
Real-Time Traffic Control in Railway Systems
Carlo Mannino

Dipartimento di Informatica e Sistemistica, Università di Roma “Sapienza”,
e-mail: mannino@dis.uniroma1.it.

Abstract
Despite the constantly increasing demand of passengers and goods transport in Europe, the share
of railway traffic is decreasing. One major reason appears to be congestion, which in turn results
in frequent delays and in a general unreliability of the system. This fact has triggered the study
of efficient ways to manage railway traffic, both off-line and real-time, by means of optimization
and mathematical programming techniques. And yet, to our knowledge, there are only a few
fully automated real-time traffic control systems which are actually in operation in the European
railway system; in most cases such systems only control very simple lines and actually they
only support the activity of human dispatchers. We describe here two recent optimization based
applications to real-time traffic control which have actually been put into operation in the Italian
railways. One such system has been able to fully control the trains in the terminal stations of
Milano metro system. The other one will be fully operative by the end of 2012, when it will
control the trains on several Italian single-track railways. Both systems heavily rely on mixed
integer programming techniques to elaborate good quality timetables in real time.

1998 ACM Subject Classification F.2.1 Numerical Algorithms and Problems; G.1.6 Optimiza-
tion; I.2.8 Problem Solving, Control Methods, and Search

Keywords and phrases Train Timetabling, Real-Time Traffic Control, Integer Linear Program-
ming

Digital Object Identifier 10.4230/OASIcs.ATMOS.2011.1

1 Introduction

The demand of people and freight transportation in Europe is increasing at a rate of 2%
per year: in contrast, the share of railway traffic is decreasing (from 11% in 2000 to an
expected 8% in 2020) (see [5]). Apparently, the major reason for such decrease is a general
unreliability of railway systems when compared with other transport modes. In recent years
this fact triggered the investigation of new mathematical models and approaches to manage
railway traffic, both off-line and real-time. Off-line optimization approaches devoted to
timetabling, routing and train platforming have been implemented and applied successfully
to tackle real-life problems (e.g. [3, 4, 8]). In contrast, and maybe quite surprisingly, there
are very few examples of optimization systems actually in operation to manage railway traffic
in real-time and such systems typically control very simple lines, with their tasks restricted
only to support human dispatchers. One such system ([13]) is managing the Lötschberg
Base Tunnel (operated by the Swiss BLS).

Due to the relevance of the problem, in the past decade there has been a flourishing
of studies and experimental implementations; the literature is quite ample and we refer to
[5] for a recent survey. Nevertheless, most of the algorithms presented in the literature
never went beyond a laboratory implementation and, to our knowledge, they are not yet
operative. This is maybe a consequence of the widespread reluctance of network operators
to rely on automatic systems, also due to a number of unsuccessful attempts to tackle the

© Carlo Mannino;
licensed under Creative Commons License NC-ND

11th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems.
Editors: Alberto Caprara & Spyros Kontogiannis; pp. 1–14

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62916517?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/OASIcs.ATMOS.2011.1
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

2 Real-Time Traffic Control in Mass Transit and Railway Transport

problem with different techniques, such us expert systems, rule based systems, etc. One
other major obstacle is that real-time systems must be able to suitably model even the
smallest and utmost specific detail of the real network, and, at the same time, response
very quickly when invoked. So, besides representing an extremely challenging mathematical
problem, real-time train traffic control also requires the implementation of intricate software
packages, totally out of the interest (and skill) of scientists and academic staff.

In this paper we describe the basic mathematical ingredients of real-time railway traffic
control systems which have been, or currently are, or will soon be, put in operation in
different Italian railway lines. In particular, the first example concerns the metro terminal
stations of the city of Milano, whereas the second example refers to a number of single-
track railways in different Italian districts, from the very northern line Trento-Bassano to
the multi-line of the Sicilian district. Three major actors were involved in the development
of the systems: the network operator bringing the problem and, in some sense, an entire
railway; the academia, providing the mathematical tools and implementing efficient solution
algorithms; a (large) company of the transport sector, capable to design and implement the
hardware and software components interfacing the mathematics to the real-world. In my
opinion, only this blend of skills allowed for the practical achievement of the tools whose
basic ingredients we describe next.

Stations and railway lines may be seen as sets of track segments, each accommodating
at most one train, which can be accessed from other track segments either directly (as the
two segments are adjacent on a same track) or through switches. The structure of stations
and lines can be suitably represented by the infrastructure digraph, in which both arcs and
nodes represent specific track segments, as we will show in detail in a next section. A train
runs through a specific sequence of track segments, called train route. The official timetable
associates a time with specific track segments of each train-route, namely with the track
entering (arrival time) and leaving (departure time) each station. The (real-time) Railway
Traffic Control problem (RTC) consists in finding a minimum cost real-time plan which is
a suitable route for each train and the time in which the train enters each segment in its
route. The cost of the real-time plan is a function of the deviation from the official timetable.
Observe that trains compete to access the track segments and decisions must be taken in
order to establish which train precedes which on possible conflicting segments.

The (RTC) has long been recognized as a particular job-shop scheduling problem, where
trains correspond to jobs, tracks to machines with unit capacity, and the use of a track
segment by a train corresponds to an operation (see, e.g., [9, 12]). Two major mathem-
atical models were adopted to represent job-shop scheduling problems and railway traffic
control problems. In the first one (see, e.g., [2]), the scheduling variables are continuous real
variables, each representing the time in which a given operation is started. In the second
model (introduced in [6]), often referred to as time-indexed formulation, the time horizon is
discretized into a finite set of time periods, and the main decision variables are 0,1 variables
associated with a given operation and a specific time period.

The second approach has several, relevant advantages w.r.t. the first. The most import-
ant one lies in the way we express the fact that some track segments (distinct or not) cannot
be occupied simultaneously by two distinct trains, such as a passenger platform and the
track segment (interlocking route) to access it. In particular, in time-indexed formulations,
such incompatibility constraints are expressed by simple cardinality inequalities in which at
most one variable can be one. In the time-continuous approach, in contrast, an incompat-
ibility is typically expressed by means of the so called Big-M constraint which requires the
introduction of an additional 0,1 variable and of a large coefficient M . It is a well known

C. Mannino 3

fact that time-indexed formulations provide much stronger relaxations, and, in turn, better
bounds and smaller search trees. In addition, handling additional and heterogeneous con-
straints is in general a much easier task. Also, and quite important, routing and scheduling
can be immediately handled in a unique framework, i.e. by associating the time-indexed
variables to route-segments rather than track segments.

However, time-indexed formulations present a serious inconvenience, that is that the
number of variables and constraints grows very quickly with the time horizon and the dis-
cretization step. This inconvenience appeared to be deadly when solving real-time traffic
control problems, at least in our experience, where the optimization stage must return a
reasonably good solution, possibly optimal, within at most one second. For this reason we
decided to resort to the first and more classical continuous representation.

2 Real-time traffic control in metro stations

In year 2001 the municipal transport company of the City of Milano, Azienda Trasporti
Milanesi (ATM), recognized the potential of applying optimization techniques to control in
real-time the running trains in the terminal stations of the Milano metro system. The task
of implementing the overall software was assigned to a large multinational of the transport
sector, namely Bombardier Transportation, and later the University of Rome Sapienza came
on board to develop the core optimization algorithms.

The main challenge of such algorithms was to generate a real-time plan that optimized
a specific performance indicator, such as punctuality or regularity. In practice, human
dispatchers solve several instances of the (RTC) every minute. To generate an effective plan,
an optimization algorithm (referred to as Optplan) for the (RTC) needed to be embedded in
the traffic control loop(see Fig. 1): The position of the trains and the status of the switches
and of the signals were captured by remote control equipment and input to Optplan, which
returned a real-time plan. The system then signalled to the trains the next move to make
on their assigned routes.

Trains

Operation Control

Centre

OptPlan

Signalling System

Current trains

position

Current status and

reference timetable

Optimal routing

& scheduling

Switches &

signal status

Figure 1 The control loop

An upper limit of five seconds was established for the execution of a complete control
loop, which left fewer than one second available to Optplan. Indeed, the execution of the
traffic control loop had to be designed in a way so as no additional delays to the standard
traffic-management decision process be added. The headway between trains in peak hours is
exactly 90 seconds at Sesto F.S., the Milan metro network main terminal station. This tight

ATMOS’11

4 Real-Time Traffic Control in Mass Transit and Railway Transport

schedule stretches the station capacity to its limits. Consequently, even a few additional
seconds result in an unrecoverable delay. Second, Optplan needed to be able to quickly
re-compute a new plan whenever a dispatcher intervened in real-time. In the case of train
failures, dispatchers can reroute trains, edit the official timetable and modify the available
network infrastructure. Consequently, they need Optplan to do the same: re-compute plans
accordingly and show the new plans immediately on their monitors. The need for quick
and effective re-routing is especially crucial in peak hours when dispatchers are under severe
pressure as they simultaneously control several monitors, interact with other operators, make
radio calls to drivers, and so on. There is no time for a slow system.

After a rigorous and extensive test-campaign, the system proved not only to be able to
control in real-time the trains in the terminal stations, but also to produce better real-time
plans than human operators, significantly improving over all performance indicators. Only
thanks to such positive comparison, as by contractual clause, the automatic route setting
system was accepted by ATM and put into operation on July 2007. In what follows we
give a brief description of the model and the algorithm developed to solve the (RTC). A
comprehensive description of the methodology and of the computational tests can be found
in [10]. We start with some basic definitions.

Stations. A (terminal metro) station is a facility where passengers may board and alight
from trains, and in which trains can reverse direction or perform a number of additional
operations. Such operations are called train services. A metro station can be viewed as a set
of track segments, the minimal controllable rail units, which in turn may be distinguished
into stopping points and interlocking-routes. A stopping point is a track segment in which a
train can stop to execute a service while an interlocking-route is the rail track between two
stopping points, and is actually formed by a sequence of track segments. For our purposes,
a metro station is represented by means of a directed graphM = (P, I) where P is the set of
stopping nodes (points) and I ⊆ P ×P is the set of interlocking arcs (routes). A performable
service is associated with every stopping node p ∈ P .
Trains. Trains enter terminal stations in order to execute a sequence of services; thus trains
are defined as an ordered list of services along with an origin, a destination and a planned
departure time (according to a given master timetable). The set of trains to be scheduled
will be denoted by T = {1, . . . , |T |}, while Dj is the planned departure time of j ∈ T .
Finally, for all i, j ∈ T , we assume Di ≤ Dj whenever i < j, i.e. trains are ordered by
increasing departure times.
Routes. Train movements within a station may be viewed as ordered sequences of stopping
points and interlocking-routes, which in turn correspond to directed paths ofM . Such paths
are called (train) routes. Observe that every route r corresponds to an ordered list of services
(each associated with a node of r). Therefore, a route r will be called feasible for a train j ∈ T
if the ordered list of services associated with j is contained in the ordered list of services
associated with r. A feasible routing for T = {1, . . . , |T |} is a family R = {r1, . . . , r|T |} of
routes such that, for every j ∈ T , rj is feasible for j. The set of the feasible routings of a
station M for a set of trains T will be denoted by R(M,T). Let R ∈ R(M,T), let rj ∈ R,
and let p ∈ P be any stopping point of rj . We associate with p a duration dp(j) which
depends on the service available in p and on the train j associated with rj . In addition,
with every interlocking arc a ∈ rj we associate a travel time da(j).
Scheduling Nodes and arcs of a route r correspond to rail tracks. In order to provide a
complete description of the movements of a train along its route r, we need to establish the
exact time when the train enters each track, or, equivalently, a starting time for all of the
nodes and arcs of r. Now, let a = (u, v) ∈ r, and let tu, tv, ta denote the starting times

C. Mannino 5

of nodes u, v and arc a, respectively: then, since the train enters stopping point u before
running interlocking-route a, it must be ta − tu ≥ du (precedence constraint). Also, since a
train cannot be stopped while running through an interlocking-route (no-wait constraint),
we have tv − ta = da. If R ∈ R(M,T) is a feasible routing, an assignment of starting times
to all nodes and arcs of all routes in R is called a schedule for R.

The problem of computing a schedule for R ∈ R(M,T) falls into the class of job-shop
scheduling problems where trains can be viewed as jobs, tracks are machines and train move-
ments at stopping nodes and through interlocking arcs are operations. Also, observe that a
train cannot move away from a stopping point if the next one on its route is occupied by an-
other train (blocking constraints). Blocking constraints can be expressed by a disjunction of
linear constraints on the starting times. Suppose routes r1, r2 ∈ R share a common stopping
node u and let a1 = (u, v) ∈ r1 and a2 = (u,w) ∈ r2 and let tu1, ta1 (tu2, ta2) be the starting
times of Train 1 (Train 2) associated to u (u) and to a1 (a2). If Train 1 precedes Train 2 in
u, then Train 2 can enter u only when Train 1 has already moved to a1, i.e. tu2 − ta1 ≥ 0.
Analogously, if Train 2 precedes Train 1 in u, then tu1 − ta2 ≥ 0. Therefore, tu1, ta1, tu2, ta2
satisfy the following disjunctive constraint:

(tu2 − ta1 ≥ ε)
∨

(tu1 − ta2 ≥ ε) (1)

where
∨

denotes that at least one of the two constraints of the disjunction must be satis-
fied. Observe that the disjunctive constraint (1) generalizes the standard one for job-shop
scheduling, because distinct machines (tracks) may be involved.

Schedule costs. Costs represent deviations of the actual schedule from the master
timetable. Clearly, early and late trains must be penalized. This is done by introducing a
convex, piecewise linear function gj(sj), for j = 1, . . . , |T |, where sj is the departure time of
train j. Also, the time-lag between the departures of two consecutive trains j−1 and j must
equal the planned one (regularity lag). The corresponding cost fj(sj − sj−1), j = 2, . . . , T
is again a convex, piecewise linear function.

The overall schedule cost c′(s) is computed by summing up the two cost functions, and
only depends upon departure times sj , for j ∈ T :

c′(s) =
|T |∑
j=1

gj(sj) +
|T |∑
j=1

fj(sj − sj−1), (2)

where s0 is the last departure time. We are finally able to state the Metro-Station Traffic
Control Problem (m-RTC).

I Problem 2.1. [Metro Station Traffic Control Problem] Given a set of trains T , a metro-
station M(P, I) and earliness-tardiness and regularity costs gj and fj , for j ∈ T , find a
feasible routing R∗ ∈ R(M,T) and a schedule t∗ for R∗ such that the sum of the earliness-
tardiness and regularity costs is minimized.

In short, the (m-RTC) is tackled by enumerating all feasible routings inR(M,T) and then
by solving, for each R ∈ R(M,T), the associated job-shop scheduling problem. Therefore,
for any R ∈ R(M,T), we have a set of operations N = N(R) = {0, . . . , n}, where 0 is a
dummy operation (called start), while the operations {1, . . . , n} correspond to the stopping
nodes and the interlocking arcs of all of the routes in R. With every i ∈ N we associate
a starting time ti ∈ IR. The vector t ∈ IRn+1 is called a schedule of N , and we assume

ATMOS’11

6 Real-Time Traffic Control in Mass Transit and Railway Transport

ti − t0 ≥ 0, for all i ∈ N . The departure time sj of Train j ∈ T is related to the starting
time of the exit node d(rj) of rj through the equation sj = td(rj) − t0, for j ∈ T .

Feasible schedules must satisfy a number of precedence constraints between pairs i, j ∈ N
of the type tj − ti ≥ lij , where lij ∈ IR is a time-lag. We indicate the precedence constraint
tj − ti ≥ lij by {i, j, lij}, or simply by (i, j) if the time-lag is omitted.

A (unordered) pair of precedence constraints ({i, j, lij}, {h, k, lhk}) is a disjunctive pre-
cedence pair for N if every feasible schedule t satisfies either tj − ti ≥ lij or tk − th ≥ lhk.
I Problem 2.2. [Job-shop Scheduling Problem] Given a set of operations N = {0, . . . , n},
a set of precedence constraints F , a set of disjunctive precedence constraints A and a cost
function c : Rn+1 → R, find a (feasible) schedule t ∈ Rn+1 such that all constraints are
satisfied and c(t) is minimized.

The job-shop scheduling problem is NP-hard and can be formulated as the following
disjunctive program:
I Problem 2.3.

min c(t)
s.t. tj − ti ≥ lij (i, j) ∈ F

(tj − ti ≥ lij)
∨

(tk − th ≥ lhk) ((i, j), (h, k)) ∈ A
t ∈ IRn+1 .

The set of feasible schedules of an instance of the blocking, no-wait job-shop scheduling
problem can be represented by means of the so called disjunctive graph D(N,F,A), where
N is a set of nodes, F a set of directed arcs, A a set of (unordered) pairs of directed arcs.
The arcs in F are called fixed arcs. The arc pairs in A are called disjunctive arcs. Finally,
denoting by Z(A) = {(i, j) : ((i, j), (h, k)) ∈ A} the set of all directed arcs in (the pairs
of) A, a length lij ∈ IR is associated with every (i, j) ∈ F ∪ Z(A). An instance of the
job-shop scheduling problem is thus represented by a triple (D, l, c), where D = D(N,F,A)
is a disjunctive graph, l a weight vector and c : IRn+1 → IR a cost function.

A selection S ⊆ Z(A) is a set of arcs obtained from A by choosing at most one arc
from each pair. The selection is complete if exactly one arc from each pair is chosen. Every
selection S of D(N,F,A) naturally defines a new disjunctive graph D[S] = (N,FS , AS),
where FS = F ∪ S, while AS is obtained from A by removing the pairs containing the arcs
in S. We call D[S] an extension of D under S. Finally, we associate with D(N,F,A) the
weighted directed graph G(D) = (N,F), with length lij associated with every (i, j) ∈ F .

With every instance (D(N,F,A), l, c) of the job-shop scheduling problem, with c con-
vex and piecewise linear, we associate the convex program (SCH(D, l, c)), obtained from
Problem (2.3) by dropping all of the disjunctive constraints. Denoting by z∗(D, l, c) the
optimum value of (SCH(D, l, c)), the original disjunctive problem (2.3) can be restated as
the problem of finding a complete selection S̄ of A such that z∗(D[S̄], l, c) is minimum. Also,
z∗(D, l, c) provides a lower bound for the optimum solution value to SCH(D̄, l, c), where D̄
is any extension of D.

2.1 Solution algorithm and lower bound computation
An instance of the (m-RTC) is solved by our algorithm by enumerating all of the feasible
routings R ∈ R(M,T) and by solving, for each R, the associated instance (DR, l, c) of the
job-shop scheduling problem (2.3). This task is carried out by implicitly enumerating all of
the feasible extensions of DR. However, the enumeration of the (partial) extensions of D
can be limited by the following standard arguments. Let UB be any upper bound to the

C. Mannino 7

optimum solution value of Problem (2.3) - e.g., the cost c(t̂) of any known feasible solution
t̂ - and let S be a (partial) selection of A. If the optimum solution value z∗(D[S], l, c)
to SCH(D[S], l, c) satisfies z∗(D[S], l, c) ≥ UB then no (complete) extension of D[S] can
improve on t̂ and the problem can be disregarded. Now, Problem SCH(D[S], l, c) is an
instance of the so called optimal potential problem with convex costs, which can be shown to
be the dual of a min-cost flow problem with convex costs and can be solved efficiently even
in its integer version ([1]). Since a lower bound computation must be carried out at each
branching, we studied a further relaxation to SCH(D, l, c) which proved to be effective in
reducing the size of the enumeration tree with very little computational effort.

Let D(N,F,A) be a disjunctive graph, with |N | ≥ 1, and suppose G(D) does not contain
a positive dicycle. Denote by l∗ij the length of a maximum path from i ∈ N to j ∈ N in
G(D) (l∗ij = −∞ if no ij-path exists). Let SCH(D, l) ⊆ Rn+1 be the feasible region of
SCH(D, l, c). Since we assume G(D) contains no positive dicycle, then SCH(D, l) 6= ∅; also,
l∗ij <∞ for all i, j ∈ N . In what follows, we denote by tW the sub-vector of t ∈ SCH(D, l)
indexed by W and by projW (D, l) the projection of SCH(D, l) onto the tW -space, that is
t̃ ∈ projW (D, l) iff there exists t̂ ∈ SCH(D, l) such that t̂W = t̃.

I Lemma 1. [10] Let W ⊆ N , with W 6= ∅. Then

projW (D, l) = {t ∈ IR|W | : tj − ti ≥ l∗ij , i, j ∈W} (3)

So, let (D(N,F,A), l, c) be an instance of Problem (2.3) and let W = {d(j) : j =
1, . . . , |T |} ∪ {0} be the set of nodes of G(D) corresponding to the exit operations (one for
each train in T) and to the start. The projection projW (D, l) can be written as:

SCHs(D, l) =

sj − si ≥ l∗d(i),d(j) i, j ∈ T
l∗0,d(j) ≤ sj ≤ −l∗d(j),0 j ∈ T
s ∈ IR|T |,

where, as before, sj = td(j) − t0, j ∈ T . Observe that we have z∗(D, l, c) = min{c(t) :
t ∈ SCH(D, l)} = min{c′(s) : t ∈ SCH(D, l), sj = td(j) − t0, j ∈ T} = min{c′(s), s ∈
SCHs(D, l)}. Also, since node 0 corresponds to the start operation, and we have assumed
t0 ≤ ti for all i ∈ N , then we have l∗0,d(j) ≥ 0, for j ∈ T . Finally, since G(D) does not
contain positive dicycles, we have −l∗d(j),0 ≥ l

∗
0,d(j), for j ∈ T .

An optimum solution to SCH(D, l, c) can be obtained by finding an optimum solution s∗
to min{c′(s), s ∈ SCHs(D, l)}, and then “lifting" s∗ to a solution t∗ ∈ SCH(D, l): the last
task can be carried out by a simple maximum path tree computation. In this way problem
SCH(D, l, c) is reduced to an equivalent problem with much fewer variables.

Now, if we let lj = l∗0,d(j) and uj = −l∗d(j),0, for j = 1, . . . |T |, and we let q1 = l1 and
qj = l∗d(j−1),d(j), for j = 2, . . . , |T |, then the following convex program REL(D, l, c) provides
a relaxation to SCH(D, l, c):

LB(D, l, c) = min
∑
j∈T

gj(sj) +
∑
j∈T

fj(sj − sj−1)

s.t. sj − sj−1 ≥ qj j ∈ T (REL(D, l, c))
lj ≤ sj ≤ uj j ∈ T

s ∈ IR|T |+1

ATMOS’11

8 Real-Time Traffic Control in Mass Transit and Railway Transport

where again s0 denotes the departure time of the last departed train. In fact, the feas-
ible region of REL(D, l, c) is obtained from SCHs(D, l) by dropping some of the defining
constraints. Thus, the optimum LB(D, l, c) to REL(D, l, c) provides a lower bound to the
optimum solution value associated with every (complete) selection of D(N,F,A). Observe
that REL(D, l, c) has only |T | decision variables (the departure times) and few constraints,
again corresponding to the constraints of the dual of a min-cost flow problem. In what
follows we assume qj ≥ 0 for all j ∈ T : this condition is ensured by the no interchange
stipulation on train departures which imposes sj ≥ sj−1 for all j ∈ T , and which in turn
is imposed by including the corresponding precedence constraints into Problem 2.3. In [10]
we show how to reduce the above problem into a convex min-cost flow on a small network,
which in turn can be solved very efficiently (see [7]).

2.2 Computational results
In order to evaluate the overall approach to the (RTC), we performed both static and run-
time (real-life) tests (see [10]). Static tests involve a single trains list, and were carried out
mainly for assessing the quality of the relaxations and of the branch and bound algorithm.
The results clearly show that, when compared to SCH(D, l, c), solving the min-cost flow
reformulation of REL(D, l, c) speeds the computing times up to 2.5 times, a very desirable
feature for real-time applications. Indeed, an instance of REL(D, l, c), particularly in its
min-cost flow reformulation, can be solved (by using the Goldberg and Tarjan code [7])
much more efficiently than the original SCH(D, l, c) instance (solved by CPLEX 10.0); in
contrast, the total number of branching nodes increases only slightly. The results become
even more impressive when compared with other classical approaches, such as those based
on time-indexed reformulations. Run time tests were performed to evaluate the ability of
the system to manage real-time traffic and compare its performances to those obtained by
human dispatchers and were done during an official test-campaign, which lasted several days.
The results show that the dispatchers were in most cases outperformed by the system. This
favorable comparison is confirmed by the average result, which shows an increase of more
than 8% in a cumulative measure agreed with the ATM engineers (see [10]).

3 Single-track railways traffic control

In this section we briefly describe the basic elements of an optimization based automatic
route system for single-track railways. The system here described is already partially in
operation on several lines of the Italian railways, namely Parma – S. Zeno and Trento –
Bassano in North Italy, Siracusa – Gela, extended to Trapani, Siracusa and Caltanisetta
in South Italy and Terontola – Foligno in Central Italy. The full automatic route setting
system, based on the optimal recalculation in real-time of the timetables will be put into
operation by the end of year 2012.

A single-track line is a sequence of stations joined by a unique track. The track segment
between two stations is called block. Blocks are sometimes partitioned into sections, and, for
safety reasons, trains running in a same direction will be separated by a minimum number
of such sections. For brevity we neglect sections in the remainder of the paper but the
extension to such case is immediate.

Trains running in opposite directions or trains running in the same direction but at
different speeds may need to cross each other somewhere in the line. Of course this can
only happen in a station: the exact time and the meeting station is established by the
official timetable. However, due to unpredictable delays, it may become impossible or simply

C. Mannino 9

disadvantageous to accord with the official timetable, and new meeting stations should
be detected. In most railway systems this is performed manually by human dispatchers,
sometimes with the help of a supervising control software which can identify and present
possible meeting points, typically according to some local optimal criteria. In contrast, the
system we are developing will be able to fully control the traffic along single-track railway
lines, by establishing optimal meeting stations and actually controlling train movements in
stations and on the tracks between stations. It is important to remark here that, due to
very rigid routing schemes, the routes followed by trains in stations can be considered as
fixed (as they only depend on the arrival sequence).

Let S = {1, . . . , q} be the set of stations and let B = {1, . . . , q − 1} be the set of blocks,
with block i between station i and station i+ 1. Whereas at most one train can occupy the
block between two stations, each station s ∈ S can accommodate up to us trains, where us

is the station capacity1.
Let R = S ∪ B the set of railway resources and let T be the set of trains. Any train

i ∈ T runs through a sequence of stations and blocks. So, the route of the train i may
be represented by a path P i = {vi

1, (vi
1, v

i
2) . . . , (vi

l(i)−1, v
i
l(i)), vi

l(i)} where node vi
k ∈ R for

1 ≤ k ≤ l(i) is the k-th railway resource used by i. We denote by V i (Ai) the set of nodes
(arcs) of P i. The arcs of P i represent precedence constraints, i.e. the fact that (the resource
corresponding to) node vi

k is visited by the train before node vi
k+1 on its route. With each

arc (vi
k, v

i
k+1) ∈ Ai we associate the weight W i

k,k+1 ≥ 0 representing the minimum time
necessary to train i to move from the k-th resource to the next. Thus, if vi

k is a station
(node), then W i

k,k+1 is the time the train should spend in the station before departing. If
vi

k is a block (node), then W i
k,k+1 is the time necessary to reach next station.

Next, we construct the routes graph GT = (V,A) by letting V = {r} ∪ {v ∈ V i : i ∈ T},
that is V contains all nodes associated with the train routes plus an additional node r (the
root of GT); and A = {(r, vi

1), i ∈ T} ∪ {(u, v) ∈ Ai : i ∈ T}. So the new node r is a
source, connected to the first node of each train route P i. Also, for i ∈ T , we associate with
arc (r, vi

1) the weight Wri which represents the expected number of seconds (from "now")
before the train is expected to start its route (Wri = 0 if the train is already in the line). In
practice, node r represents a common start, which is associated with the origin of the time.

Now, for each node v = vi
k in V − {r} let us denote by tv = tik the minimum time in

which train i can reach the k-th resource on its path. Also, we let tr = 0. Observe that
by definition each arc (u, v) ∈ A with weight Wuv represents the constraint tv ≥ tu +Wuv.
Indeed, if v = vi

k is a station, then tv represents the minimum arrival time for train i in
such station. Similarly, if v = vi

k is a block b, then tv represents the minimum time for train
i to enter such block or, equivalently, the departing time from the station which precedes
block b on P i. Moreover, if such a block b follows station s in P i and the official departure
time from s of train i is Di

s, then we add the arc (r, v) with weight Di
s, representing the

constraint tv ≥ tr +Di
s = Di

s.
For all v ∈ V , the quantity tv can be computed by a longest-path tree computation on

GT with weights W and root r. The vector t ∈ RV
+ is called schedule or actual timetable.

The schedule t approximates the behavior of the trains along the line. However, we need to
take into account other precedence constraints in order to correctly predict the actual train
timetable. In fact, for some pair of trains i and j we need to impose that they meet in a
station s of the railway (we include a fictitious station to represent trains meeting outside

1 The model can be easily extended to the case in which some trains can not be accommodated on sone
given platforms

ATMOS’11

10 Real-Time Traffic Control in Mass Transit and Railway Transport

the line). We show now how to model the effect of such decision on the schedule t by
adding a suitable set of arcs Aij

s to GT . The new schedule is then computed by calculating
the longest path tree on the resulting graph. We distinguish two cases: i and j travel in
opposite directions or they travel in the same direction.

Case 1. Train i and train j, travelling in opposite directions, meet in station s. Clearly,
s belongs to both P i and P j . So, let vi

k and vj
m be the nodes corresponding to station s on

P i and P j , respectively. Since i and j meet in s, then j leaves s after i enters in s, that
is tjm+1 ≥ tik. Similarly, i leaves s after j enters s, that is tik+1 ≥ tjm. This is represented
by adding the arcs Aij

s = {(vi
k, v

j
m+1), (vj

m, v
i
k+1)} with weight 0 to the graph GT . Observe

that these arcs ensure that i and j will not conflict on a block in the resulting schedule,
since trains i and j enter the station from opposite directions (and thus they cannot conflict
before they enter) and they exit in opposite directions (and they cannot conflict after they
meet).

Case 2. Train i and train j, travelling in the same direction, meet in station s. This
may be necessary if, for example, a train should catch up and overtake another train. This
case is a bit more complicated because, for safety reasons, two trains can never be on the
same block, even if running in the same direction. So, again let vi

k and vj
m be the nodes

corresponding to station s on P i and P j , respectively. Let us assume that i precedes j
before reaching station s, and follows j afterwards. This means that, for every station s′

preceding or coinciding with s on P i, train i must enter s′ before train j has entered the
block which immediately precedes s′ on both routes (if such block belongs to P j). This fact
can be represented by adding suitable arcs to GD as shown in the previous case. The roles
of i and j are interchanged after station s, and for every station s′′ following s on P j , train
j must arrive in s′′ before train i has entered the block which immediately precedes s′′ on
both routes (if such block belongs to P i).

Evaluating the actual timetable

As for the (m-RTC), also for the Single-track Railway Traffic Control Problem (s-RTC) the
quality of the actual timetable depends on its conformity to the official timetable. Again,
we suppose that such quality is evaluated by a convex piece-wise linear cost function cv for
each v ∈ V , and the cost of the schedule t is compiuted as c(t) =

∑
v∈V cv(tv).

3.1 A MILP formulation for the real-time traffic control problem in
single-track railways

If two trains can possibly meet on the line, they form a crossing train pair. In principle, all
pair of trains can meet on the line, even if, according to the official timetable or a current
prediction, they are not supposed to do it. However, by simple heuristic considerations,
many such pairs can be excluded in advance. In what follows, the set of possibly crossing
train pairs will be denoted by K = {{i, j} : i ∈ T, j ∈ T, i and j crossing}. For every
{i, j} ∈ K, we let S(ij) be the set of stations where i and j can actually meet - including,
when possible, the fictitious station representing the out-line. For every {i, j} ∈ K and
every s ∈ S(ij), we introduce a binary variable yij

s , with yij
s = 1 if and only if i and j

meet in s. Denote by G(y) the graph obtained from GT by including the arcs of Aij
s when

yij
s = 1, for all {i, j} ∈ K, s ∈ S. Let t(y) be the schedule obtained by a maximum path-tree
computation on G(y). Then the (s-RTC) problem amounts to finding a binary vector y

C. Mannino 11

such that (i) every crossing pair of trains meet in a station, (ii) the stations capacity is not
violated and (iii) the cost c(t(y)) is minimized.

The following is a mathematical formulation for the (s-RTC):

min
∑

v∈V cv(tv)

s.t.

(i) tv − tu ≥Wuv (u, v) ∈ A

(ii) tv − tu ≥M(1− yij
s) {i, j} ∈ K, s ∈ S(ij), (u, v) ∈ Aij

s

(iii)
∑

s∈S(ij) y
ij
s = 1 {i, j} ∈ K

(iv) y, t satisfying capacity us s ∈ S

(v) t ∈ IRV , yij
s ∈ {0, 1}, {i, j} ∈ K, s ∈ S(ij)

(4)

where M is a large suitable constant. Let (t̄, ȳ) satisfying all constraints but the capacity
constrains (iv): ȳ is called a meet-point assignment. Clearly, checking if a meet-point as-
signment is also satisfying all capacity constraints is an easy task, and we will come back on
this later. The above formulation can be strengthen in various ways, but we do not get into
detail here. We instead show how to represent constraint (iv) by introducing suitable vari-
ables and/or linear inequalities. In [11] and [14] we investigated two alternative approaches.
The first is a natural consequence of the definition, but may contain an exponential number
of constraints; the second is a compact, flow based representation of station capacities.

A non-compact formulation for station capacity constraints

Consider a station s ∈ S with capacity us. The station capacity will be violated if and only
if there exists a set of trains C ⊆ T such that |C| = us + 1 and all pairs of trains in C

meet in s. If this last condition is verified, then yij
s = 1 for all i, j ∈ C with i < j. Since

there are
(

us+1
2
)

= (us + 1)us/2 pairs of distinct trains in C, the condition is equivalent to∑
i,j∈C,i<j y

ij
s = 1

2 (us + 1)us.
In other words, the meet-point assignment y does not violate any station capacity con-

straint if and only if, for all s ∈ S, we have:

∑
i,j∈C,i<j

yij
s <= 1

2(us + 1)us − 1 (5)

for all C ⊆ T with |C| = us. The number of inequalities of type (5) grows exponentially with
us. However, in the single-track lines considered, us is almost always ≤ 4. And yet, their
number becomes quite large even for a small number of trains. For this reason we resort
to the classical row generation approach, which amounts in starting with a small subset
inequalities and generating new ones only if necessary.

A compact, flow based representation of station capacity constraints

Let us first fix a meet-point assignment ȳ. For any train j ∈ T , let Su(j, s, ȳ) be the set
of successors of j in station s, that is the set of trains i ∈ T which enters s after j leaves
the station. Remark that since the meet-point assignment is given, Su(j, s, ȳ) is known for
all j ∈ T and s ∈ S (if s is visited by j). Now, we can think at station platforms as unit
resources that can be supplied to trains. Then a train i can receive the platform either

ATMOS’11

12 Real-Time Traffic Control in Mass Transit and Railway Transport

"directly" from the station s, or from a train j such that i ∈ Su(j, s, ȳ), which received the
platform at an earlier stage. Then the assignment ȳ is feasible if every train receives the
required platform, as we will show more formally in the sequel. We represent this feasibility
problem as a network flow problem, where the nodes are associated with the station s and
with the trains.

u1

r

u2
uT

w1 w2
wT

u3

w3

p

N(s,y)

(1,1)

……………

……………

(0,1)

(0,1)

(0,cs)

(0,1)

Er

EU

Ep

EW

Figure 2 The support network

We focus now on a given station s. To simplify the notation, we assume that every train
in T will go through s. Since both s and ȳ are fixed, we let Su(j, s, ȳ) = Su(j). Also, we
assume that trains are ordered by their arrival times in station s. So, j ∈ Su(i) implies
j > i.

Let us introduce a support graph N(s, ȳ) = ({r, p}∪U∪W,E), where U = {u1, . . . , u|T |},
W = {w1, . . . , w|T |}. Let the arc set be E = Er ∪ EU ∪ EW ∪ Ep ∪ {(p, r)}, where Er =
{(r, u) : u ∈ U}, EU = {(uj , wj) : j ∈ T}, EW = {wi ∈W,uj ∈ U, j ∈ Su(i)}, Ep = {(w, p) :
w ∈ W}. With each arc e ∈ E we associate lower bound le and upper bound fe. Namely,
le = 0 and fe = 1 for e ∈ Er ∪ EW ∪ Ep. Then le = fe = 1 for e ∈ EU and finally lpr = 0,
fpr = cs.

We have the following

I Theorem 2. [11] The assignment ȳ is feasible w.r.t. the station capacity constraints if
and only if, for every s ∈ S, the graph N(s, ȳ) has a circulation satisfying all lower and
upper bounds.

The proof is based on Hoffman’s circulation theorem and can be found in [11].

The above result can be used to model the station capacity constraint into our MILP
program. To this end, we introduce two binary variables xij

s , x
ji
s for all stations s ∈ S and

all train pairs {i, j} ∈ K, with the interpretation that xlm
s = 1 if and only if m ∈ Su(l, s, y).

Observe that x can be easily obtained from y by an affine transformation. For example,
consider two trains i and j, with i < j, and assume that i and j travel in opposite directions,
with i running from station 1 to station n and j from station n to station 1. If i and j meet
in station 1 ≤ s ≤ n, then i precedes j in all stations before s and j precedes i in all stations
after s. Thus, xij

s = 1−
∑s

z=1 y
ij
s and xji

s = 1−
∑n

z=s y
ij
s . Remark that xij

s + xji
s = 1− yij

s .
The case of trains running in the same direction is analogous.

Next, we need to represent, for each station s ∈ S, the network flow problem discussed
above on the graph N(s, y). This can be done by considering an extended flow network
N̄ obtained from N by letting EW = {(wi, uj) : i ∈ T, j ∈ T}, leaving all other arc sets

C. Mannino 13

unchanged. So, EW contains all possible arcs from W to U . Observe that N̄ is independent
of x. However, to prevent sending flow on "forbidden" arcs, we will fix the upper capacity
to 0 whenever j /∈ Su(i, s, y) (this in turn depends on x).

Next, we introduce a flow variable ze
s for every arc of N̄ . Then we write the flow

conservation constraints at the nodes of N̄ and lower and upper bounds on the flow variables
ze

s . In particular, lower and upper bounds are defined as for N(s, y) except than for the arcs
in EW . For such arcs we simply let zwiuj

s ≤ xij
s . In this way, the arc (wi, uj) can carry one

unit of flow only if xij
s = 1, that is if j ∈ Su(i, s, y).

3.2 Preliminary implementations and comparisons
The current implementation of the optimization algorithm is rather basic and much can (and
will) be done to make it more efficient. In the current version, e.g., the violated constraints of
the non-compact formulation are generated only when 0,1 solutions are found by the solver
(CPLEX 12.2) (the separation is done by looking at maximal cliques in interval graphs).
The CPLEX default parameters setting is used, and so, for example, no particular branching
scheme is implemented. Nevertheless, both approaches are able to solve real-life instances
corresponding to a 14-hour time window on the Trento-Bassano line, with 30 trains and 23
stations. The non-compact formulation behaved slightly better, namely it took 5.30 sec.
of computing time against 7.35 sec for the compact formulation (with an Intel Core i7 870
2.93GHz under Red Hat Enterprise Linux Client release 5.7). Keep in mind that these results
are obtained by running a very preliminary implementation. Nevertheless, they prove that,
at least for a line of the size of the Trento-Bassano, the (s-RTC) problem can be solved to
optimality within the time required by the application.

References
1 Ahuja, R.K., D.S. Hochbaum, J.B. Orlin, A cut-based algorithm for the nonlinear dual of

the minimum cost network flow problem, Algorithmica 39 (2004) pp. 189–208.
2 Balas, E., Machine sequencing via disjunctive graphs, Operations Research 17 (1969) pp.

941–957.
3 A. Caprara A., L. Galli, P. Toth. Solution of the Train Platforming Problem, Transportation

Science, 45 (2), pp 246-257, 2011.
4 A. Caprara, L. Kroon, M. Monaci, M. Peeters, P. Toth, “Passenger Railway Optimization”,

in C. Barnhart, G. Laporte (eds.), Transportation, Handbooks in Operations Research and
Management Science 14, Elsevier (2007) 129–187.

5 Corman F., Rail-time railway traffic management: dispatching in complex, large and busy
railway networks, Ph.D. Thesis, TRAIL Thesis Seriess T2010/14, the Netherlands TRAIL
Research School.

6 Dyer., M., L. Wolsey, Formulating the single machine sequencing problem with release dates
as a mixed integer program, Discrete Applied Mathematics, no. 26 (2-3), pp. 255-270, 1990.

7 Goldberg, A.V., R. Tarjan, Finding minimum cost circulation by successive approximation,
Math. of Op. Res., 15, pp. 430-466, 1990.

8 L. Kroon, D. Huisman, E. Abbink, P.-J. Fioole, M. Fischetti, G. Maroti, A. Schrijver, A.
Steenbeek, R. Ybema, The New Dutch Timetable: The O.R. Revolution, Interfaces 39 (1),
pp. 6-17, 2009

9 Mascis A., Optimization and simulation models applied to railway traffic. Ph.D. thesis,
University of Rome “La Sapienza", Italy, 1997. (In Italian).

10 C. Mannino, A. Mascis, Real-time Traffic Control in Metro Stations, Operations Research,
57 (4), pp 1026-1039, 2009

ATMOS’11

14 Real-Time Traffic Control in Mass Transit and Railway Transport

11 C. Mannino, T. Nygreen Compact VS non-compact MILP formulations for Railway Traffic
Control in Single-track lines, working paper, University of Oslo, 2011

12 Mascis A., D. Pacciarelli, Job shop scheduling with blocking and no-wait constraints,
European Journal of Operational Research, 143 (3), pp. 498–517, 2002.

13 M. Montigel, em Semi-Automatic Train Traffic Control in the New Swiss Lötschberg Base
Tunnel, IRSA-Apect 2006, www.systransis.ch/fileadmin/2006_Paper_MM.pdf

14 T. Nygreen Real-time Railway Traffic Control in Single-track lines, master Thesis, Univer-
sity of Oslo, in preparation (October 2011)

	Introduction
	Real-time traffic control in metro stations
	Solution algorithm and lower bound computation
	Computational results

	Single-track railways traffic control
	A MILP formulation for the real-time traffic control problem in single-track railways
	Preliminary implementations and comparisons

