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Abstract
Deterministic recursive program schemes (RPS’s) have a clear category theoretic semantics pre-
sented by Ghani et al. and by Milius and Moss. Here we extend it to nondeterministic RPS’s.
We provide a category theoretic notion of guardedness and of solutions. Our main result is a
description of the canonical greatest solution for every guarded nondeterministic RPS, thereby
giving a category theoretic semantics for nondeterministic RPS’s. We show how our notions and
results are connected to classical work.
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1 Introduction

Deterministic and nondeterministic recursive program schemes (RPS’s) were investigated
in the 1970’s and 80’s by several authors (see related work below). Different semantics
for RPS’s were proposed and relationships between them were proved. More recently, a
category theoretic semantics for deterministic RPS’s has been developed by Ghani et al. [9]
and by Milius and Moss [16]. There are clear advantages of this semantics: it applies to
a considerably generalized notion of RPS and it requires less assumptions than classical
semantics, which need order or metric structures.

However, no category theoretic semantics for nondeterministic RPS’s has been presented
so far. The present paper bridges this gap: it provides a category theoretic notion of
nondeterministic RPS, of guardedness and of solutions. As our main result, a semantics of
the guarded nondeterministic RPS’s is given by proving them to have a canonical greatest
solution.

Technically this turns out to be a challenging task: parts of the techniques known from
[9, 16] are not available in the nondeterministic case. Thus large technical parts of our work
reflect the effort it takes to adjust the category theoretic methods to the nondeterministic
case. Nevertheless, this pays off in the end: besides obtaining a semantics for a generalized
notion of a nondeterministic RPS, our approach has a clear structure and is easily related to
classical semantics of nondeterministic RPS’s as well as to the deterministic category theoretic
semantics of [9, 16]. Moreover, several generalizations and extensions can be considered (see
future work in Section 6).
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We illustrate the topic of this paper on the nondeterministic RPS

φ(x) = f(x, x) or f(x, φ(x)) . (1)

Here φ is a new function symbol of arity one, f a given function symbol of arity two and x a
variable.

A semantics of a nondeterministic RPS attaches to every new function symbol a set
of possibly infinite trees with nodes labeled by given function symbols or variables which
“solves” the system of equations. In our example this is the following infinite set

{ f

x x

,

f

x f

x x

,

f

x f

x f

x x

, . . . ,

f

x f

x f

x ...

}
(2)

of trees where the right-hand tree is infinite. Substituting every element on the right-hand
side of (1) and interpreting the operation or as nondeterministic choice we get back this
set. But removing the infinite tree from this set also gives such a “solution”—unlike for
deterministic RPS we must make a decision when giving a semantics to nondeterministic
RPS’s. In our main result we prove that there always is a greatest solution that can be
chosen canonically.

Structure of the Paper

Section 2 provides several notions and results needed in this paper. In Section 3 we show
how to obtain a canonical distributive law of the free completely iterative monad TH on
a Set-functor H over the nonempty powerset monad P+. It is used in Section 4 to prove
that P+TH is a weakly completely iterative monad; moreover, in this section we consider
a functor H̄ on a certain Kleisli category derived from H, and show an H̄-coalgebra to be
weakly final. In Section 5 we give a category theoretic notion of a nondeterministic RPS
and prove our main result, namely that every guarded nondeterministic RPS has a canonical
greatest solution, using the technical results from the previous section. We compare our work
with an existing category theoretic notion of a deterministic RPS and with classical work on
nondeterministic RPS’s. Finally we give a brief summary and discuss several directions for
future work in Section 6.

Nearly all proofs are omitted; they can be found in the full version on the author’s web
page1.

Related Work

Different semantics of RPS’s have been investigated in the 1970’s and 80’s: for deterministic
RPS’s see for example Courcelle [8], Guessarian [10] and Nivat [19]; for nondeterministic
RPS’s we mention Boudol [7], Arnold and Nivat [4] and Poigné [20]. In Section 5 we compare
our work in particular with [4] to see how we cover the classical definitions and results. A

1 http://www.tu-braunschweig.de/iti/mitarbeiter/ehemalige/schwencke
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498 Nondeterministic Recursive Program Schemes

category theoretic approach to deterministic RPS’s is given by Ghani, Lüth and de Marchi
[9] and by Milius and Moss [16]. We make use of several techniques from [16]. This paper is
also loosely related to our previous work [17] where we used distributive laws of the same
kind to bring recursion (but on the level of equations for variables) together with effects like
non-determinism.

2 Preliminaries

We assume that the reader is familiar with the basic notions of category theory such as
category, functor, natural transformation and commutative diagram; we shall also need
coproducts. Moreover we assume basic knowledge about algebras and coalgebras for a
functor; in particular we use free algebras as well as (weakly) final coalgebras.

Monads and Distributive Laws

I Definition 2.1. A monad (M,η, µ) on a category A is an endofunctorM : A → A together
with natural transformations η : Id→M (called the unit of the monad) and µ : MM →M

(called the multiplication of the monad) such that the unit laws µ · ηM = µ ·Mη = id and
the multiplication law µ ·Mµ = µ · µM hold.
A monad morphism between monads (M,ηM , µM ) and (N, ηN , µN ) on A is a natural
transformation θ : M → N such that θ · ηM = ηN and θ · µM = µN ·Nθ · θM .

I Example 2.2. The most important example of a monad in this paper is the nonempty
powerset monad (P+, η+, µ+) on the category Set of sets and functions:

the functor P+ : Set→ Set assigns to a set X the set of all nonempty subsets of X; on
maps f : X → Y it is defined by (P+f)(X ′) = f [X ′] where X ′ ∈ P+X;
the X-component of the unit η+ : Id→ P+ assigns to an element x ∈ X the singleton
set {x} ∈ P+X;
the X-component of the multiplication µ+ : P+P+ → P+ performs the union of subsets
of X.

I Definition 2.3. A free monad on an endofunctor H on a category A is a monad
(FH , ηH , µH) together with a natural transformation κH : H → FH such that for ev-
ery monad (M,ηM , µM ) on A together with a natural transformation α : H → M there
exists a unique monad morphism α# : FH →M such that α# · κH = α.

I Theorem 2.4 ([5]). If for every object X of A the free H-algebras φHX : HFHX → FHX on
X exist, the free monad on H is given objectwise by these algebras, and the free algebra maps
form a natural transformation φH such that µH · φHFH = φH ·HµH and φH = µH · κHFH .

I Definition 2.5. The Kleisli category AM of a monad (M,η, µ) on a category A is given as
follows:

the objects of AM are the same objects as the ones of A;
the morphisms of AM between X and Y are all morphisms X →MY from A;
the identity morphism on X is ηX : X →MX;
composition of f : X →MY and g : Y →MZ is given by

X
f //MY

Mg //MMZ
µZ //MZ .

Furthermore, there is a canonical inclusion functor J : A → AM given as the identity on
objects and by Jf = ηY · f : X →MY on morphisms f : X → Y .
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I Definition 2.6. A distributive law of a functor H over a monad (M,ηM , µM ) is a natural
transformation λ : HM →MH such that λ ·HηM = ηMH and λ ·HµM = µMH ·Mλ · λM .
A distributive law of monads N and M is a natural transformation λ : NM → MN such
that in addition to the two laws for a distributive law of a functor over a monad (with H
replaced by N) the laws λ · ηNM = MηN and λ · µNM = MµN · λN ·Nλ hold.

Throughout the paper, we denote parallel composition Gα′ ·αF ′ = αG′ ·Fα′ : FF ′ → GG′

of natural transformations α : F → G and α′ : F ′ → G′ by α ∗ α′.

I Lemma 2.7 ([6]). Given a distributive law λ : NM → MN of monads, (MN, ηMN ·
ηN , (µM ∗ µN ) ·MλN) is again a (composite) monad.

Completely Iterative Algebras and Complete Elgot Algebras

Now (and for the rest of the paper) assume the category A to have binary coproducts,
and let H : A → A be a functor. We denote coproduct injections by inl : X → X + Y

and inr : Y → X + Y and use the notation can for the canonical morphism [H inl, H inr] :
HX +HY → H(X + Y ).

I Definition 2.8. A flat equation morphism in an object A (of parameters) is a morphism
e : X → HX +A.
A solution of e in an H-algebra a : HA → A is a morphism e† : X → A such that the
diagram

X
e† //

e

��

A

HX +A
He†+A

// HA+A

[a,A]

OO

commutes.
A completely iterative H-algebra is an H-algebra a : HA→ A in which every flat equation
morphism has a unique solution.
A complete Elgot algebra for H is an H-algebra a : HA→ A together with a function (−)†
assigning to each flat equation morphism e a solution e† in a such that (−)† is functorial
and compositional (see Definition 2.10 below).

I Notation 2.9. Let e : X → HX + Y and g : Y → HY + A be flat equation morphisms
and let f : Y → Z be any morphism. We denote by f • e the flat equation morphism
(HX + f) · e : X → HX + Z, and we denote by g e the flat equation morphism (can +A) ·
(HX + g) · [e, inr] : X + Y → H(X + Y ) +A.

I Definition 2.10. A function (−)† assigning to each flat equation morphism e a solution e†
in an algebra a : HA→ A is called functorial if for every homomorphism h : X → Y between
flat equation morphisms e : X → HX +A and g : Y → HY +A (i. e. (Hh+A) · e = g · h)
we have e† = g† · h. This is, (−)† is a functor between the category of all flat equation
morphisms in A and their homomorphisms and the comma category of A. (−)† is called
compositional if for any equation morphisms e : X → HX + Y and g : Y → HY + A we
have (g e)† · inl = (g† • e)†.
A morphism h : A→ B between complete Elgot algebras (a : HA→ A, (−)†) and (b : HB →
B, (−)‡) is called solution preserving if for all flat equation morphisms e : X → HX +A the
equation h · e† = (h • e)‡ holds.

CSL’11



500 Nondeterministic Recursive Program Schemes

All complete Elgot algebras for H and solution preserving H-algebra homomorphisms
between them form a category. It follows from [15, 2] that all completely iterative H-algebras
and H-algebra homomorphisms between them form a full subcategory.

I Theorem 2.11 ([15, 2]). The following are equivalent:
1. τX : HTHX → THX is the free completely iterative H-algebra on X with universal arrow

ηX : X → THX;
2. τX : HTHX → THX is the free complete Elgot algebra for H on X with universal arrow

ηX : X → THX;
3. [τX , ηX ]−1 : THX → HTHX +X is the final H(−) +X-coalgebra.

Completely Iterative Monads

I Definition 2.12. Let (T, η, µ) be a monad on A. A T -module (F, ν) is an endofunctor
F : A → A together with a natural transformation ν : FT → F such that the following
diagrams commute:

F
Fη //

CC
CC

CC
CC

CC
CC

CC
CC

FT

ν

��
F

FTT
Fµ //

νT

��

FT

ν

��
FT ν

// F

A module homomorphism between T -modules (F, νF ) and (G, νG) is a natural transformation
ϑ : F → G such that ϑ · νF = νG · ϑT .

I Remark 2.13. For every monad (T, η, µ), (T, µ) is a T -module.

I Definition 2.14. An idealized monad (T, η, µ, T̄ , µ̄, ϑ) on A is a monad (T, η, µ) on A
together with a T -module (T̄ , µ̄) and a module homomorphism ϑ : (T̄ , µ̄)→ (T, µ).
An ideal natural transformation is a natural transformation α : F → T into an idealized
monad which factors

α ≡ (F ᾱ // T̄
ϑ //T ) .

An idealized monad morphism (θ, θ̄) between idealized monads (T, ηT , µT , T̄ , µ̄T , ϑT ) and
(S, ηS , µS , S̄, µ̄S , ϑS) is a monad morphism θ : T → S together with a natural transformation
θ̄ : T̄ → S̄ such that the following diagrams commute:

T̄ T
θ̄∗θ //

µ̄T

��

S̄S

µ̄S

��
T̄

θ̄

// S̄

T̄
θ̄ //

ϑT

��

S̄

ϑS

��
T

θ
// S

I Remark 2.15. Every monad (T, η, µ) can be canonically completed to an idealized monad
(T, η, µ, T, µ, id). In general, there are other ways to complete T to an idealized monad as we
shall see in Theorem 2.17 below.

I Definition 2.16. Let (T, η, µ, T̄ , µ̄, ϑ) be an idealized monad. An equation morphism is a
morphism e : X → T (X + Y ). It is called guarded if it factors

e ≡ (X e′ // T̄ (X + Y ) + Y
[ϑX+Y ,ηX+Y ·inr] //T (X + Y ))
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for some e′. A solution of e is a morphism e† : X → TY such that the diagram

X
e† //

e

��

TY

T (X + Y )
T [e†,ηY ]

// TTY

µY

OO

commutes. An idealized monad is called completely iterative if every guarded equation
morphism has a unique solution. It is called weakly completely iterative if every guarded
equation morphism has a solution.

All idealized monads on A together with the idealized monad morphisms form a category.
In particular, we are interested in the free completely iterative monads on functorsH : A → A,
albeit not in their freeness property.

I Theorem 2.17 ([15]). Let H : A → A be a functor such that for every object X of A
the final H(−) + X-coalgebra exists. The free completely iterative monad on H is given
by (TH , ηH , µH , HTH , HµH , τH) with universal ideal natural transformation κH : H → TH

where
TH is defined on objects X as the free completely iterative H-algebra THX on X and on
morphisms f : X → Y as the unique homomorphism between the free completely iterative
H-algebras on X and Y extending ηY · f : X → THY ;
ηHX is given by the universal arrow of the free completely iterative H-algebra on X;
µHX is given as the unique homomorphism between the free completely iterative H-algebras
on THX and on X extending idTHX ;
τHX is given by the structure of the free completely iterative H-algebra on X; and
κHX is given by τHX ·HηHX .

I Remark 2.18. By the definition of µ in Theorem 2.17 we have µHX · τHTHX = τHX ·HµHX for
every X, and from the same theorem we know that µH and τH are natural transformations.
Consequently it holds µH · τHTH = τH ·HµH .

I Lemma 2.19. It holds τH = µH · κHTH .

Proof. Consider the diagram

HTH
κHTH //

HηHTH

%%KKKKKKKKKK THTH
µH // TH

HTHTH

τHTH

OO

HµH // HTH .

τH

OO

The triangle is the definition of κ, the lower part is one of the monad unit laws, and for the
right-hand square see Remark 2.18. Thus the desired outer square commutes. J

3 Canonical Distributive Laws over P+

In this section we provide canonical distributive laws of polynomial Set-functors H and the
corresponding free completely iterative monads TH on H over the nonempty powerset monad
P+ and prove some properties of them. These distributive laws are an integral part of our
category theoretic approach to nondeterministic computations since they formalize the idea
of non-determinism that all possible choices are considered.

CSL’11



502 Nondeterministic Recursive Program Schemes

I Definition 3.1. A polynomial Set-functor H is a Set-functor of the form HX =
∐
σ∈ΣX

nσ ,
where Σ is a signature of (possibly infinitely many) operation symbols σ with (finite) arities
nσ. We write HΣ for the polynomial Set-functor associated with the signature Σ; elements
from HΣX are denoted by σ(x1, . . . , xn) where σ ∈ Σ and x1, . . . , xn ∈ X.

I Lemma 3.2 ([11]). There exist canonical distributive laws λ : HM → MH of every
polynomial Set-functor H over every commutative monad M on Set.

I Remarks 3.3. 1. We do not state the definition of a commutative monad here, but only
mention that P+ is commutative which is sufficient for our purposes. For more details,
see Kock’s papers [13, 14].

2. Our work in [17] extends Lemma 3.2 to the wider class of analytic functors; for P+

there even exist canonical distributive laws λ : HP+ → P+H for every weak pullback
preserving functor H, see e. g. [12].

I Example 3.4. For every polynomial functorHΣ, the canonical distributive law λ : HΣP+ →
P+HΣ is given by λX(σ(X1, . . . , Xn)) = {σ(x1, . . . , xn) | xi ∈ Xi, 1 ≤ i ≤ n} for every n-ary
operation symbol σ ∈ Σ and X1, . . . , Xn ∈ P+X.

If H is a polynomial Set-functor, so is H(−) +X for every set X. The final coalgebra of
H(−) +X is carried by the set THX of all finite and infinite trees with nodes labeled by
operation symbols from the signature corresponding to H or by constant elements from X,
where the number of children is given by the arity of the operation symbols labeling a node
(see [1], Example 2.7). Whenever trees are mentioned in this paper, such trees are meant.
We shall also refer to the elements of THX as finite and infinite terms built from operation
symbols from the signature corresponding to H over variables from X.

Since for a polynomial Set-functor H final coalgebras H(−) +X exist for every set X,
the free completely iterative monad (TH , ηH , µH , HTH , HµH , τH) on H together with the
universal natural transformation κH exists and is given as in Theorem 2.17. Explicitly, for a
polynomial Set-functor H the natural transformations involved act as follows:

ηHX : X → THX considers a variable as a singleton tree;
µHX : THTHX → THX considers a tree with leaves labeled by trees with leaves labeled
by variables from X as a tree with leaves labeled by variables from X by using the leaf
labels as subtrees;
τHX : HTHX → THX acts similar as µHX but for a flat tree (i. e. one of depth one) with
leaves labeled by trees (of arbitrary depth); and
κHX : HX → THX considers a flat tree as a tree.

We shall leave out the superscript H when the functor H is clear from the context.
For the following proposition recall Definition 2.8 of a complete Elgot algebra.

I Proposition 3.5. For the canonical distributive law λ of a polynomial Set-functor H over
the monad P+, P+τY · λTHY : HP+THY → P+THY is a complete Elgot algebra for H for
every set Y .

Proof (sketch). For every set Y we define a function (−)† which assigns to each flat equation
morphism e : X → HX + P+THY a morphism e† : X → P+THY . For example, let e be
given by the system

x0 = σ(x0, x1)
x1 = {t0, t1}
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of equations where σ is an operation symbol from the signature associated with the polynomial
functor H, x0, x1 ∈ X and t0, t1 ∈ THY . Then we let e†(x0) consist of the unique solutions in
the free completely iterative H-algebra τY on Y of all variables of all flat equation morphisms
ē : X̄ → HX̄ + THY which are “over” x0: for example x̄0 and x̄1 in the system

x̄0 = σ(x̄1, x̄2)
x̄1 = σ(x̄0, x̄3)
x̄2 = t0

x̄3 = t1

are “over” x0 since there is a function X̄ → X mapping x̄0 and x̄1 to x0 (and x̄2 and x̄3
to x1) which is homomorphic for equations with right-hand sides from HX and otherwise
relates variables whose right-hand sides are in the containment relation ∈. Similarly we
define e†(x1) which is easily seen to be {t0, t1}. Then e† can be shown to be a greatest
solution of e w. r. t. to subset inclusion on P+THY . Equivalently, e† can be obtained as a
greatest fixed point of an operator corresponding to the solution diagram in Definition 2.8
with (A, a) = (P+THY,P+τY · λTHY ). This enables us to use the dual of the proof of
Proposition 3.5 from [2] in order to show that (−)† is functorial and compositional which
concludes the current proof. J

I Definition 3.6. Given the canonical distributive law λ of a polynomial Set-functor H
over the monad P+, we define for every set Y the map λ′Y : THP+Y → P+THY to be
the unique homomorphism between the free complete Elgot algebra τP+Y on P+Y and
the complete Elgot algebra P+τY · λTHY (see Proposition 3.5) extending P+ηHY , i. e. λ′Y is
uniquely determined by the following commutative diagrams:

HTHP+Y

τP+Y

��

Hλ′Y // HP+THY

λTHY
��

P+HTHY

P+τY
��

THP+Y
λ′Y // P+THY

P+Y

ηHP+Y

ffLLLLLLLLLL P+ηHY

88rrrrrrrrrr

(3)

I Lemma 3.7. The maps λ′Y : THP+Y → P+THY from Definition 3.6 act as follows:
given a tree t ∈ THP+Y where leaves may be labeled with nonempty subsets of Y , λ′Y (t) is
the set of all trees obtained by choosing in each of these leaves one element from the labeling
set.

I Proposition 3.8. The canonical distributive law λ : HP+ → P+H of a polynomial
Set-functor H over the monad P+ extends to a distributive law λ′ : THP+ → P+TH of
monads.

Proof (sketch). We prove that, given the canonical distributive law λ of a polynomial Set-
functor H over the monad P+, the maps λ′Y from Definition 3.6 form a distributive law of
monads. Since one of the axioms for a distributive law of monads is already given by the
lower triangle in diagram (3), we need to prove naturality of λ′ and the three remaining

CSL’11



504 Nondeterministic Recursive Program Schemes

axioms. The proof uses freeness of the complete Elgot algebras τY : HTHY → THY (see
Theorem 2.11) for naturality and one of the remaining axioms, and the concrete description
of λ′ from Lemma 3.7 for the remaining two axioms. J

I Lemma 3.9. For a distributive law λ′ obtained from λ according to Proposition 3.8 we
have λ′ · κP+ = P+κ · λ.

Proof. The lemma is an easy consequence of the definitions of κ (Theorem 2.17) and λ′

(diagram (3)) and therefore left to the reader. J

4 A Weakly Final Coalgebra

Milius and Moss ([16], Theorem 6.5) proved guarded deterministic RPS’s to have unique
solutions by exploiting the finality of the coalgebra [τH , ηH ]−1 for some functor H. As we
have seen in the introduction, in the nondeterministic case solutions need not be unique.
However, as our main result we shall provide in Section 5 canonical greatest solutions of
nondeterministic RPS’s. There we exploit weak finality of the coalgebra J [τH , ηH ]−1 for a
lifting H̄ of H to a suitable Kleisli category with inclusion functor J , which is proved in the
present section.

I Definition 4.1. Given a distributive law δ : NM →MN of monads, a δ-distributive law
of an N -module (N̄ , µ̄N ) over the monad M is a natural transformation δ̄ : N̄M → MN̄

such that the first two laws from Definition 2.6 (with H replaced by N̄ and λ replaced by δ̄)
and the law δ̄ · µ̄NM = Mµ̄N · δ̄N · N̄δ hold.

I Lemma 4.2. Let δ : NM → MN be a distributive law of the idealized monad
(N, ηN , µN , N̄ , µ̄N , ϑ) over the monad (M,ηM , µM ), and let δ̄ : N̄M → MN̄ be a δ-
distributive law such that Mϑ · δ̄ = δ · ϑM . Then the composite monad induced by δ

is an idealized monad (MN, ηMN · ηN , (µM ∗ µN ) ·MδN,MN̄, (µM ∗ µ̄N ) ·Mδ̄N,Mϑ).

Specializing to M = P+ and N = TH , we can now prove the following

I Theorem 4.3. Let H be a polynomial Set-functor. For the extension λ′ : THP+ → P+TH

of the canonical distributive law λ : HP+ → P+H (cf. Proposition 3.8),

(P+TH , η+TH ·ηH , (µ+∗µH)·P+λ′TH ,P+HTH , (µ+∗HµH)·P+λTHTH ·P+Hλ′TH ,P+τ)

is a weakly completely iterative monad (see Definition 2.16).

Proof (sketch). We know from Theorem 2.17 that (TH , ηH , µH , HTH , HµH , τ) is the free
completely iterative monad on H, i. e. in particular, it is an idealized monad. Moreover,
λTH · Hλ′ : HTHP+ → P+HTH is easily seen to be a λ′-distributive law such that
P+τ · λTH ·Hλ′ = λ′ · τP+. Thus we can apply Lemma 4.2 to see that the six-tuple in the
statement of the theorem is an idealized monad. We still have to check that every guarded
equation morphism has a solution. This is done by deriving deterministic guarded equation
morphisms from the given nondeterministic one (similar to the proof of Proposition 3.5) and
showing that the (unique) solutions of the former constitute a solution of the latter. J

I Remark 4.4. The part of the proof of Theorem 4.3 showing that all guarded equation
morphisms have a solution even works for (non-guarded) equation morphisms e : X →
P+TH(X + Y ) that factor

e = (X e′ //P+(HX + Y )
P+(κHX+ηHY )//P+(THX + THY ) P+can //P+TH(X + Y )) .

The reason is that although the equation morphism e is not necessarily guarded, the derived
deterministic equation morphisms always are; the rest of the proof remains the same.
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Observe that for every set Y , P+Y carries the partial order ⊆ given by subset inclusion.
This extends elementwise to a partial order ≤ on all sets Set(X,P+Y ) of functions from
some set X into P+Y , i. e. f ≤ g ⇔ ∀x ∈ X : f(x) ⊆ g(x) for functions f, g ∈ Set(X,P+Y ).
In this sense we use the term “greatest solution/homomorphism” in the following lemma, in
Lemma 4.11 below and in Section 5.

I Lemma 4.5. The canonical solutions e† of (guarded) equation morphisms e from the proof
of Theorem 4.3 and Remark 4.4 are greatest solutions; moreover, for all solutions s of a
(guarded) equation morphism e the sets of all finite cuttings of the trees from e†(x) and s(x)
are the same for every x ∈ X.

Let us denote by [A,A] the category of all A-endofunctors and natural transformations
between them. Any functor H : A → A gives rise to a functor H : [A,A]→ [A,A] defined
on objects (i. e. functors F ) and morphisms (i. e. natural transformations α : F → G) by
HF = HF + Id and Hα = Hα+ id.
And any monad (M,ηM , µM ) on A gives rise to a monad (M, ηM, µM) on [A,A] as follows:
the functorM is defined byMF = MF andMα = Mα, and the F -components of unit and
multiplication are given by ηMF = ηMF and µMF = µMF . The monad laws follow straight
from the ones for (M,ηM , µM ).

I Lemma 4.6. Any distributive law λ of a functor H over a monad M on A induces a
distributive law Λ of the functor H over the monadM on [A,A].

Proof. For every object from [A,A] (i. e. every functor F : A → A) we define ΛF =
can · (λF + ηM ). Naturality of Λ is proved by the commutative diagram

HMF = HMF + Id
λF+ηM//

HMα=HMα+id
��

MHF +M
can //

MHα+M id
��

M(HF + Id) =MHF

M(Hα+id)=MHα
��

ED ��GF
ΛF

HMG = HMG+ Id
λG+ηM

// MHG+M can
// M(HG+ Id) =MHGBC OO@A

ΛG

for every morphism from [A,A] (i. e. every natural transformation α : F → G from A): the
left-hand part commutes by naturality of λ, and the right-hand part by naturality of can.
The two axioms for Λ are easily checked componentwise for every object from [A,A] (i. e. for
every functor F ) in

ΛF · HηMF = can · (λF + ηM ) · (HηMF + Id) = can · (ηMHF + ηM ) = ηM (HF + Id) = ηMHF

and

ΛF · HµMF = can · (λF + ηM ) · (HµMF + Id)
= can · (µMHF + µM ) · (MλF +MηM ) · (λMF + ηM )
= µM (HF + Id) ·Mcan · can · (MλF +MηM ) · (λMF + ηM )
= µM (HF + Id) ·Mcan ·M(λF + ηM ) · can · (λMF + ηM )
= µMHF · MΛF · ΛMF .

J

Now recall Definition 2.5 (Kleisli category).
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I Proposition 4.7 ([18]). For any functor H : A → A and monad M on A the following
are equivalent:
1. there is a distributive law λ : HM →MH of the functor over the monad;
2. H lifts to a functor H̄ on AM .

I Remark 4.8. We do not state the definition of a lifting of a functor here; let us only
remark that in the proof of Proposition 4.7 for a given distributive law λ : HM → MH

the corresponding functor H̄ on AM is given by H̄X = HX on objects X of AM and by
H̄f = λY ·Hf : HX →MHY on morphisms f : X →MY of AM .

I Corollary 4.9. H lifts to a functor H̄ on [A,A]M.

Explicitly H̄ is given on objects (i. e. functors F ) and morphisms (i. e. natural transfor-
mations α : F →MG) by

H̄F = HF + Id and H̄α = can · (λG+ ηM ) · (Hα+ id) .

Let us come back to the setting where H : Set → Set is polynomial, M = P+ and
λ : HP+ → P+H is canonical.

I Theorem 4.10. J [τ, η]−1 : TH → P+(HTH + Id) is a weakly final H̄-coalgebra.

Proof (sketch). The components of every H̄-coalgebra give rise to equation morphisms whose
canonical solutions from the proof of Theorem 4.3 can be shown to form a homomorphism h

into the H̄-coalgebra J [τ, η]−1. J

I Lemma 4.11. The H̄-coalgebra homomorphisms h : F → P+TH into the weakly final
H̄-coalgebra from the proof of Theorem 4.10 are (componentwise) the greatest such homomor-
phisms; moreover, for every H̄-coalgebra homomorphism α : F → P+TH the sets of all finite
cuttings of trees from αX(z) and hX(z) are the same for every set X and every z ∈ FX.

Proof. This follows from Lemma 4.5 and the proof of Theorem 4.10. J

5 Nondeterministic Recursive Program Schemes

In this section, we present our category theoretic notion of a nondeterministic RPS. We
compare this notion with the one of a deterministic RPS from Milius and Moss [16] and with
the classical notion of a nondeterministic RPS as given by Arnold and Nivat [4]. Using the
technical results from the previous section, we prove our main theorem giving a semantics to
nondeterministic RPS’s.

I Definition 5.1. Let H and V be polynomial Set-functors. A nondeterministic recursive
program scheme (or NDRPS, for short) is a natural transformation e : V → P+FH+V . It is
called guarded if it factors

e ≡ (V e′ //P+HFH+V P
+inlFH+V

//P+(H + V )FH+V P+φH+V
//P+FH+V ) .

An uninterpreted solution of e is a natural transformation e† : V → P+TH such that the
diagram

V
e† //

e

��

P+TH

P+FH+V
P+[η+TH ·κH ,e†]#

// P+P+TH

µ+TH

OO

(4)

commutes.



D. Schwencke 507

I Remark 5.2. Notice that [η+TH · κH , e†]# in Definition 5.1 is the unique monad morphism
such that [η+TH ·κH , e†]# ·κH+V = [η+TH ·κH , e†]. It exists since FH+V is the free monad
on H + V with universal natural transformation κH+V : H + V → FH+V (cf. Definition 2.3)
and P+TH is a monad by Theorem 4.3. Explicitly, for polynomial functors H and V and any
set X, FH+VX is the set of all finite trees or terms built from the operation symbols from
the signatures associated with H and V and the variables from X (similar to our description
of THX above Proposition 3.5). [η+TH · κH , e†]#X performs a nondeterministic variant of
second-order substitution in trees (cf. [16], Section 4.1).
I Remark 5.3. In Definition 6.1 of [16] deterministic RPS’s are defined as natural transfor-
mations e : V → TH+V where H and V are endofunctors on any category A with binary
coproducts such that TH and TH+V exist. They are called guarded if they factor through
a natural transformation e′ : V → HTH+V . Uninterpreted solutions are ideal natural
transformations e† : V → TH such that e† = [κH , e†]$ · e where [κH , e†]$ : TH+V → TH is
the unique idealized monad morphism extending [κH , e†] induced by the freeness property of
the completely iterative monad TH+V . We compare these definitions with our Definition 5.1
of NDRPS’s:
1. If we “eliminate” the non-determinism from Definition 5.1 by using the identity monad

(Id, id, id) instead of (P+, η+, µ+), we obtain a special case of deterministic RPS’s as
defined in [16] where we restrict to A = Set and to finite terms on the right-hand sides of
NDRPS’s. More precisely, we obtain natural transformations e : V → FH+V which can
be viewed as RPS’s in · e : V → TH+V where in = (κH+V )# : FH+V → TH+V . If e is
guarded in the sense of Definition 5.1 (using Id instead of P+), then in · e is guarded in
the sense of [16].

2. To “eliminate” the non-determinism from our definition of an uninterpreted solution,
observe that the identity monad is commutative. By Lemma 3.2 we obtain a canonical
distributive law of every polynomial Set-functor H over Id which simply is id : H =
HId → IdH = H, and analogously to Proposition 3.8 this extends to a distributive
law of the monads TH and Id which simply is id : TH = THId → IdTH = TH . The
“composite monad” IdTH becomes the completely iterative monad TH , thus the notion of
an uninterpreted solution also becomes a special case of the one from [16] (as far as ideal
natural transformations e† are concerned) since [κH , e†]$ · in = [κH , e†]# : FH+V → TH

by the uniqueness of such monad morphisms extending κH+V : H + V → FH+V .
3. The assumption on uninterpreted solutions of deterministic RPS’s to be ideal is necessary

to ensure the existence of [κH , e†]$. Working with finite terms in Definition 5.1 has the
advantage that we can drop this assumption. In case of a guarded RPS e : V → FH+V

(using Id instead of P+) uninterpreted solutions automatically are ideal.
4. Technically, the restriction to finite terms on the right-hand sides of NDRPS’s is due to

the fact that the monad P+TH is not a completely iterative monad and we thus cannot
exploit freeness of the completely iterative monad TH+V . However, since by Theorem 4.3
(and Lemma 4.5) P+TH is an idealized monad together with a solution operation (−)†
giving canonical (greatest) solutions for guarded equation morphisms, it comes close to a
completely iterative monad. In order to capture infinite terms, it would be interesting to
see whether P+TH is something like a “complete Elgot monad” and whether the free
completely iterative monad TH+V also is the “free complete Elgot monad”. But whereas
the concept of Elgot monads has recently been investigated [3], there exist no results for
complete Elgot monads.

I Example 5.4. Consider the NDRPS (1) from the introduction. It is formulated in the
classical way using the special binary function symbol or, see e. g. [4], Section II. It can be
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viewed as a natural transformation e : V → P+TH+V as follows: according to the signatures
of new and given function symbols, we choose the polynomial Set-functors V X = X and
HX = X ×X. We translate the right-hand term from (1) which is headed by the symbol
or into the set containing the two subterms and abstract away from a concrete variable set,
obtaining the natural transformation e given by eX(φ(x)) = {f(x, x), f(x, φ(x))} for every
set X. The naturality states that it is invariant under renaming the variable x.
In classical terms, the NDRPS (1) is a Greibach scheme since every new function symbol is
part of a term headed by a given function symbol, see e. g. [4], Section IV. Correspondingly,
the natural transformation e is guarded since every element of the right-hand set is a term
headed by a given operation symbol.
Let us denote the infinite set (2) from the introduction by S. We obtain the natural
transformation e† given by e†X(φ(x)) = S for every set X. Using Remark 5.2, we see that
diagram (4) commutes; thus e† is an uninterpreted solution of e. Similarly, the natural
transformation s given by sX(φ(x)) = S \ {t} for every set X is an uninterpreted solution of
e, where t is the only infinite tree from S (the rightmost one in (2)).

I Remark 5.5. More generally, every classical NDRPS in the sense of Arnold and Nivat [4]
can be translated into a NDRPS in the sense of Definition 5.1, using the following ideas:

the polynomial Set-functors V and H are chosen according to the signatures of new and
given function symbols;
every term headed by the function symbol or is translated to the set of its two subterms;
given function symbols are distributed over sets using the canonical distributive law
λ : HP+ → P+H;
nested sets are flattened using µ+ : P+P+ → P+;
for every set S occurring in a term headed by a new function symbol an additional new
function symbol φS(x1, . . . , xn) with arity according to the number n of variables in S
is introduced, S is replaced by φS(x1, . . . , xn) and the equation φS(x1, . . . , xn) = S is
added to the NDRPS;
occurrences of single variables xi in sets are replaced by πi(x1, . . . , xn) where πi is an
additional given function symbol and the x1, . . . , xn are all variables occurring in the
elements of the set (the idea is of course that πi denotes the i-th projection);
the natural transformation e : V → P+FH+V constituting the NDRPS is given for
every set X and every element from V X by the right-hand side of the equation for the
corresponding new function symbol.

In order to obtain a guarded NDRPS from a classical Greibach scheme, it might be necessary
to substitute some new function symbols by the right-hand sides of their equations. In
conclusion, our notion of a NDRPS covers the classical one, and classical Greibach schemes
translate to guarded NDRPS’s. Moreover, our notion generalizes the classical one: whereas
in [4] NDRPS’s define finitely many new operations, and, more important, only allow for
finite (nonempty) sets of finite terms on the right-hand sides of NDRPS’s, our approach also
captures infinitely many newly defined operations and arbitrary (nonempty) sets. It might
even be possible to generalize our approach to infinite terms on the right-hand sides, see
Remark 5.3(4).

We now state our main result:

I Theorem 5.6. Every guarded NDRPS has a canonical greatest uninterpreted solution.

Before we give the proof of Theorem 5.6, we need to establish an important lemma first.
Whenever we write λ or λ′ in the rest of the paper, we mean the canonical distributive laws
of a polynomial Set-functor H over the monad P+ from Lemma 3.2 or of TH over P+ from



D. Schwencke 509

Proposition 3.8. To simplify notation, we denote the free monad FH+V by F for the rest of
the paper.

I Definition 5.7. Given a natural transformation e′ : V → P+HF , we define the H̄-coalgebra
p by

p = (F
[φH+V ,ηH+V ]−1

// (H + V )F + Id
[η+HF ·HηH+V ,e′]F+η+

��
P+HFF + P+P

+HµH+V +P+
// P+HF + P+ can // P+(HF + Id) ) .

(5)

By Theorem 4.10 (and Lemma 4.11) there is a (componentwise greatest) natural transforma-
tion h such that the diagram

F
h //

p

��

TH

J[τH ,ηH ]−1

��
HF + Id

H̄h
// HTH + Id

(6)

commutes (in [Set,Set]M for M = P+). Observe that diagram (6) translates to

h = P+[τH , ηH ] · µ+(HTH + Id) · P+can · P+(λTH + η+) · P+(Hh+ id) · p (7)

in [Set,Set].

I Lemma 5.8. The natural transformation h : F → P+TH from Definition 5.7 is a monad
morphism.

We remark that in the proof of Lemma 5.8, Theorem 4.10 is used to prove the second
monad morphism law for h.

Proof of Theorem 5.6 (sketch). The given guarded NDRPS e : V → P+F factors through
a natural transformation e′ : V → P+HF , thus we obtain a natural transformation h : F →
P+TH as in Definition 5.7. We define

e† ≡ ( V inr // H + V
κH+V

// F
h // P+TH )

and prove that this is the componentwise greatest solution of e.
In a first step, one proves that e† solves e using Lemma 5.8. An important part of this

step is to prove that h is the unique monad morphism [η+TH · κH , e†]#.
In a second step, e† is proved to be the greatest solution. Here one considers any solution

s : V → P+TH of e. It suffices to show that x = [η+TH ·κH , s]# : F → P+TH is a coalgebra
homomorphism between p and the weakly final H̄-coalgebra over [Set,Set]M from Theorem
4.10: since h is known to be the componentwise greatest such homomorphism, it follows
hX ≥ xX for every set X and we conclude

e†X = µ+
THX

· P+[η+TH · κH , e†]#X · eX = µ+
THX

· P+hX · e ≥ µ+
THX

· P+xX · eX = sX

for every set X using Definition 5.1 and monotonicity of composition in SetP+ . J

I Corollary 5.9. For every uninterpreted solution s : V → P+TH of a NDRPS the sets of
all finite cuttings of trees from sX(z) and e†X(z) are the same for every set X and every
z ∈ V X.
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Proof. In the second part of the proof of Theorem 5.6 we prove that every solution s of every
guarded NDRPS e the monad morphism [η+TH · κH , s]# is an H̄-coalgebra homomorphism.
According to Lemma 4.11, we have the desired property for this H̄-coalgebra homomorphism
and the H̄-coalgebra homomorphism h; this implies that this property also holds for their
respective restrictions s = [η+TH · κH , s]# · κH+V · inr and e† = h · κH+V · inr. J

I Remark 5.10. The main result of Arnold and Nivat [4] is that greatest solutions of Greibach
schemes give the “right” semantics of NDRPS’s and can be computed as greatest fixed points.
We confirmed the former in Theorem 5.6 and generalized it to a wider class of NDRPS’s (cf.
Remark 5.5). From our results we also easily recover the latter: restricting to finite sets on
the right-hand sides of NDRPS’s, the operator h 7→ P+[τH , ηH ] · µ+(HTH + Id) · P+can ·
P+(λTH + η+) · P+(Hh+ id) · p on Set(F,P+TH) given by equation (7) or equivalently by
diagram (6) is componentwise continuous; since we know from Theorem 4.10 and Lemma 4.11
that the greatest fixed point of this operator exists, the second part of Arnold’s and Nivat’s
result follows from (the dual of) Kleene’s fixed point theorem. However, the operator is no
longer continuous if we allow for infinite sets on the right-hand sides of NDRPS’s.

6 Conclusion

We have given a category theoretic definition and semantics of (uninterpreted) NDRPS’s.
This was achieved by reusing the technical core of Milius and Moss’ work on a category
theoretic semantics for (ordinary) RPS’s [16] and by adding category theoretic concepts that
capture the nondeterminism as the nonempty powerset monad and canonical distributive
laws over this monad. We showed how our work is related to loc. cit. and that it extends the
classical work on NDRPS’s by Arnold and Nivat [4].

Although our approach is inspired by [16] and its precursor [9], the non-determinism
causes various differences: it is not only more complicated to work with the additional
nonempty powerset monad and the canonical distributive laws for it, but many proofs have
to be carried out in a more basic setting. For example, the coalgebra functor H can only
be considered on a more basic category, or we even need to use techniques inherent to
non-determinism like “determinization” (see the proofs of Proposition 3.5 and Theorem 4.3).

Still, due to the abstract category theoretic framework there are several directions for
future generalizations: instead of polynomial functors H it might be possible to use analytic
or even weak pullback preserving functors; a starting point is given in Remark 3.3(2). We
also suspect that our work can be applied to the environment monad (−)E instead of P+

giving an even stronger result (unique solutions) for E-composite RPS’s. Technically, our
work might be improved by the development of a theory of “complete Elgot monads” as
pointed out in Remark 5.3(4). And clearly this paper leaves the question of a category
theoretic semantics of interpreted NDRPS’s open for future research.

Finally we mention that it is of course possible to admit the empty set in solutions of
NDRPS’s, i. e. to use the powerset functor P instead of its nonempty variant P+. However,
this causes a shift in the results since additional least solutions are added: for example it is
not difficult to see that every NDRPS where we have recursion in every element of every
right-hand set, has a solution where every new function symbol is assigned the empty set.
We shall consider this notion of a NDRPS elsewhere.

Acknowledgments The author thanks Stefan Milius and Jiří Adámek for their comments.
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