
operation accordingly.
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Figure 2 Three outbound trains i, j and k induce the (mutually intersecting) intervals Ii, Ij and
Ik, here depicted as rectangles. The pull-out of the mixed tracks happens at times p1, . . . , p5. The
uncuttable part of an interval is defined by the last pull-out time of the mixed track that is contained
in the interval (depicted in gray). If we assume two available tracks, then the three intervals cannot
be assigned to the tracks without cutting off. Here, a cut-off of the interval Ii at the end point of Ik

allows a placement of I ′
i and Ik on the same track. For simplicity, technical setup times have been

omitted in this figure.

2 Relation to interval-coloring problems

The mixing problem can be seen as a family of specific coloring problems of intervals. In this
section, we give complexity results based on these relations and devise two heuristics for our
problem that we experimentally evaluate on real-world data in Section 4.

Recall that in the mixing problem we are asked to determine for each outbound train
i a track θ and a time interval I ′

i, during which the track is reserved exclusively for the
formation of that train. Observing the roll-in times of the inbound trains, we can obtain for
every outbound train i a time interval Ii = (arr, dep) in which cars of the outbound train
arrive to the classification bowl, i.e., arr = ming∈Gi

rg (where rg is the roll-in time of the
inbound train to which car group g belongs, and Gi is the set of car groups of train i), and
dep = oi is the time when the train i leaves from its classification track to the departure
track. Thus, without loss of generality, the time interval I ′

i is a sub-interval of Ii of the form
I ′
i = (arr′, dep), arr′ ≥ arr, i.e., we cut-off a prefix of Ii to obtain I ′

i. We cannot cut-off an
arbitrary prefix: whenever arr′ 6= arr, there has to be a pull-out of the mixed track between
arr′ and dep, because we require that every car that is sent to the mixed track is at some
point brought to the actual track θ (before the train departs). This, together with some
technical setup times which we do not describe here for simplicity, induces for every interval
Ii an uncuttable part of Ii, i.e., a suffix of Ii during which all not yet rolled-in cars of the
outbound train have to be rolled in directly onto its classification track. The requirement
that every track θ is at any time reserved for at most one train translates into the condition
that, whenever trains i and j are assigned the same track θ, the corresponding intervals I ′

i,
I ′
j do not overlap. Here and in the following, two intervals overlap if they intersect in more
than one point. Figure 2 illustrates our discussion.

Our problem thus translates to the problem of assigning a track θ to every outbound
train i and cutting off a prefix of every interval Ii to obtain a cut-off interval I ′

i such that
no two cut-off intervals of two trains assigned to the same track overlap. Assuming the
cutting-off of intervals has been made, the problem of assigning tracks of sufficient length
to the outbound trains can be seen as a list-coloring problem of the intervals: each train i
has a list Li of classification tracks to which it fits, each track represents a color, and we are
asked to color every interval Ii with a color from the list Li such that any two overlapping
intervals I ′

i, I ′
j need to be assigned different colors.

In general, the list-coloring problem of intervals is NP-complete. In our case, the lists
do not have arbitrary structure: Assume w.l.o.g. that the classification tracks θ1, . . . , θk are
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ordered increasingly by length. For each outbound train i, let µ(i) indicate the smallest track
on which it fits (we assume that every train fits on θk); the list Li is then just {θµ(i), . . . , θk}.
Such a list-coloring problem is called a µ-coloring problem. It is known that the µ-coloring
problem for interval graphs is NP-complete, see [3]. As a consequence we immediately obtain
the following theorem:

I Theorem 1. Finding a feasible track allocation for the mixing-problem is NP-complete even
for instances where the capacity of the mixed track `mix is zero, or where `mix is unlimited
and all intervals may have arbitrary uncuttable parts.

Proof. Observe first that if there is no capacity on mixed tracks then no car can be sent to a
mixed track and thus no interval can be cut-off. If on the contrary `mix is unlimited, we may,
without loss of generality, assume that every interval Ii has been cut-off in a maximal possible
way and I ′

i is thus the uncuttable part of Ii. It is now easy to see by the above discussion
how to transform any instance of the µ-coloring problem for intervals to a corresponding
instance of the mixing-problem. J

Despite its NP-complete core, the practical complexity of the mixing-problem strongly
depends on the distribution of the length of both the classification tracks and the outbound
trains. If, for example, each train fits on each track, and the capacity of the mixed tracks
is zero, then our problem reduces to the problem of coloring an interval graph, which is
well-known to be polynomially solvable by a simple greedy algorithm. The heuristic in the
following section is based on this observation.

If we assume that each train fits on each track and sufficient length of the mixed track, a
natural heuristic for the mixing problem would be to minimize the total number of cars that
are sent to the mixed tracks and that allows a feasible track allocation. In the following we
show that this problem can be solved in polynomial time. Further below, we will use this
result to devise an improvement heuristic for the mixing problem.

I Theorem 2. In case of uniform and sufficient track lengths, the problem of finding a
feasible track allocation that minimizes the sum of all cars sent to the mixed track over all
time periods is solvable in polynomial time.

Proof. Assume there are k tracks and n outbound trains, each with a time interval as
described above. Observe that if the trains are assigned to tracks then computing the
minimum number of cars that need to be sent to the mixed tracks in order to make this
assignment feasible is a trivial task. To see this, consider a classification track θ and train
i with interval Ii = (arri, depi) such that the train is last to leave the track, i.e., for any
other train i′ with time interval (arri′ , depi′) assigned to track θ we have depi′ < depi. The
minimum number of cars of train i that we need to send to the mixed track are the cars that
arrive in time period (arri, depi′) where depi′ is the departure time of train i′ that departs
from the classification track second to last, i.e., just before i. We can proceed similarly with
the cars of train i′ by sending to the mixed track all cars of train i′ that arrive in time
interval (arri′ , depi′′), where i′′ is the train leaving the classification track just before i′. We
can proceed recursively to determine the minimum number of cars that need to be sent to
the classification tracks. Therefore, we can see our problem as finding for every train i its
direct predecessor i′ on its assigned classification track. The actual assignment of a track to
trains is done by introducing a phantom train iθ for every track θ. Thus, if train i is assigned
a phantom train iθ as the direct predecessor of i, then we interpret this as assigning train i
to the classification track θ. In this modified setting where every train is asked to have a
predecessor (a real train or a phantom train), our problem can be reduced to an assignment
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problem, i.e., to finding a minimum-weight matching in the following complete bipartite
graph: the (real) trains form one part of the bipartition, and the real trains together with
the phantom trains form the other part of the bipartition; the weight of the edge connecting
train i from the first part with (phantom) train i′ is the minimum number of cars that need
to be sent from i to the mixed tracks in order to allow train i′ to be an immediate predecessor
of train i on a classification track (or the weight is ∞, if i′ cannot be a predecessor of i). J

2.1 A clique-based heuristic
We present a heuristic for the mixing problem in which we will iteratively decide a coloring
of the intervals, and cutting off the (problematic) intervals. The guiding goal will be to keep
the total length of all cars sent to the mixed track, summed over all periods, low. Ideally,
the heuristic would find a solution to the mixing problem that is feasible w.r.t. the capacity
of the mixed track in each period. Recall that for every outbound train i, we need to choose
a suffix I ′

i for each interval Ii and color it with a color from the list Li = {θi | i ≥ µ(i)}. We
assume, again, that every outbound train fits on the largest track θk.

Coloring Intervals We first color the intervals in a greedy way, mimicking the greedy
coloring of interval graphs without lists. We assume that we have infinitely many colors
available (i.e., not only k). We start by sorting the intervals in a non-decreasing order of
their starting time point. We color the intervals in this order and assign each interval Ii the
smallest non-conflicting color that is at least µ(i). At this point, a non-conflicting color is a
color such that no interval that has been colored and overlaps with Ii is colored with it.

In this way, we guarantee that every interval Ii is assigned a color at least µ(i). If we
do not use more colors than k, we have found a list-coloring and can stop the iterations.
Otherwise, the coloring uses more colors than k, and we proceed with the cutting off.

Cutting off Intervals If there is an interval Ii that is colored with a color c > k, then Ii
overlaps with intervals that are together assigned every color in µ(i), µ(i) + 1, . . . , k, . . . , c.
These intervals mutually intersect and thus form a clique K. We find a maximal clique
containing an interval of the largest assigned color c. Let q := c − k, i.e., the number of
intervals of K that use a color c > k. The heuristic tries to reduce the size of the clique by
cutting off q intervals of K, in order to be able to increase the set of available colors for each
of those intervals.

The cut-offs are computed as follows. First, the intersection of all intervals in K is
computed, which is an interval by itself. Let t denote the end of this interval. If possible, cut
off q of the intervals of K at point t. In particular, cut those q intervals of K that minimize
the resulting additional usage of the mixed tracks. We iterate the procedure (coloring and
cutting off) with the newly cut-off intervals.

This heuristic is illustrated in Figure 3. Note that the heuristic does not guarantee to
find an allocation that is feasible with regard to the capacity of the mixed tracks.

2.2 An improvement heuristic
Once a feasible assignment of tracks to outbound trains exists, one can furthermore try to
improve the solution towards a local optimum. In particular, we are interested in minimizing
the total number of cars (over all periods) sent to the mixed track, which we call the extra
roll-ins for short, as will be motivated in Section 3.2.
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(a) Greedy coloring by start time.
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(b) First infeasible maximal clique K. There are
q = 5 − 3 intervals that need to be cut off.
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(c) Cut off two intervals at the end of the intersec-
tion.
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(d) Greedy re-coloring by start time. The heuristic
is then repeated for the next clique.

Figure 3 First steps of the interval coloring heuristic involving trains A-F, and three classification
tracks. Gray areas of the intervals indicate allocations which cannot be cut-off, as there is no pull-out
(dotted vertical lines) of the mixed track. The dark grey rectange depicts the intersection of the
respective clique of intervals.

The heuristic is based on two observations. First, when looking at a feasible solution,
one observes that both the tracks and the trains can be partitioned into subsets, called
buckets, such that each train in a bucket fits on all tracks in the same bucket. Secondly,
given a feasible solution, one can minimize the mixed-track usage for each bucket of tracks
independently. Because within a bucket, all assigned trains fit on all tracks, it suffices to
solve an assignment problem for each bucket, as detailed in Theorem 2, in order to find an
optimal reassignment of trains to tracks within that bucket. Note that also this heuristic
does not guarantee feasibility regarding the capacity of the mixed tracks.

3 An integer program for the mixing problem

In order to compute exact solutions for the mixing problem, we design an integer program.
Recall that the mixing problem asks to find an assignment of long-enough classification
tracks to the outbound trains, and for each outbound train a (conflict-free) time reservation
of its assigned track, such that all outbound trains can be formed on time and the capacity
of the mixed track is not exceeded.

In the following model, each train i is associated with binary variables xis for each
possible starting time point s of the reservation of its assigned classification track, and binary
variables yiθ for each possible classification track θ to which it may be assigned.
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46 Track Allocation in Freight-Train Classification with Mixed Tracks

3.1 Capacity of the mixed tracks

To limit the amount of used mixing capacity, we first note that the set of mixed cars can
only change when a car group is rolled in to the classification bowl, or at a pull-out. In
addition, a car group rolled in to a mixed track at time s will stay mixed at least until the
first pull-out p+

s that is scheduled after s. Therefore, it suffices to ensure feasibility of the
mixed track usage at the end of each period, when the maximum usage within that period is
attained. Let Xis = {g | g ∈ Gi, rg < s} be the set of car groups of an outbound train i that
are mixed as a result of i starting at time s. We now need to consider which group of cars in
train i are mixed at a certain pull-out p, given a start time s for i. To determine this we
will check whether the prefix of Ii that is cut-off contains p, and which groups from Xis are
rolled in before p.

Let Pi be the set of valid pulls for train i, which occur after the first group roll-in and
before the time the train needs to start preparations for departure. Furthermore, let Si be
the set of valid start-times for train i, which is the union of Pi and the set of the roll-in times
{rg | g ∈ Gi}. Now assume we have a train i with a valid start time s and a pull p ≤ p+

s . If
i starts at s, then all groups g ∈ Xis (which have to be mixed when i starts at s) stay on
the mixed track until the pull-out p+

s . Therefore, a group g will be mixed during the period
ending at p if rg < p.

Formally, we let Ap = {(i, s) | 1 ≤ i ≤ n, p ∈ Pi, s ∈ Si, p ≤ p+
s } be the set of pairs of all

trains and start-times possibly affecting a pull-out p, where n is the number of outbound
trains. Given Ap we can now define the mixed capacity constraints as shown below in
Equation (5). Informally, this equation states that for all trains i and start times s affecting
a pull-out p it holds that if the reservation of the classification track of i starts at s then the
total length of the groups that arrive before p may not exceed the mixing capacity `mix.

3.2 Counting extra roll-ins

For the purpose of our research with the Swedish traffic administration authority Trafikverket,
the goal of yard operation planning was to minimize unnecessary labor and infrastructure
wear. The current practice at the yard reflects a policy where the goal is to roll in cars
as soon as possible, and where cars are mixed if they arrive “early” compared to their
planned departure. In practice, this policy leads to many cars being unnecessarily mixed
and subsequently pulled-out.

As the objective of the optimization problem, we chose to minimize the number of extra
roll-ins needed for yard operation, which corresponds to the number of times a car is sent
to the mixed track. This number, cis, can be easily calculated for each train i and each
possible starting time point s as cis =

∑
g∈Xis

ng |Pisg|, where Xis is defined as above and
Pisg = {p ∈ Pi | rg < p ≤ p+

s } is the set of pull-outs between the arrival of g and the first
pull-out p+

s after time s. Given cis we can then form the objective by multiplying each cis
with the variable xis, as described in the following section.

3.3 An integer programming model

We are now ready to formulate the full integer programming model, including sequencing
constraints on the classification tracks. We use binary variables xis that indicate at which
time s the reservation of a classification track for outbound train i starts, as well as binary
variables yiθ that indicate whether the outbound train i is allocated to track θ.
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minimize
n∑
i=1

∑
s∈Si

cisxis (1)

subject to
∑
θ∈Li

yiθ = 1, 1 ≤ i ≤ n (2)

∑
s∈Si

xis = 1, 1 ≤ i ≤ n (3)

∑
s∈Sj :s<oi

xjs + yiθ + yjθ ≤ 2, (i, j) ∈ IJ , θ ∈ Li ∩ Lj (4)

∑
(i,s)∈Ap

∑
g∈Xis:rg<p

`gxis ≤ `mix, 1 ≤ p ≤ m (5)

Equation (1) gives the objective in terms of the number cis of extra roll-ins due to
mixing, which results from using start time s for train i. Equation (2) ensures that all
trains i are allocated to a track from the set Li of feasible (w.r.t. length) tracks for i, and
Equation (3) ensures that each train i has a start time s from its set of valid start-times Si.
Equation (4) states that for each pair of trains (i, j), where i leaves its classification track
before j, but departs after the first group of cars of j is rolled-in, either i and j are on different
tracks, or j starts its allocation of the common track θ after i has left. Formally, we define
IJ =

{
(i, j) | 1 ≤ i < j ≤ n ∧ming∈Gj

rg < oi
}
, where we assume that the outbound trains

are indexed according to ascending departure times from the classification bowl. Finally,
Equation (5) ensures that the mixing capacity limit is respected in each period.

In order to facilitate finding a feasible solution, we define the feasibility mixing problem as
the mixed integer program consisting of Equations (2) to (5) with an additional continuous
non-negative variable v representing “virtual mixing capacity”. The variable v is then added to
the right-hand side of Equation (5). By replacing the objective Equation (1) with minimize v,
one seeks to obtain mixing feasibility without specifically minimizing the number of extra
roll-ins.

4 Case study

The Swedish traffic administration authority has provided us with historic data for the
Hallsberg Rangerbangård hump yard in central Sweden for validation of our approach.
Hallsberg has 8 tracks of length 595 to 693 meters on the arrival yard, two parallel humps
(of which only one is in use), 32 available classification tracks of varying length (between
374 and 760 meters), and 12 tracks with length 562 to 886 meters on the departure yard.
Although there are several other tracks on the yard (most notably tracks going to light and
heavy repair facilities) they are not normally used for shunting, and we are therefore not
considering them in the model.

We used the following working process to determine a shunting plan: First, preprocess
the data according to Section 4.1. Second, determine suitable roll-in (ri), pull-out (pj) and
roll-out times (oj) for all inbound trains i and outbound trains j by the method described in
Section 4.2. Third, separate the problem data into instances containing all rolled-in trains in
a single week, ranging from Saturday until the next Friday, using the roll-in and pull-out
times obtained in the second step. Fourth, solve the mixing problem instances using the
heuristic algorithm in Section 2.1 and the improvement algorithm in Section 2.2. Fifth, also
solve the feasibility mixing problem instances using the MIP model in Section 3.3, minimizing
the virtual mixing capacity v. Finally, improve the mixing solutions obtained from the MIP
model by fixing v at zero and solving the original integer program (1) to (5).
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4.1 Preprocessing traffic data
We collected five months of historic traffic data for the yard, including all inbound trains,
outbound trains, and the set of cars going from each inbound train to each outbound train.
The data was taken from the period from December 11, 2010 to May 10, 2011, which contains
intervals of both high and low activity, such as a longer holiday period and at least one major
traffic disruption. Timing parameters, such as setup times, durations of roll-ins, etc., were
chosen according to [1]. Cars with a local source or destination were not included in the data
set and were therefore not considered.

The data we collected contain for every inbound train only the time when it arrives to
the arrival yard. The time when the cars of the inbound train roll-in to the classification
bowl are not available. Further, the data did not contain the time points when the mixed
tracks were pulled-out. Therefore, we had to compute a hump schedule for all roll-in and
pull-out operations to complete the input for the mixing problem of the previous section.
This will be described in Section 4.2.

The data contain further ambiguity, namely the matching of cars from incoming trains to
outgoing trains: for the same train, there may be several arrival and departure times on the
same day. Further, the same physical car may arrive at the yard repeatedly, having the same
ID in the data. Finally, data for trains arriving or departing outside the period for which the
data was provided are missing. We therefore had to match cars to trains in a sensible manner.
For our experiments, we required a minimum time span of 180 minutes between arrival at
and departure from the shunting yard (i.e., not only the classification bowl). Further, we
required that cars spend at most 48 hours on the yard. Finally, we required that trains do
not exceed the length of the longest available classification track. Car records that could not
be matched this way were discarded. In total, 3594 arrivals, 3654 departures and 17684 car
groups were handled. Inbound trains vary in length between 12.8 and 929 meters, outbound
trains between 12 and 1252 meters. For five outbound trains we had to discard some of their
groups in order to stay below the maximal track length of 760 meters.

4.2 Computing the missing hump schedule
The mixing problem is given by the roll-in times of the inbound trains, by the departure
times of the outbound trains from the classification bowl, and by the times of the pull-outs.
The traffic data provided to us does not contain this information: only the arriving times
to the arrival yard and the departure times from the departure yards are known. For the
experiments, we therefore need to compute the missing data, trying to mimic the current
practice in the yard.

Because the pull-backs as well as the roll-ins occupy the hump, we need to schedule
the roll-ins and pull-backs such that no two such actions on the hump overlap in time.
Additionally, we want to find a set of pull-outs that guarantees a feasible assignment and
reservation of tracks to the outbound trains if we assume infinite capacity of the mixed
tracks. We achieve this by creating a rough assignment of trains to classification tracks in
a round-robin fashion (and ignoring mixing capacities), and computing a minimum set of
pull-outs, such that there is one suitable pull-out for each train that needs to store cars on
the mixed tracks in this round-robin schedule.

We assume that all tracks on the arrival and departure yards can accommodate all
inbound and outbound trains. We determine the roll-in times and pull-out times sequentially
by first considering the roll-ins, and then by inserting pull-outs at suitable time points. Due
to space restrictions, we have to omit a detailed description of the preprocessing. We remark
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Table 1 Experimental results in maximum mixed track usage (MTU) with a limit of 1217 m,
and the extra car-roll-ins needed due to mixing (ER). x̄ is the arithmetic mean. Infeasible solutions
are shown in italics.

Instance Heuristic Heuristic++ MIP
Trains Groups MTU ER Time MTU ER Time MTU ER Time

(#) (#) (m) (#) (s) (m) (#) (s) (m) (#) (s)
1 188 901 572.7 158 0.1 526.4 150 0.6 377.3 169 1160.8
2 121 423 0.0 0 0.0 0.0 0 0.2 0.0 0 7.9
3 99 322 0.0 0 0.0 0.0 0 0.2 0.0 0 5.4
4 137 469 0.0 0 0.0 0.0 0 0.3 0.0 0 9.3
5 185 862 515.4 80 0.1 499.6 80 0.9 505.4 120 1159.4
6 184 924 249.5 66 0.1 249.5 64 0.5 455.7 111 1062.5
7 157 656 0.0 0 0.0 0.0 0 0.2 0.0 0 13.1
8 179 797 171.5 25 0.0 171.5 25 0.4 245.8 30 1085.4
9 173 856 262.1 56 0.1 262.1 51 0.5 228.9 46 1083.4
10 183 901 598.4 191 0.2 579.7 184 0.6 843.9 204 1156.0
11 185 873 952.7 133 0.1 952.7 133 0.6 374.4 55 1135.1
12 174 918 988.1 184 0.3 836.2 155 0.6 530.7 56 1129.3
13 188 930 286.3 76 0.1 286.3 76 0.4 338.3 107 1155.5
14 201 1100 1003.3 208 0.2 901.9 200 0.5 935.5 210 1157.7
15 194 1053 748.1 211 0.2 748.1 203 0.6 554.5 229 1119.7
16 173 907 1365.6 274 0.2 1249.1 258 0.6 295.7 84 1141.2
17 188 958 640.5 91 0.1 640.5 91 0.4 817.8 121 1145.4
18 199 1047 1063.9 379 0.4 1089.8 340 0.7 589.9 238 1118.5
19 156 801 1159.0 118 0.1 1032.9 106 0.4 428.5 64 1139.6
20 148 778 302.9 32 0.0 302.9 32 0.3 395.5 41 1144.7
21 186 973 1797.9 542 0.4 1726.8 530 0.8 918.6 351 1139.1
x̄ 171.3 830.9 603.7 134.5 0.1 574.1 127.5 0.5 420.8 106.5 917.6

that using this preprocessing we had to delay a small fraction of the trains in the five month
period (0.8 % of the inbound trains for in total 82 minutes and 0.08 % of the outbound
trains for in total 70 minutes). It should be noted, however, that arrival and departure times
can be negotiated with the network provider. Further, in daily operations, the planners do
not strictly follow a fixed rule to determine the roll-in order. In about 90% of the cases,
trains are rolled-in in the same order as they arrive. In the remaining cases, the above rule
of rolling in according to earliest deadline is followed.

4.3 Results

Table 1 shows the results obtained for the problem instances using the above approaches.
The instances are seven days long and cover Saturday until the next Friday. In the table,
Heuristic is the heuristic from Section 2.1, Heuristic++ is the same heuristic improved using
the algorithm in Section 2.2, and MIP is the integer programming model from Section 3,
where we first solve the feasibility mixing problem as described above. The MIP computations
were carried out using Python 2.6 and Gurobi 4.5 on a standard dual-core desktop computer.
A time limit of 10 minutes for feasibility and an additional 10 minutes for optimality was
imposed.

As can be seen in Table 1, both heuristics reach feasibility with regard to the total
mixing capacity of 1217 m in most of the problem instances. The improvement heuristic
from Section 2.2 lowers the mixed track usage and number of extra roll-ins compared to the
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original coloring heuristic from Section 2.1 many instances. The MIP model finds feasible
mixing solutions in all instances tried, in many cases with much fewer extra roll-ins compared
to the heuristics. In addition, in 17 out of the 21 cases we could have managed with just
one mixed track of length of 608 or 609 m instead of two. However, it should be noted that
the runtime when optimizing the number of extra roll-ins was terminated after 10 minutes
without finding an optimal solution. The MIP gap for the model minimizing the number of
car roll-ins is almost always 100.0 %. At the same time, the run-time of the heuristics is
negligible, as it is in the order of a fraction of a second. Although the experiments suggest
that the MIP performs fast enough, we remark that faster algorithms would enable other
applications as, e.g., online booking systems, similar to those in passenger traffic, where
customers could make a reservation to book their cars on specific trains.

Worth noting is that instances 2–4 contain both holidays and major disruptions due to
snowfall, which explains the lower load seen in Table 1. In addition, instance 7 contains a
large derailment which occurred on a major line in northern Sweden. As a result, freight
had to be transported on lines with lower capacity than normal, hence the lower volumes at
Hallsberg during this period.
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