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Abstract
We give an algebraic characterization of the quantifier alternation hierarchy in first-order two-
variable logic on finite words. As a result, we obtain a new proof that this hierarchy is strict.
We also show that the first two levels of the hierarchy have decidable membership problems, and
conjecture an algebraic decision procedure for the other levels.
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1 Introduction

We study first-order sentences interpreted in finite words over a finite alphabet Σ, with
the single relation < on positions in the word. It is well known (Kamp [6], Immerman
and Kozen [5]) that every such sentence is equivalent to one in which only three variables
are used. There has been extensive study, from the standpoint of first-order and temporal
logic, automata theory, and algebra, of the fragment FO2[<] of sentences that use only
two variables. (See, for example, Ettesami, Vardi and Wilke [4]; Schwentick, Thérien and
Vollmer [13]; Straubing and Thérien [16]. Tesson and Thérien [17] give a broad-ranging
survey of the many places in which the class of languages definable in this logic arises.)

Weis and Immerman [20] examined the hierarchy within FO2[<] based on alternation
of quantifiers. Using model-theoretic methods, they showed that this hierarchy is strict.
Kufleitner and Weil [9] show that each level of the hierarchy defines a variety of languages.
This implies, among other things, that whether a regular language L ⊆ Σ∗ can be defined
by a sentence of a given level k in the hierarchy is completely determined by the syntactic
monoid M(L) of L. While they do not provide an explicit algebraic description of the levels,
Kufleitner and Weil do show that one can effectively compute the alternation depth of a
given language in FO2[<] with an error no more than 1.

Here we give an exact algebraic characterization of each level of the alternation hierarchy;
that is, we give an algebraic description of sequence Vn of families of finite monoids with
the property that L is defined by a sentence with k quantifier alternations if and only if
M(L) ∈ Vk. Our characterization is in terms of the two-sided semidirect product of finite
monoids and of pseudovarieties of finite monoids. More precisely, we show that the kth level
of the hierarchy corresponds to the weakly iterated two-sided semidirect product of k copies
of the pseudovariety J of J -trivial monoids. While many algebraic decompositions of the
pseudovariety DA corresponding to FO2[<] have been studied, and while it has always been
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clear that DA is equal to the closure of J under two-sided semidirect product, the fact that
the levels of this hierarchy have such a simple logical significance appears to be new.

This still leaves the question of whether the membership problem for each of the levels
is decidable. This is precisely the kind of question that algebraic methods are best suited
to answer, since it is often possible to reduce the problem to one of verifying identities in
the syntactic monoid. We produce a sequence of identities, based on work of Almeida and
Weil [2], that we conjecture characterizes membership in each of the levels of the hierarchy.
We show that these identities are necessary conditions, and use this fact to give a new proof
of the strictness of the alternation hierarchy. The identities are known to be sufficient for
the first two levels, which gives algebraic decision procedures for determining whether a
give regular language is definable by a two-variable sentence with one or two quantifier
alternations.

We present general preliminaries in Section 2 and particulars about two-sided semidirect
products in Section 3. We prove our characterization theorem in Section 4; the argument
is an adaptation of one given in [16]. We apply the result to questions of strictness and
decidability in Section 5.

2 Logical And Algebraic Preliminaries

We review these preliminaries briefly and somewhat informally. The books by Pin [10] and
Straubing [15] are references for all the matters discussed here.

2.1 First-order logic
Let Σ be a finite alphabeuntitled foldert. We build first-order formulas from atomic formulas
x < y and Qσx, where σ ∈ Σ. These formulas are interpreted in finite words over Σ: variables
are interpreted as positions, with x < y indicating that position x is strictly to the left of
position y, and Qσx indicating that the letter in position x is σ. A sentence (a formula
without free variables) accordingly defines the language L ⊆ Σ∗ of all words w that satisfy
the sentence. For example, if Σ = {σ, τ}, then the set of words in which both σ and τ occur,
and in which there are at least two occurrences of σ to the left of the first occurrence of τ is
defined by the sentence

∃x(Qτx ∧ ∀y(y < x→ Qσy) ∧ ∃z1∃z2(z1 < z2 ∧ z2 < x)).

As mentioned in the introduction, every first-order sentence of this kind is equivalent
to one in which there are only three variables, provided we are allowed to reuse variable
symbols. Here we are concerned with the languages definable by sentences of the logic we
denote by FO2[<], consisting of formulas in which only two variables are used. This logic
is known to have strictly weaker expressive power than full first-order logic. Note however,
that the language in the example above is definable in this restricted logic, by the sentence

∃x(Qτx ∧ ∀y(y < x→ Qσy) ∧ ∃y(y < x ∧ ∃x(x < y))).

We cannot use standard constructions to write such sentences in prefix form without
increasing the number of variables. Nonetheless, it is still possible to describe a different sort
of normal form that will allow us to define the depth of quantifier alternation in a formula.
We allow atomic formulas with ≤ as well as <, replace every occurrence of ¬Qσx by∨

τ∈Σ\{σ}

Qτx,
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and apply DeMorgan’s Laws to move negations past conjunctions, disjunctions and quantifiers.
We obtain as a result an equivalent formula that contains only existential and universal
quantifiers, and the connectives ∧ and ∨, with no occurrences of negation. This does not
change the number of disuntitled foldertinct variable symbols. Consider the parse tree of a
formula in this form. Every interior node is labeled by either ∧, ∨, or a quantifier. Consider
just the sequence of quantifiers on a path from the root to a leaf: this sequence contains
alternating blocks of existential and universal quantifiers. The maximum number of such
blocks over all paths in the tree is the alternation depth of the formula. For example, the
sentence displayed above has alternation depth 2. We write FO2

n[<] for the fragment of
FO2[<] consisting of formulas with alternation depth no more than n.

2.2 Finite monoids
A monoid is a set M together with an associative operation for which there is an identity
element 1 ∈M. If Σ is an alphabet, then Σ∗ is a monoid with concatenation of words as the
multiplication. Σ∗ is the free monoid on Σ: this means that every map α : Σ→M, where
M is a monoid, extends in a unique fashion to a homomorphism from Σ∗ into M.

Apart from free monoids, all the monoids we consider in this paper are finite. If M is a
finite monoid, and m ∈M, then there is a unique e ∈ {mk : k > 1} that is idempotent, i.e.,
e2 = e. We denote this element mω.

If M,N are monoids then we say M divides N, and write M ≺ N, if M is a homomorphic
image of a submonoid of N.

We are interested in monoids because of their connection with automata and regular
languages: A congruence on Σ∗ is an equivalence relation ∼ on Σ∗ such that u1 ∼ u2,

v1 ∼ v2, implies u1v1 ∼ u2v2. The classes of ∼ then form a monoid M = Σ∗/ ∼, and the
map u 7→ [u]σ sending each word to its congruence class is a homomorphism from Σ∗ onto
M. If L ⊆ Σ∗, then ≡L, the syntactic congruence of L, is the coarsest congruence for which L
is a union of congruence classes. The quotient monoid Σ∗/ ≡L is called the syntactic monoid
of L and is denoted M(L).

We say that a monoid M recognizes a language L ⊆ Σ∗ if there is a homomorphism
α : Σ∗ →M and a subset X of M such that α−1(X) = L. The following proposition gives
the fundamental properties linking automata to finite monoids.

I Proposition 1.
Let L ⊆ Σ∗.
A monoid M recognizes L if and only if M(L) ≺M.

L is a regular language if and only if M(L) is finite.

2.3 Varieties and identities
A collection V of finite monoids closed under finite direct products and division is called a
pseudovariety of finite monoids. (The prefix ‘pseudo’ is because of the restriction to finite
direct products, as the standard use of ‘variety’ in universal algebra does not include this
requirement.)

Let Ξ be the countable alphabet X = {x1, x2, . . .}. A term over Ξ is built from the letters
by concatenation and application of a unary operation v 7→ vω. For example, (x1x2)ωx1 is a
term. We will interpret these terms in finite monoids in the obvious way, by considering a
valuation ψ : Ξ→M and giving concatenation and the ω operator their usual meaning in
M. For this reason, we do not distinguish between (uv)w and u(vw), where u, v and w are
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themselves terms, nor between terms uω and (uω)ω, as these will be equivalent under every
valuation.

An identity is a formal equation u = v, where u and v are terms. We say that a monoid
M satisfies the identity, and write M |= (u = v), if u and v are equal under every valuation
into M. The family of all finite monoids satisfying a given set of identities is a pseudovariety,
and we say that the pseudovariety is defined by the set of identities. (We hasten to add that
the identities we consider here are merely special instances of a much more general class of
pseudoidentities. Under this broader definition, every pseudovariety is defined by a set of
pseudoidentities. See, for instance, Almeida [1].)

We consider three particular pseudovarieties that will be of importance in this paper.
First, the pseudovariety Ap consists of the aperiodic finite monoids, those that contain no
nontrivial groups. Ap is defined by the identity xω1 = x1x

ω
1 . If Σ is a finite alphabet and

L ⊆ Σ∗ is a regular language, then M(L) ∈ Ap if and only if L is definable by a first-order
sentence over < .

The pseudovariety DA is defined by the pair of identities

(x1x2x3)ωx2(x1x2x3)ω = (x1x2x3)ω, xω1 = x1x
ω
1 .

There are many equivalent characterizations of this pseudovariety in terms of other identities,
the ideal structure of the monoids, and logic. For us the most important one is this: If
L ⊆ Σ∗, then M(L) ∈ DA if and only if L is definable in FO2[<].

The pseudovariety J consists of finite monoids that satisfy the pair of identities

(x1x2)ω = (x2x1)ω, xω1 = x1x
ω
1 .

This is equivalent to the identities

(x1x2)ωx1 = x2(x1x2)ω = (x1x2)ω, xω1 = x1x
ω
1 .

Alternatively, J consists of finite monoids M such that for all s, t ∈ M, MsM = MtM

implies s = t. Such monoids are said to be J -trivial.
A theorem due to I. Simon [14] describes the regular languages whose syntactic monoids

are in J. Let w ∈ Σ∗. We denote by c(w) the content of w; that is, the set of letters of Σ
that appear in w. We say that v = σ1 · · ·σk, where each σi ∈ Σ, is a subword of w if

w = w0σ1w1 · · ·σkwk

for some wi ∈ Σ. We denote by Lv the set of all words in Σ∗ of which v is a subword. Let
k ≥ 1. We define an equivalence relation ∼k on Σ∗ that identifies two words if and only if
they contain the same subwords of length no more than k. (In particular, w1 ∼1 w2 if and
only if c(w1) = c(w2).) Simon’s theorem is:

I Theorem 2. Let L ⊂ Σ∗ be a regular language. The following are equivalent:
M(L) ∈ J.
L is a boolean combination of languages of the form Lu, with u ∈ Σ∗.
L is a union of ∼k-classes for some k ≥ 1.

The equivalence of the last two items is obvious. It is rather easy to show that Σ∗/ ∼k∈ J,
and as a result the last two items imply that L is recognized by a monoid in J, and thus by
Proposition 1, M(L) ∈ J. The deep content of the theorem is that the first condition implies
the others. The theorem can also be formulated in first-order logic: M(L) ∈ J if and only if
L is defined by a boolean combination of Σ1-sentences over < .
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3 Two-sided Semidirect Products

In this section we describe an operation on both finite monoids and pseudovarieties, the
two-sided semidirect product. This was given its formal description by Rhodes and Tilson [11],
but it has precursors in automata theory in the work of Schützenberger on sequential
bimachines [12], Krohn, Mateosian and Rhodes [8], and Eilenberg on triple products [3].

Let M and N be finite monoids. We will follow the standard practice of writing the
product in N additively, and thus write its identity element as 0. This is not intended to
suggest that N is commutative, but is simply a device for making the notation more readable.
A left action of M on N is a mapping

(m,n) 7→ mn ∈ N

from M ×N into N that satisfies the axioms

m(n1 + n2) = mn1 +mn2

m1(m2n) = (m1m2)n
m0 = 0
1n = n

for all m,m1,m2 ∈M, n, n1, n2 ∈ N.
A right action (m,n) 7→ nm of M on N is defined analogously. A compatible pair of

actions consists of a left action and a right action of M on N that satisfy the additional
axiom

m1(nm2) = (m1n)m2,

for all m1,m2 ∈M, n ∈ N. This justifies the notation m1nm2 that we will henceforth use.
Given such a compatible pair, we define a monoid called the two-sided semidirect product

N ∗ ∗M. The underlying set is just the cartesian product N ×M, and the multiplication is
given by

(n,m)(n′,m′) = (nm′ +mn′,mm′).

It is straightforward to verify that this product is associative, and that (0, 1) is the identity
element.

Observe that the notation N ∗ ∗M suppresses mention of the action pair, so in fact there
may be several non-isomorphic two-sided semidirect products of N and M. There is always
at least one compatible action pair: these are the actions given by mn = nm = n for all
m,n. In this case, the resulting two-sided semidirect product reduces to the direct product.
Moreover, there is always a compatible pair of actions of M on a direct product of |M |2
copies of N. If we view the latter as the set of maps F : M ×M → N with componentwise
multiplication, then the actions are given by

(mF )(m1,m2) = F (m1,mm2)

(Fm)(m1,m2) = F (m1m,m2).

The resulting two-sided semidirect product is called the block product of N and M. This
monoid has every two-sided semidirect product N ∗ ∗M as a divisor.

If V and W are pseudovarieties of finite monoids then we define W ∗ ∗V to be the
collection of finite monoids that divide some two-sided semidirect product N ∗ ∗M with
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M ∈ V, N ∈ W. W ∗ ∗V is itself a pseudovariety. We stress that this operation on
pseudovarieties is not associative.

Throughout the proof of the main theorem we will use the following description of the
regular languages recognized by members of W ∗ ∗V. This is adapted from Thérien [18], and
is a relatively straightforward translation from the definition of the product. Let α : Σ∗ →M

be a homomorphism into a finite monoid, and let Γ = M × Σ×M. We view Γ as another
alphabet. We define a length-preserving map τα (not a homomorphism) from Σ∗ to Γ∗ by

τα(σ1 · · ·σk) = γ1 · · · γk,

where
γi = (α(σ1 · · ·σi−1), σi, α(σi+1 · · ·σk) ∈ Γ.

(If i = 1, we interpret the right-hand side as (1, σ1, α(σ2 · · ·σk)), and similarly if i = k.)

I Proposition 3. Let L ⊆ Σ∗ be a regular language. M(L) ∈W ∗ ∗V if and only if there
exist M ∈ V, and a homomorphism α : Σ∗ → M, such that L is a boolean combination of
sets of the form

τ−1
α (K) ∩ α−1(m),

where m ∈M and K ⊆ Γ∗ is recognized by a monoid in W.

4 The Main Theorem

We define a sequence Vn of pseudovarieties of finite monoids as follows: V1 = J, and, for
n ≥ 1, Vn+1 = Vn ∗ ∗J.

I Theorem 4. Let Σ be a finite alphabet, and let L ⊆ Σ∗. Let n ≥ 1. L ∈ FO2
n[<] if and

only if M(L) ∈ Vn.

The remainder of this section is devoted to the proof of Theorem 4.
We first prove that if L is recognized by a monoid in Vn, then L is defined by a sentence

of FO2
n[<]. We show this by induction on n. For the case n = 1, Theorem 2 says that L is a

finite boolean combination of languages of the form Lu, where u ∈ Σ∗. Each Lu is defined by
a two-variable sentence with alternation depth 1 in an obvious way: For example, Lσττ is
defined by the sentence

∃x(Qσx ∧ ∃y(x < y ∧Qτy ∧ ∃x(y < x ∧Qτx))).

Now suppose n > 1. Then L is recognized by a monoid in Vn−1 ∗ ∗J. There are accordingly
monoids M ∈ J, N ∈ Vn−1, and a morphism α : Σ∗ → M as in Proposition 3 above. We
need to show that there is a formula of alternation depth no more than n defining each
language of the form

α−1(m) ∩ τ−1
α (K),

where m ∈M and K ⊆ Γ∗ = (M × Σ×M)∗ is recognized by N.
By Theorem 2, α−1(m) is a boolean combination of languages of the form Lu, and so, as

we saw above, is definable in alternation depth 1. So we turn to τ−1
α (K). By the inductive

hypothesis, K is defined by a sentence ψ of alternation depth no more than n−1. The trick is
to rewrite ψ to obtain a defining sentence for τ−1

α (K) while increasing the alternation depth
by at most 1. This is accomplished simply by taking each of the atomic formulas Q(m,σ,m′)x

occurring in ψ and replacing it by a formula with x free and with quantifier depth 1. What
should this formula say? It must assert that the letter in position x is σ, that the prefix
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v ∈ Σ∗ of letters preceding this position satisfies α(v) = m, and, similarly, that the suffix
v′ following this position satisfies α(v′) = m′. The first of these conditions is given by Qσx.
The second, is, by Theorem 2, equivalent to a boolean combination of formulas asserting
that v contains σ1, . . . , σr as a subword, which is expressed by

∃y(y < x ∧Qσr
y ∧ ∃x(x < y ∧Qσr−1x ∧ · · · )),

and the third by a boolean combination of analogous formulas. We accordingly replace
Q(m,σ,m′)x by a boolean combination of formulas with alternation depth no more than 1 to
obtain the defining sentence for τ−1

α (K).
We now prove the converse: if L is defined by a sentence of FO2

n[<], then it is recognized
by a monoid in Vn.

Suppose n > 0, and let φ be a two-variable defining sentence for L. We write this in our
standard form described earlier. Let us look at a quantified subformula ψ of φ that has
quantifier alternation 1 and that is maximal for this property. We call ψ an innermost block
of φ. In terms of the parse tree of φ, we are looking for nodes of minimal depth that are
labeled by a quantifier, and such that every quantifier in the subtree rooted at this node is
of the same type. The innermost blocks of φ are the formulas given by these subtrees.

If φ itself has quantifier alternation 1, then each innermost block ψ is a sentence, and
φ is obtained from these blocks by disjunction and conjunction. Otherwise ψ has one free
variable. Let’s say this free variable is x. Suppose the quantifier in ψ is ∃. (If the quantifier
in ψ is ∀ then its negation is a formula in which the only quantifier is ∃ ; we apply the
transformations described below to this existential formula.) Since there are no negations in
ψ we can, in the standard way (but introducing new variables in the process) rewrite ψ in
prefix form as an ordinary Σ1 formula

∃y1∃y2 · · · ∃yrθ(x, y1, . . . , yr).

where θ is quantifier-free.
If n = 1 then the free variable x does not appear. Thus we can further rewrite ψ as a

disjunction of sentences of the form

∃y1∃y2 · · · ∃yr
( r∧
i=1

Qσi
yi ∧ ρ(y1, . . . , yr)

)
,

where ρ uniquely specifies the ordering among the yi. (For example, with r = 3, ρ might have
the form y1 = y3 < y2.) Seen this way, ψ simply asserts the presence of certain subwords
(and, had we begun with a universal quantifier, the absence of certain subwords.) In this
case φ defines a boolean combination of languages of the form Lu, which by Theorem 2, is
recognized by a monoid in J. This is the base of our induction.

If n > 1, then we rewrite ψ as a disjunction of formulas of the form

∃z1 · · · ∃zt∃z′1 · · · ∃z′tθ,

where θ is
t∧
i=1

(Qσi
zi ∧ (zi < x)) ∧ ρ1(z1, · · · , zt) ∧

t′∧
j=1

(Qσ′
j
z′j ∧ (z′j > x)) ∧ ρ2(z′1, · · · , z′t).

Let’s denote this formula, which has x free, by

ζ[x, u, v, ρ1, ρ2],
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where u = (σ1, . . . , σt) v = (σ′1, . . . , σ′t′). If we started with an innermost block beginning
with a universal quantifer, then this procedure produces the negation of a disjunction of
these formulas. So we suppose φ has been transformed so that all its innermost blocks have
been replaced by boolean combinations of such ζ.

Let s be the maximum of all the t, t′ that occur in these formulas. Let M = Σ∗/ ∼s, as
defined in Section 2. Let α : Σ∗ → M be the homomorphism that maps each word to its
∼s-class. Recall that M ∈ J.

We now rewrite φ and replace it by a new sentence φ′ over the alphabet Γ = M ×Σ×M.

The idea is simply to express properties of a word w ∈ Σ∗ in terms of properties of τα(w) ∈ Γ∗
This is easy to do, because the two words have the same set of positions, and because the letters
of τα(w) encode additional information about each position. The subformula ζ[x, u, v, ρ1, ρ2]
states that the prefix of w consisting of positions to the left of the position x contains a
certain subword w1 of length no more than s, and that the suffix consisting of positions
to the right of x contains another such subword w2. Equivalently, the letter of τα(w) in
position x is (m,σ,m′), where the ∼s-class m contains w1 as a subword, and the ∼s-class m′
contains w′2. We thus replace each ζ by a disjunction of the atomic formulas Q(m,σ,m′)x over
all such m,m′. The result is that all the innermost blocks have now been eliminated and
replaced by a boolean combination of these atomic formulas, which can in turn be written as
a disjunction of such formulas.

We also replace each Qσx that occurs outside an innermost block by the disjunction of
the Q(m,σ,m′)x over all m,m′ ∈ M. The resulting sentence φ′ is a two-variable sentence of
quantifier depth n− 1. Thus, by the induction hypothesis, the language K ⊆ Γ∗ defined by
φ′ is recognized by a monoid N in Vn−1. We have constructed φ′ so that w |= φ if and only
if τα(w) |= φ′. Thus, by Proposition 3, L is recognized by a monoid in Vn−1 ∗ ∗J = Vk.

5 Strictness and Decidability

Here we use our main theorem to give a new proof that the alternation hierarchy is strict.
This was first shown in [20]. We also discuss the question of decidability of the levels of the
hierarchy.

We define two sequences of terms {un}n≥1, {vn}n≥1 as follows.

u1 = (x1x2)ω, v1 = (x2x1)ω.

If n ≥ 1, we set

un+1 = (x1 · · ·x2nx2n+1)ωun(x2n+2x1 · · ·x2n)ω

vn+1 = (x1 · · ·x2nx2n+1)ωvn(x2n+2x1 · · ·x2n)ω

I Proposition 5. Let n ≥ 1. If M ∈ Vn, then M |= (un = vn), and M |= (xω1 = x1x
ω
1 ).

Proof. For n = 1, the Proposition follows from the identities defining J that were given in
Section 2. For the inductive step we will make repeated use of the following identities that
also hold in J, and that are direct consequences of the ones we gave earlier:

(x1x2x3)ωx2 = (x1x2x3)ω = x2(x1x2x3)ω (1)

Suppose then that n ≥ 1, and that the Proposition holds for n. It is well known—and
in any case follows easily from the kind of argument we give below—that the two-sided
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semidirect product preserves aperiodicity. So we will only show M |= (un+1 = vn+1) for
M ∈ Vn+1. Since satisfaction of identities is preserved under division, we only need to show
this in the case where M is a two-sided semidirect product T ∗ ∗K, with T ∈ Vn and K ∈ J.
Consider a map φ from the set {x1, x2, . . .} into M with

φ(xi) = mi = (ti, ki) ∈ T ∗ ∗K

for all i ≥ 1. Now suppose xi1 · · ·xip is a term formed just by concatenating variables (i.e.,
without using ω). Then

φ(xi1 · · ·xip) =
( p∑
j=1

ki1 · · · kij−1tijkij+1 · · · kip , ki1 · · · kip
)
. (2)

There is an integer q such that mω = mq for all m ∈ T,K or M. Thus

φ(un+1) = φ((x1x2 · · ·x2n+1)qun(x2n+2x1 · · ·x2n)q)
= (t, γ(un)),

where t is a sum of the form displayed in Equation 2, and γ(xi) = ki for all i. Let us analyze
the summands of t. Let s = q · (2n+ 1). If j ≤ s, then the jth summand is

kij = ki1 · · · kij−1tijkR,

where
kR = (k2n+2k1 · · · k2n)q.

This follows from the absorbing property given in Equation 1 of the J -trivial monoid K.
Similarly, if s ≥ p− j, the jth summand is

kLtijkij+1 · · · kip ,

where
kL = (k1 · · · k2nk2n+1)q.

If s < j < n− s, then the jth summand is kLtijkR, so that the sum of these middle terms is

n−s∑
j=s+1

kLtijkR = kL

( n−s∑
j=s+1

tij

)
kR = kLψ(un)kR,

where ψ(xi) = ti for all i. We thus can write φ(un+1) in the form

φ(un+1) = (tL + kLψ(un)kR + tR, γ(un+1)).

When we compute φ(vn+1), the values of tL and tR are unchanged, and we have

φ(vn+1) = (tL + kLψ(vn)kR + tR, γ(vn+1)).

From the identities for J in Equation 1 we have K |= (un+1 = vn+1), and thus γ(un+1) =
γ(vn+1). From the inductive hypothesis we have T |= (un = vn), so ψ(un) = ψ(vn), and thus
φ(un+1) = φ(vn+1), as required.

J
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We will use these identities to show that the alternation hierarchy is strict. We begin by
defining, for each finite alphabet Σ, an equivalence relation ≡Σ on Σ∗. (In fact, ≡Σ will be a
congruence on Σ∗ whose quotient is the free idempotent monoid on Σ. This construction is
very well known; see, for, example, Eilenberg [3].)

If |Σ| = 1, then ≡Σ identifies two distinct words over Σ if and only if they are both
nonempty (so that there are two equivalence classes, one containing the empty word, and
the other containing all the nonempty words). Now suppose |Σ| > 1, and that ≡Γ has been
defined for all proper subalphabets Γ of Σ. Let w1, w2 ∈ Σ∗. If the set of distinct letters
Γ = c(w1) appearing in w1 is a proper subset Γ of Σ, then we set w1 ≡Σ w2 if and only if
c(w2) = Γ, and w1 ≡Γ w2. Otherwise, c(w1) = c(w2) = Σ. Let ui denote the maximal prefix
of wi such that c(ui) 6= Σ, and similarly let vi denote the maximal suffix of wi such that
c(vi) 6= Σ. We can then write

wi = uiσiyi = ziτivi,

where σi, τi ∈ Σ. We define w1 ≡Σ w2 if and only if σ1 = σ2, τ1 = τ2, u1 ≡c(u1) u2, and
v1 ≡c(v1) v2.

Easily, ≡Σ is a congruence of finite index on Σ∗. We denote the ≡Σ-class of w ∈ Σ∗ by
[w]≡. The language [w]≡ is regular; moreover, for every word u ∈ Σ∗, u ≡Σ u2, which implies
that m2 = m, or, equivalently mω = m, for every m ∈M([w]Σ).

I Lemma 6. Let |Σ| = n. Every class of ≡Σ is definable by a sentence of FO2
n[<].

Proof. We prove this by induction on n. For n = 1, we have Σ = {σ}, and the two classes
are defined by the sentences

∃xQσx

and
∀x(x < x).

(Note that we allow our formulas to be interpreted in the empty word, which satisfies every
universally quantified sentence.)

Assume now that n > 1, and that the claim is true for all subalphabets of Σ. Let w ∈ Σ∗.
If c(w) 6= Σ, then [w]Σ = [w]Γ for some proper subalphabet Γ of Σ. The inductive hypothesis
implies that this class is defined by a sentence of FO2

n−1[<]. So we assume c(w) = Σ, and
write w = uσx = yτv, where u, v are, respectively, the maximal prefix and suffix of w that
do not contain all the letters of Σ. To express the property that every letter except σ occurs
in the prefix w we use the sentence

∃x(Qσx ∧
∧
σ′ 6=σ

∃y(y < x ∧Qσ′y) ∧ ∀y(y ≥ x ∨
∨
σ′ 6=σ

Qσ′y))).

Note that this sentence has alternation depth 2 ≤ n.
To express the property that the prefix preceding the first position containing σ belongs

to a particular ≡Γ-class, where Γ = c(u), we apply the inductive hypothesis: There is a
sentence ψ of alternation depth less than n defining [u]Γ. We modify ψ by replacing each
existentially quantified subformula ∃xζ by

∃x(ζ ∧ ∀y(y ≥ x ∨
∨
σ′ 6=σ

Qσ′y)),

and each universally quantified subformula ∀xζ by

∀x(ζ ∨ ∃y(y ≤ x ∧Qσy)).
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The resulting sentence has alternation depth no more than n and defines the set of strings
such that the maximal prefix that does not contain σ is in [u]Γ. The conjunction of these
two sentences, along with the analogues for the suffix, defines [w]Σ.

J

I Lemma 7. Let n ≥ 1, and let |Σ| = 2n. There is a word w ∈ Σ∗ such that M([w]Σ) does
not satisfy (un = vn).

Proof. Let u′n and v′n be the terms that result from removing all occurrences of the operator
ω from un and vn, respectively. Let Σ = {σ1, · · · , σ2n}, and let w(n)

1 , w
(n)
2 ∈ Σ∗ be the

respective words that result when each occurrence of a variable xi in un or vn is replaced by
σi. It is enough to show that w(n)

1 6≡Σ w
(n)
2 . The reason is this: We can takeM = M([w(n)

1 ]Σ).
Since M |= (xω = x), if we had M |= (un = vn) then M |= (u′n = v′n). But that case we
would obtain w(n)

1 ≡Σ w
(n)
2 .

We prove that w(n)
1 6≡Σ w

(n)
2 by induction on n. For n = 1 we have

w
(1)
1 = σ1σ2 6≡Σ σ2σ1 = w

(1)
2 .

For n > 1 we have
w

(n)
j = σ1 · · ·σ2n−1w

(n−1)
j σ2nσ1 · · ·σ2n−2,

for j = 1, 2. The maximal prefix of w(n)
j that does not contain all the letters of Σ is

zj = σ1 · · ·σ2n−1w
(n−1)
j , and the maximal suffix of zj not containing all the letters of c(zj)

is w(n−1)
j . By the inductive hypothesis, w(n−1)

1 6≡Γ w
(n−1)
2 , where Γ = {σ1, . . . , σ2n−2}, so

we cannot have w(n)
1 ≡Σ w

(n)
2 .

J

We get the strictness of the hierarchy as a consequence of these two lemmas:

I Theorem 8. For every n > 1 there is a language definable in FO2
n[<] that is not definable

in FO2
n−1[<].

Proof. For every n > 1, we must have Vn−1 ( Vn, since equality at one level would imply
equality at all higher levels, and we would have, in particular, Vn = V2n for some n ≥ 1.
But the two Lemmas, coupled with Theorem 4 and Proposition 5, provide an example of a
language whose syntactic monoid is in V2n\Vn. Thus Vn−1 ( Vn. Since every pseudovariety
is generated by the syntactic monoids it contains, Theorem 4 gives the result. J

We now discuss the problem of decidabilty: Suppose we are given a regular language
L ⊆ Σ∗, either by an automaton that recognizes L, or in terms of some other representation,
such as a regular expression, from which we can effectively construct an automaton. Is there
an algorithm for determining whether L can be defined by a sentence of FO2

n[<] for a fixed
n? Of course, this begs the question of whether L can be defined by a sentence of FO2[<]
at all, but this problem is solved by earlier work: Compute the syntactic monoid of M(L)
and determine whether M(L) is in DA, by verifying the identities for DA. (Note that in
verifying the identities in a particular monoid M, the symbol ω in these identities can be
replaced by |M |.)

Algebraic methods provide a powerful tool for answering such decision questions (and,
more generally, for proving that a given language cannot be defined in a logic, as we did in
Lemma 7 above), since the multiplication table of the syntactic monoid of L can be effectively
computed from any reasonable representation of L. However, in order to apply this method
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here, we need an algorithm for determining whether a given finite monoid belongs to Vn, for
any given n. Identities defining these pseudovarieties would provide us with precisely such an
algorithm, but the identities (un = vn, x

ω
1 = x1x

ω
1 ) that we have exhibited have only been

proved to be necessary conditions for membership in Vn.

In fact, these identities are from a paper by by Almeida and Weil [2], where they appear
as part of a general scheme for obtaining identities for pseudovarieties of the form V ∗ ∗J
when V ⊆ DA and identities for V are known. The result stated there would imply that
satisfaction of (un = vn, x

ω
1 = x1x

ω
1 ) is also a sufficient condition for membership in Vn, and

thus resolve the decidability question. However, this paper is known to contain an error. A
second paper, by Weil [19], explains the nature of the problem: The proof that the identities
are sufficient requires a particular finite rank property for categories that are globally covered
by members of Vn−1. (Even defining these terms would take us too far afield; the interested
reader is referred to [2] and [19] and the many references given there.)

As we have already mentioned, for n = 1 the identities (un = vn, x
ω
1 = x1x

ω
1 ) are known

to define J. The finite rank property, thanks to a theorem of Knast [7], is known to hold for
J, and therefore the identities for n = 2 do indeed define J ∗ ∗J. As a consequence, we have:

I Theorem 9. It is decidable whether a given regular language is definable in FO2
1[<], or in

FO2
2[<].

. For level 1, the answer is again membership of the syntactic monoid in J; for the second
level the answer is unknown. We suspect that the problem of alternation depth in FO2[<],
while still challenging, will turn out to be easier.

The finite rank property is not known to hold for Vn−1, if n > 2. Thus the decidability
problem remains open for higher levels of the hierarchy. This does not rule out the possibility
that the identities might be proved sufficient even without the assumption of finite rank.

I Conjecture 10. Let n ≥ 1. M ∈ Vn if and only if M |= (un = vn), and M |= (xω1 = x1x
ω
1 ).

In particular, it is decidable whether a given regular language is definable in FO2
n[<].

. For level 1, the answer is again membership of the syntactic monoid in J; for the second
level the answer is unknown. We suspect that the problem of alternation depth in FO2[<],
while still challenging, will turn out to be easier.

Kufleitner and Weil [9] also study the alternation hierarchy algebraically, and introduce a
very different-looking sequence of pseudovarieties Wn with the property that the syntactic
monoid of every language with alternation depth exactly n is between Wn and Wn+1. These
pseudovarieties are known to have decidable membership problems. Kufleitner and Weil
conjecture that in fact this sequence of pseudovarieties exactly captures the alternation
hierarchy. This conjecture would settle the decision problem for alternation depth (and
would also, coupled with our results, imply Wn = Vn for all n.) It would be interesting to
try to establish containments between Wn and Vn.

Finally, we mention the similar-looking problem of dot-depth. Full first-order logic over
< interpreted in finite words defines all the languages with syntactic monoids in Ap. The
problem of determining the exact alternation depth of a language in this setting–the problem
of calculating the so-called dot-depth of a language–has been open for nearly forty years. For
level 1, the answer is again membership of the syntactic monoid in J; for the second level
the answer is unknown. We suspect that the problem of alternation depth in FO2[<], while
still challenging, will turn out to be easier.
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