
Axiomatizing the Quote
Andrew Polonsky

VU University Amsterdam
De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
andrew@few.vu.nl

Abstract
We study reflection in the Lambda Calculus from an axiomatic point of view. Specifically, we
consider various properties that the quote p·q must satisfy as a function from Λ to Λ. The most
important of these is the existence of a definable left inverse: a term E, called the evaluator for
p·q, that satisfies EpMq = M for all M ∈ Λ. Usually the quote pMq encodes the syntax of
a given term, and the evaluator proceeds by analyzing the syntax and reifying all constructors
by their actual meaning in the calculus. Working in Combinatory Logic, Raymond Smullyan
[12] investigated which elements of the syntax must be accessible via the quote in order for an
evaluator to exist. He asked three specific questions, to which we provide negative answers. On
the positive side, we give a characterization of quotes which possess all of the desired properties,
equivalently defined as being equitranslatable with a standard quote. As an application, we show
that Scott’s coding is not complete in this sense, but can be slightly modified to be such. This
results in a minimal definition of a complete quoting for Combinatory Logic.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases Lambda calculus, combinatory logic, quote operator, enumerator

Digital Object Identifier 10.4230/LIPIcs.CSL.2011.458

1 Introduction

1.1 Coding in mathematical logic
Reflection is a powerful phenomenon in mathematical logic. Its most dramatic applica-
tion was given by Gödel, who used it in the proof of his famous Incompleteness Theorems,
destroying Hilbert’s formalist program in its original incarnation (one could call the lat-
ter Naïve Formalism.) Soon after, it was at the heart of the proofs of equivalence between
various models of computation that ultimately provided evidence for Church’s thesis. Arith-
metization of syntax is also the core component of the enumeration theorem, a result used
implicitly in virtually every proof of Recursion Theory.

The ability of a computing system to interpret its own syntax also played a significant
role in the evolution of functional programming languages. In one of the early reports
on the development of Lisp, John McCarthy [8] introduced the so-called Meta-Circular
Evaluator: a Lisp form which can execute an arbitrary list as a Lisp form — a “universal
Lisp form.” Since then, many languages (including Lisp, Prolog, Smalltalk, and others)
have been built ground-up using meta-circular implementation. In the reverse direction,
some languages have the “quote” command, which represents expressions of the language
within some standard datatype. This operation is not referentially transparent, so the
presence of an explicit quote operator in a language (e.g. Lisp) means that the language
is not purely functional. Nevertheless, computational reflection provides the language with
other powerful capabilities, which were extensively investigated by Brian Cantwell Smith in
his PhD thesis [11].

© Andrew Polonsky;
licensed under Creative Commons License NC-ND

Computer Science Logic 2011 (CSL’11).
Editor: Marc Bezem; pp. 458–469

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62916491?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.CSL.2011.458
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


Andrew Polonsky 459

The peculiar use of self-reference made Gödel’s argument a favorite among philosophers,
and inspired a number of publications in popular science, some of which even attribute a
certain mystical element to the work of Gödel. For example, in his introduction to Gödel,
Escher, Bach: an Eternal Golden Braid, Hofstadter writes: “GEB is in essence a long pro-
posal of strange loops as a metaphor for how selfhood originates.”[6] Although Hofstadter’s
allegorical picture cannot be framed as a scientific thesis, it did stimulate popular interest
in computational logic.

The questions of Smullyan were brought to our attention by Henk Barendregt. Of course,
they are only a sliver in the more global puzzle of understanding reflection as a distinct
phenomenon. There is still lacking a general concept, an all-inclusive definition through
which the common features of the constructions in Gödel’s theorem, computability, number
theory (systems of arithmetic), and set theory could be related. Finding such a concept
remains a fascinating open problem.

1.2 Coding of lambda terms
Classically, an enumerator is a term E such that every closed lambda term is convertible1
to Ecn for some natural number n, where cn denotes the nth Church numeral. The first
enumerator for the lambda calculus was constructed by Kleene [7] in the proof that ev-
ery lambda-definable function is computable — among the first pieces of evidence for the
Church–Turing thesis. Together with the proof that every computable function is lambda-
definable, this gave an interpretation of lambda-calculus within itself. Kleene’s approach
used Gödel’s arithmetization of syntax, which codes grammar trees of terms as natural
numbers. This has the drawback that an evaluator exists only for terms whose free variables
come from a finite set which is fixed in advance.

Mogensen [9] found an elegant self-interpreter which, instead of coding variables by
numerals, coded them by themselves. The coding therefore allows an evaluator which is
uniform on the set of all (open) lambda terms. Mogensen’s construction has a different
drawback: it lacks a discriminator — a term which can test whether or not two quotes code
the same term. However, Barendregt [2] did find a discriminator for Mogensen coding which
works for all closed terms.

A more significant distinction between Kleene’s enumerator and Mogensen’s is that
Kleene actually emulates variable binding within the quotes. This requires a number of
auxiliary functions to deal with alpha-conversion, making definitions rather complicated.
In contrast, Mogensen encodes binders by actual “meta-level” lambdas. This technique is
known as Higher Order Abstract Syntax [10], and Mogensen’s coding is arguably the most
canonical application of it.

In 1992, Berarducci and Böhm gave an improvement on Mogensen’s coding such that the
evaluator E is a normal form and EpMq is strongly normalizing whenever M is. They also
listed other properties that a coding might satisfy, and reiterated the problem of axiomatizing
the quote as an operator. [5] Our proposed solution appears in Corollary 14.

To keep matters simple, we will restrict attention to the coding of closed terms, and
work in the combinatory version of the lambda calculus with basis {K, S}. This results in
no loss of generality, as all closed lambda terms can always be written in this basis. Indeed,

1 In fact, in the lambda caluclus all enumerators are actually reducing: if E is an enumerator, then
∀M ∈ Λ0 ∃n ∈ N s.t. Ecn �M . Richard Statman gave the first proof of this result using computability
theory, and Henk Barendregt provided a constructive adaptation, which can be found in the festschrift
of Dirk van Dalen [3].

CSL’11



460 Axiomatizing the Quote

our constructions can be translated into Mogensen coding rather explicitly. Furthermore,
as will be evident from the definitions, the choice of basis has no effect on our results.

2 Setup

2.1 Basic concepts
In what follows, we will need the following concepts. For a thorough introduction, see [1].

I Definition 1. Let V = {v0, v1, . . . } be an infinite set of variables.
1. The lambda terms are given by the grammar

Λ ::= V | ΛΛ | λV Λ

2. A subterm occurrence of a variable x in the term M is bound if it is inside a subterm of
the form (λxN). Otherwise, the occurrence is free. FV(M) denotes the set of variables
that have a free occurrence inM . If FV(M) = ∅, thenM is closed, and we writeM ∈ Λ0.

3. M [x := N ] is the lambda term obtained by renaming bound variables ofM to be distinct
from the free variables of N , and then plugging in the term N for every free occurrence
of x in the resulting M .

4. Lambda terms are considered for their relation of beta-convertibility — a congruence
generated by the axiom

(λxM)N =β M [x := N ]

5. As a matter of notation, we write
M1M2 . . .Mn as a shorthand for (. . . (M1M2)M3) . . . )Mn,
λ~x.M as a shorthand for λx0(λx1 . . . (λxlM) . . . ).

6. The combinators are given by the grammar

C ::= K | S | CC

The combinator SKK is abbreviated by the symbol I.
7. The combinators are considered with the congruence generated by equations

Kxy = x

Sxyz = (xz)(yz)
8. Lambda terms are translated into combinators via the map (·)CL : Λ→ C:

(x)CL = x

(MN)CL = (M)CL(N)CL
(λx.M)CL = λ∗x[(M)CL],

where λ∗x[·] is given by
λ∗x[x] = I
λ∗x[M ] = KM , if x /∈ FV(M)
λ∗x[MN ] = S(λ∗x[M ])(λ∗x[N ])

Note that when M is closed, (M)CL has no variables (i.e., (M)CL ∈ C).
9. The basic combinators are represented in Λ by the terms

I = λx.x, K = λxy.x, S = λxyz.xz(yz)

In addition, we’ll employ the following standard abbreviations:
Uni = λx0 . . . xn.xi
K = U1

1 = λxy.y



Andrew Polonsky 461

Y = λf.(λx.f(xx))(λx.f(xx))
Ω = (λx.xx)(λx.xx)
[M,N ] = λx.xMN , x /∈ FV(MN)
〈M1, . . . ,Mn〉 = λx.xM1 . . .Mn, x /∈ FV(M1) ∪ · · · ∪ FV(Mn)

I Remark 2. We will often mix together lambda terms and combinators, leaving the trans-
lation above implicit in notation. Since we work in combinatory logic, this means that all
occurrences of λ are to be eliminated via part 8 of the definition above.

In what follows, we will need to have a standard, reference coding with which others can
be compared. Any of those mentioned previously would work; our variant uses pairing to
represent the syntax trees.

I Definition 3. The standard quote of M is defined inductively as follows. Let P ≡
(λxyz.zxy)CL be the pairing combinator. Put

M ≡ SI(KM) = 〈M〉 if M ∈ {K, S},
MN ≡ PM N = [M,N ] for all M,N .

2.2 Axioms for the quote operator
A coding p·q is a map from C into itself. A term pMq is then called the quote of M .2
Since the primary use of coding consists of manipulating the syntax of terms, most of the
properties that we investigate will concern existence of combinators relating the structure
of a term to that of its quote. Among these, most attention is given to the Constructor and
Destructor axioms. Roughly, the former allows one to obtain the quote of a term from the
quotes of its subterms. The latter is dual: it breaks up the term into its subterms (with
respect to the quote).

I Definition 4. (Coding Axioms) Let p·q : C → C.We say p·q satisfies axiom X from among
those below if there exists a combinator X with the stated property.

CON (constructor) :
{
A: ApMqpNq = pMNq

B: BpMq = ppMqq

DES (destructor) :


P: PipM0M1q = pMiq, i ∈ {0, 1}

Z: ZbpMq =
{

K M ≡ b
K otherwise

b ∈ {K, S}

CMP (complete) :
{
U: UpMq = M (uncoding)

U−1: U−1M = pMq (encoding)

E (evaluator) : EpMq = M

∆ (discriminator) : ∆pMqpNq =
{

K M ≡ N
K otherwise

MON (monic) : ∀M,N ∈ C pMq = pNq =⇒M ≡ N

SOL (solvable) : ∀M ∈ C pMq is solvable

2 Some authors would call pMq a quasiquote, but we will not make this distinction here.

CSL’11



462 Axiomatizing the Quote

I Remark 5. Smullyan called a coding satisfying CON admissible, and a coding satisfying
DES preadmissible [12, p.367]. He asked whether either implies the other, and whether an
evaluator can be constructed from CON. All three questions have negative answers.

I Remark 6. Axiom B appears to be too strong: if we want to requote M , why should we
care about the particular =β-representative of pMq? It may be more reasonable to require

B−: B−pMq = pNq, where N = pMq

Nevertheless, we will proceed with Smullyan’s original formulation.

The axioms above are the primary focus of our attention. In studying them, the following
auxiliary properties are useful.

I Definition 7. We introduce two additional axioms

Z? (leaf test): Z?pMq =
{

K M ∈ {K, S}
K M ≡M0M1

RD (range test): ∃ c.e. D ⊆ C, Range(p·q) ⊆ D, ∃RD ∈ C, ∀N ∈ D :

RDN =
{

K ∃M. N = pMq
K otherwise

3 Results

3.1 Elementary properties
I Proposition 8. Let p·q be a coding. Then the following implications hold:
1. p·q ≡ · =⇒ CON ∧ DES ∧ E ∧ ∆
2. Z =⇒ SOL, DES =⇒ MON, ∆ =⇒ MON ∧ Z
3. CMP =⇒ CON ∧ DES ∧ ∆
4. DES =⇒ U, U =⇒ E ∧ ∆

Proof. 1. We verify that the standard coding has all of the properties of interest.
Let Pi = 〈U1

i 〉CL = SI(KU1
i ). Then

Pi[M0,M1] = I[M0,M1](KU1
i [M0,M1])

= (λx0x1.xi)M0M1 = Mi

In particular, PiM0M1 = Mi.
Let Z? = (λx.xU3

2I)CL. (From now on, (−)CL will be left implicit as per Remark 2.)
Then

Z?〈x〉 = K

Z?[x, y] = K

In particular, Z?MN = Z?[M,N ] = K, and Z?K = Z?S = K.
With Z? satisfied, it is trivial to get full Z. Since K, S are normal forms, by Böhm’s
theorem [1], there exist closed terms −→Q such that K

−→
Q = K and S

−→
Q = K. Take

ZKx = if Z?x then x
−→
Q else K

ZSx = if Z?x then x
−→
QKK else K



Andrew Polonsky 463

So far we have proved that · satisfies DES. To satisfy axiom A, simply take A = P.
Furthermore, this is the representative of the β-equivalence class of MN that was
chosen by Definition 3: MN ≡ (PM)N .
Using a fixed-point combinator, put

Bx = if Z?x then (ZKx)K S else P(PP(B(P0x)))(B(P1x))

Evaluator is easy for the standard coding:

Ex = if Z?x then xI else x(λxy.Ex(Ey))

So is the discriminator:

∆xy =if Z?x

then if ZKx then ZKy else ZSy

else if Z?y then K else (∆(P0x)(P0y))(∆(P1x)(P1y))K

2. That Z =⇒ SOL is an immediate consequence of the Genericity Lemma [1, 14.3.24]: if
ZM = K for unsolvable M , then Zm = K for all M , contradicting condition Z.
That ∆ =⇒ MON ∧ Z is also immediate.
To see that DES =⇒ MON we proceed by induction on the height of M . The base step
is assured by Z. If M ≡M0M1, and N ≡ N0N1, then (M 6≡ N) =⇒ (Mi 6≡ Ni) for some
i. If pMq = pNq, then applying the i’th projection contradicts the inductive hypothesis.

3. Use translation to · and back.
4. Take

Ux = if Z?x then (ZKx)K S else As(U(P0x))(U(P1x))

where As is a combinator witnessing axiom A for the standard coding.
Then take

E = Es ◦ U, ∆ = ∆s ◦ U

where Es and ∆s are the evaluator and the discriminator for the the standard coding
which were constructed in part 1. J

3.2 Negative results
Notice that when the coding p·q is a constant map, then it satisfies CON but neither Z nor
E. Thus, as pointed out by an anonymous referee, two of Smullyan’s questions have trivial
answers.

A slight modification to the standard coding gives a counterexample that is also monic
and solvable.

I Theorem 9. There exists a map p·q which satisfies CON, MON, SOL, and P, yet neither
Z nor E. In particular, CON =/⇒ DES.

Proof. Define p·q by
pMq ≡ [ΩM ] if M ∈ {K, S}
pMNq ≡ PpMqpNq = [pMq, pNq]

CSL’11



464 Axiomatizing the Quote

Note that p·q is monic, solvable, and satisfies A, P, and Z? via the same combinators as the
standard coding. The combinator witnessing B must be modified ever so slightly:

Bx = if Z?x then (ZKx)ppKqq ppSqq else P(PpPq(B(P0x)))(B(P1x))

To finish the proof, note that if Z(λx.x(ΩM)) = K, then by Genericity Lemma [1, 14.3.24]
we have Z(λx.x(ΩM)) = Z(λx.x(ΩN)). Therefore, no term can satisfy axiom Z. By the
same token, no evaluator can exist, for its value on pKq would necessarily agree with that
on pSq. J

I Theorem 10. There exists a map p·q satisfying Z and P which does not satisfy A. Thus
DES =/⇒ CON. Furthermore, p·q is monic and solvable.

Proof. For M ∈ C, let s(M) denote the size of the syntax tree of M , defined inductively by
s(K) = s(S) = 1, s(MN) = 1 + s(M) + s(N). Certainly, s(M) can be easily computed from
M :

s̃x = if Z?x then c1 else c+c1(c+(s̃(P0x))(s̃(P1x)))

where cn is the n’th Church numeral, and c+ denotes addition.
For n ∈ N, let Hn be a lambda term encoding the first n values of the characteristic

function of the halting problem. Specifically, we put Hn = 〈h0, h1, . . . , hn−1〉 = λz.z~h, where

hi =
{

K ϕi(i)↓
K otherwise

For 0 ≤ k ≤ n, let Πn
k be such that Πn

k 〈M1, . . . ,Mn〉 = 〈M1, . . . ,Mk〉. For example, Πn
k

could be obtained by taking Πn
k = Πcnck, where

Πnk = λx.Bx(kB(λs.k〈I〉(nKs)))

(Here B is the composition combinator λxyz.x(yz).)
Finally, put

pMq = [M,Hs(M)] (1)

Trivially, MON and SOL are satisfied. To see that this coding satisfies axiom Z, we
simply compose the combinator Zb for the standard coding with the first pair-projection:

(λx.Zb(xK))pMq =
{

K M ≡ b
K otherwise

b ∈ {K, S}

For the ith projection, we use the standard combinator Pi with the auxiliary combinators
we defined above:

(λx.(λy.[y,Π(s̃(xK))(s̃y)(xK)])(Pi(xK)))pM0M1q

=(λy.[y,Π(s̃(pM0M1qK))(s̃y)(pM0M1qK)])(Pi(pM0M1qK))
=(λy.[y,Π(s̃(pM0M1qK))(s̃y)(pM0M1qK)])(Pi([M0M1, Hs(M0M1)]K))
=(λy.[y,Π(s̃(pM0M1qK))(s̃y)(pM0M1qK)])(PiM0M1)
=(λy.[y,Π(s̃M0M1)(s̃y)(Hs(M0M1))])Mi

=[Mi,Π(s̃M0M1)(s̃Mi)〈h0, . . . , hs(M0M1)−1〉]
=[Mi, 〈h0, . . . , hs(Mi)−1〉]
=pMiq



Andrew Polonsky 465

Hence (1) satisfies DES. But notice that

ϕe(e)↓ ⇐⇒ pKeIqKUee = K

Therefore, if there was a combinator for axiom A, we could decide the halting problem by
checking whether ce(ApKq)pIqKUee equals K or K. Such an A cannot exist. Thus p·q does not
satisfy CON. J

Notice that non-computability of the coding p·q was essential in the proof above. Indeed,
if the coding was computable, then axiom U−1 would be satisfied. By Proposition 8, part
4, the destructor axiom would make the coding complete. Then by part 3, it would satisfy
CON.

3.3 Positive results
The next natural question is what additional property could be sufficient for the equivalence
CON ⇐⇒ DES to hold. It turns out that existence of a discriminator goes quite far in this
direction.

I Theorem 11. ∆ ∧U−1 =⇒ U.

Proof. To construct U , we need to uniformly enumerate all combinators built up from K
and S. Recall that [Mn] is a uniform enumeration of {Mn} if for each k, there is some Xk

such that

[Mn] = [M0, [M1, [M2, . . . [Mk, Xk] . . . ]

That is, [Mn] is an infinite stream whose elements form the sequence {Mn}. The following
functions operate on streams:

Mapfm = [f(mK), Mapf(mK)]
Foldfm = f(mK)(Foldf(mK))

Mergemn = [mK, [nK, Merge(mK)(nK)]]

(These definitions implicitly make use of fixed-point combinators.)
Now we define the standard enumeration of CL terms to be

C = [K, [S, Fold Merge (Map (λs.Map s C) C)]]

It is straightforward to verify that for each M ∈ C there is a unique n such that M ≡ Cn,
where C = [C0, [C1, . . . ]]. But here we need the combinators to be quoted, hence we define

C = [K, [S, Fold Merge (Map (λs.Map (Ps) C) C)]]

where P is the pairing combinator from Definition 3. (Note that this notation is overloaded;
we don’t mean that C is the standard quote of C.)

Define

U0sx = if ∆x(U−1(sK)) then sK else U0(sK)x

U = U0C

Note that U0CpMq = Mn, where n = (µk)(M ≡Mk ∈ C). Thus

UpMq ≡M.

This completes the proof of the theorem. J

CSL’11



466 Axiomatizing the Quote

I Theorem 12. Suppose p·q is a coding which satisfies ∆. Then U−1 ⇐⇒ A. In particular,
CON ∧ ∆ =⇒ DES.

Proof. (⇒) By the theorem above and Proposition 8.3,
∆ ∧U−1 =⇒ CMP =⇒ CON ∧DES =⇒ A.

(⇐) Suppose ∆ and A are satisfied. Put

U−1x = if Z?x

then if ZKx then pKq else pSq
else A(U−1(P0x))(U−1(P1x))

By induction, U−1M = pMq, hence U−1 is satisfied. J

It remains to consider the question of reconstructing the quote from the Destructor
axioms. The problem with using the approach of Theorem 11, where we try to “guess” the
quote of a term by comparing every possibility to the input, is that we have no information
on the space of these possibilities. This is where the range test comes in. Recall that the
statement of this axiom is

∃ c.e. D ⊆ C, Range(p·q) ⊆ D, ∃RD ∈ C, ∀N ∈ D :

RDN =
{

K ∃M. N = pMq
K otherwise

With the axiom above, we state the final theorem.

I Theorem 13. DES ∧ RD =⇒ U−1.

Proof. As in the proof of Theorem 11, we construct U−1x by looking at all possibilities until
we find one that matches x, according to the standard discriminator. Let D enumerate a
superset of Range(p·q). We receive this fact as a uniform enumeration D = [Mn], such that
for each n one has RDMn = K if Mn = pNq and RDMn = K otherwise. Furthermore, every
quote pNq appears in the list D: ∀N∃n pNq = Mn.

As per Proposition 8.4, let U witness axiom U for p·q. Now put

U−1x = Fold (λht. if (RDh)(∆x(Uh))K then h else t) D

It is routine to verify that U−1M = pMq for each M . J

I Corollary 14. For a complete coding, one of the following suffices:

A ∧∆
U−1 ∧∆
U−1 ∧DES
RD ∧DES

Proof. By the theorems 8 through 13. J



Andrew Polonsky 467

4 An application: minimal codings

We conclude by applying the above results to a practical problem concerning minimal cod-
ings.

Below we define what is probably the simplest non-trivial coding in Combinatory Logic.
According to Barendregt, it was first suggested by Dana Scott in a letter to Troelstra. [4]

I Definition 15. (Scott’s coding) Let
pbq = Kb, b ∈ {K, S}
pMNq = SpMqpNq

However, it turns out that Scott’s coding is not preadmissible, i.e., does not satisfy DES.

I Proposition 16. Scott’s coding is not complete.

Proof. Observe that

pΩq = pSII(SII)q
= SpSIIqpSIIq

= λz.(pSIIqz)(pSIIqz)
= λz.(SpSIqpIqz)(SpSIqpIqz)
= λz.(pSIqz(pIqz))(pSIqz(pIqz))
= λz.(SpSqpIqz(KIz))(SpSqpIqz(KIz))
= λz.(pSqz(pIqz)I)(pSqz(pIqz)I)
= λz.(KSz(KIz)I)(KSz(KIz)I)
= λz.SII(SII)

is unsolvable. By Proposition 8.2, p·q does not satisfy Z. Then it also fails to satisfy DES,
and is therefore not complete. J

Scott’s coding is very elegant and minimalistic: the size of pMq is exactly double the
size of M , and the number of strong (combinatory) reductions required to bring pMqI to
M is exactly the size of M . It is a shame that this coding is not complete. Could there be
a substitute?

I Definition 17. Let the minimal coding be defined by
pbq = SI(Kb) = b, b ∈ {K, S}.
pMNq = SpMqpNq

Note that pMq = λz.Mz, where Mz is obtained from M by replacing every occurrence
of a basic combinator b with zb.

I Proposition 18. The minimal coding is complete.

Proof. The recursive definition makes it straightforward to construct pMq once the standard
code of M is given:

U−1(M) = if Z?M then M else S(U−1(P0M))(U−1(P1M))

(with Pi referring to the standard projections.)
For the opposite direction, we use the characterization result to infer the existence of a

combinator satisfying U. By Corollary 14, having already defined U−1, all that remains is
to satisfy DES.

CSL’11



468 Axiomatizing the Quote

Let W and Z be the following terms:

W = λwnm.[w, [mS, nS]]

Z = λx.[W, K〈x〉]

By induction we will show that

pMqZ = [W,M ′], with M ′S = pMq (2)

Base case: If b ∈ {K, S}, then pbqZ = Zb = [W, K〈b〉]. Furthermore,

K〈b〉S = 〈b〉 = pbq

Induction: We compute

pMNqZ = SpMqpNqZ

= pMqZ(pNqZ)
=IH [W,M ′][W,N ′]
= [W,N ′]WM ′

= WWN ′M ′

= [W, [M ′S, N ′S]]
=IH [W, [pMq, pNq]]

Furthermore,

[pMq, pNq]S = SpMqpNq = pMNq

Note that, with (2) verified, the proof of the induction step also gives us that pMNqZ =
[W, [pMq, pNq]]. Hence we can satisfy P by taking the terms Pi = λc.cZU1

1U1
i .

We can also separate application nodes from the leaves by the term

Z?c = cZU1
1(λmno.K)(KK)

Finally, Z? can be used to satisfy Z exactly as in the case of standard coding, by appealing
to Böhm’s theorem. (Using the fact that pKq and pSq are distinct, closed βη-normal forms.)

J

I Remark 19. The reader might wonder whether the minimal coding could be trimmed
even further by putting pbq = SIb for the basic combinators. It turns out that this
coding is complete as well, and for the uncoding map one can take Ux = xZU1

1, where
Zx = [W,x(K4I)(K3S)(K2K)] and Wwnm = [w, [m,n]]. However, since the evaluator is sig-
nificantly more complex, we propose to regard the previous definition as the minimal quote
for combinators.

References
1 Henk Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume 103 of Studies

in Logic and the Foundations of Mathematics. North-Holland, Amsterdam, 2nd edition,
1984.

2 Henk Barendregt. Discriminating Coded Lambda Terms. In A. Anderson and M. Zeleny,
editors, Logic, Meaning, and Computation: Essays in Memory of Alonzo Church, volume
305 of Synthese Library. Springer, 1994.



Andrew Polonsky 469

3 Henk Barendregt. Enumerators of Lambda Terms Are Reducing Constructively. In Dirk
van Dalen Festschrift, volume 5 of Questionnes Infinitae. Utrecht University, Department
of Philosophy, 1999.

4 Henk Barendregt, June 2011. Private communication.
5 Alessandro Berarducci and Corrado Böhm. A self-interpreter of lambda calculus having a

normal form. In Egon Börger, Gerhard Jäger, Hans Kleine Büning, Simone Martini, and
Michael M. Richter, editors, CSL, volume 702 of Lecture Notes in Computer Science, pages
85–99. Springer, 1992.

6 Douglas R. Hofstadter. Gödel, Escher, Bach: An Eternal Golden Braid. Basic Books, 20
anv edition, February 1999.

7 Stephen C. Kleene. Lambda-definability and recursiveness. Duke Mathematical Journal,
2:340–353, 1936.

8 John McCarthy. LISP 1.5 Programmer’s Manual. The MIT Press, 1962.
9 Torben Mogensen. Efficient Self-Interpretation in Lambda Calculus. Journal of Functional

Programming, 2:345–364, 1994.
10 Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In PLDI, pages 199–208,

1988.
11 Brian Cantwell Smith. Procedural Reflection in Programming Languages, Volume I. PhD

thesis, Massachusetts Institute of Technology, Cambridge, MA, 1982.
12 Raymond Smullyan. Diagonalization and Self-Reference. Oxford University Press, USA,

1994.

CSL’11


	Introduction
	Coding in mathematical logic
	Coding of lambda terms

	Setup
	Basic concepts
	Axioms for the quote operator

	Results
	Elementary properties
	Negative results
	Positive results

	An application: minimal codings

