
Synthesis from Probabilistic Components∗

Yoad Lustig, Sumit Nain, and Moshe Y. Vardi

Department of Computer Science
Rice University, Houston, TX 77005, USA
yoad.lustig@gmail.com , nain@cs.rice.edu , vardi@cs.rice.edu

Abstract
Synthesis is the automatic construction of a system from its specification. In classical synthesis
algorithms, it is always assumed that the system is “constructed from scratch” rather than com-
posed from reusable components. This, of course, rarely happens in real life, where almost every
non-trivial commercial software system relies heavily on using libraries of reusable components.
Furthermore, other contexts, such as web-service orchestration, can be modeled as synthesis of
a system from a library of components. Recently, Lustig and Vardi introduced dataflow and
control-flow synthesis from libraries of reusable components. They proved that dataflow syn-
thesis is undecidable, while control-flow synthesis is decidable. In this work, we consider the
problem of control-flow synthesis from libraries of probabilistic components. We show that this
more general problem is also decidable.

1998 ACM Subject Classification D.2.4 Software/Program Verification

Keywords and phrases Temporal synthesis, probabilistic components

Digital Object Identifier 10.4230/LIPIcs.CSL.2011.412

1 Introduction

Hardware and software systems are rarely built from scratch. Almost every non-trivial system
is based on existing components. A typical component might be used in the design of multiple
systems. Examples of such components include function libraries, web APIs, and ASICs.
Consider the mapping application in a typical smartphone. Such an application might call
the location service provided by the phone’s operating system to get the user’s co-ordinates,
then call a web API to obtain the correct map image tiles, and finally call a graphics library
to display the user’s location on the screen. None of these components are exclusive to the
mapping application and all of them are commonly used by other applications.

The construction of systems from reusable components is an area of active research. Some
examples of important work on the subject can be found in Sifakis’ work on component-
based construction [15], and de Alfaro and Henzinger’s work on “interface-based design” [7].
Furthermore, other situations, such as web-service orchestration [2], can be viewed as the
construction of systems from libraries of reusable components.

Synthesis is the automated construction of a system from its specification. In contrast
to model checking, which involves verifying that a system satisfies the given specification,
synthesis aims to automatically construct the required system from its formal specification.
The modern approach to temporal synthesis was initiated by Pnueli and Rosner who
introduced linear temporal logic (LTL) synthesis [13]. In LTL synthesis, the specification
is given in LTL and the system constructed is a finite-state transducer modeling a reactive

∗ Work supported in part by NSF grants CCF-0728882, and CNS 1049862, by BSF grant 9800096, and
by gift from Intel.

© Yoad Lustig, Sumit Nain and Moshe Y. Vardi;
licensed under Creative Commons License NC-ND

Computer Science Logic 2011 (CSL’11).
Editor: Marc Bezem; pp. 412–427

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2011.412
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Yoad Lustig, Sumit Nain, and Moshe Y. Vardi 413

system. In this setting it is always assumed that the system is “constructed from scratch”
rather than “composed” from existing components. Recently, Lustig and Vardi [11] introduced
the study of synthesis from reusable components. The use of components abstracts much of
the detailed behavior of a sub-system, and allows one to write specifications that mention
only the aspects of sub-systems relevant for the synthesis of the system at large.

A major concern in the study of synthesis from reusable components is the choice of a
mathematical model for the components and their composition. The exact nature of the
reusable components in a software library may differ. One finds in the literature many
different types of components; for example, function libraries (for procedural programming
languages) or object libraries (for object-oriented programming languages). Indeed, there
is no single “right” model encompassing all possible facets of the problem. The problem of
synthesis from reusable components is a general problem to which there are as many facets
as there are models for components and types of composition [15].

As a basic model for a component, following [11], we abstract away the precise details
of the component and model a component as a transducer, i.e., a finite-state machine with
outputs. Transducers constitute a canonical model for reactive components, abstracting
away internal architecture and focusing on modeling input/output behavior. In [11], two
models of composition were studied. In dataflow composition, the output of one component
is fed as input to another component. The synthesis problem for dataflow composition was
shown to be undecidable. In control-flow composition control is held by a single component
at every point in time. The synthesis problem can then be viewed as constructing a
supervisory transducer that switches control between the component transducers. Control-
flow composition is motivated by software (and web services) in which a single function is in
control at every point during the execution. LTL synthesis in this setting was shown in [11]
to be 2EXPTIME-complete, just like classical LTL synthesis [13].

In this paper, we extend the control-flow synthesis model of [11] to probabilistic com-
ponents, which are transducers with a probabilistic transition function. This is a well
known approach to modeling systems where there is probabilistic uncertainty about the
results of input actions. Intuitively, we aim at constructing a reliable system from unreliable
components. There is a rich literature about verification and analysis of such systems,
cf. [16, 5, 6, 17], as well about synthesis in the face of probabilistic uncertainty [1]. The
introduction of probability requires us to use a probabilistic notion of correctness; here we
choose the qualitative criterion that the specification be satisfied with probability 1, leaving
the study of quantitative criteria to future work.

Here, our focus is on proving decidability, rather than on establishing precise complexity
bounds, leaving the study of precise bounds to future work. Consequently, we abstract
away from the details of the specification formalism and assume that the specification is
given in terms of deterministic parity word automata (DPW). This allows us to consider all
ω-regular properties. We define and study the DPW probabilistic realizability and synthesis
problems, where the input is a library L of probabilistic components and a DPW A, and the
question is whether one can construct a finite system S from the components in L, such that,
regardless of the external environment, the traces generated by the system S are accepted
by A with probability 1. Each component in the library can be used an arbitrary number of
times in the construction and there is no apriori bound on the size of the system obtained.
The technical challenge here is dealing with the finiteness of the system under construction.
In [11], as well as in [13], one need not deal with finiteness from the start. In fact, one
can test realizability without being concerned with finiteness of the constructed system, as
finiteness is a consequence of the construction. This is not the case here, where we need to

CSL’11

414 Synthesis from Probabilistic Components

deal with finiteness from the start. Nevertheless, we are able to show that the problem is in
2EXPTIME.

Before tackling the full problem, we first consider a restricted version of the problem,
where the specification is given in the form of a parity index on the states of the components,
and the composed system must satisfy the parity condition. We call this the embedded
parity realizability problem. We solve this problem and then show how solving the embedded
parity realizability problem directly allows us to solve the more general DPW probabilistic
realizability problem as well. The key idea here is that by taking the product of the
specification DPW with each of the components, we can obtain larger components each of
whose states has a parity associated with it. The challenge in completing the reduction
is the need to generate a static composition, which does not depend on the history of the
computation. Here we use ideas about synthesis with incomplete information from [10].

The paper is self-contained, except for certain technical proofs that have been omitted to
save space; a longer version is posted on the authors’ home pages.

2 Preliminaries

Given a set D of directions, a D-tree is a set T ⊆ D∗ such that if x · c ∈ T , where x ∈ D∗
and c ∈ D, then also x ∈ T . For every x ∈ T , the words x · c, for c ∈ D, are the successors of
x. A path π of a tree T is a set π ⊆ T such that ε ∈ π and for every x ∈ π, either x is a leaf
or there exists a unique c ∈ D such that x · c ∈ π. The full D-tree is D∗. Given an alphabet
Σ, a Σ-labeled D-tree is a pair 〈T, τ〉, where T is a tree and τ : T → Σ maps each node of T
to a letter in Σ. A subtree of 〈D∗, τ〉, is a Σ-labeled D-tree 〈T, τ ′〉, where τ ′(x) = τ(x), for
all x ∈ T . For a node x ∈ D∗, the full subtree at x is the subtree whose set of nodes is x ·D∗.

A deterministic transducer is a tuple B = 〈ΣI ,ΣO, Q, q0, δ, L〉, where: ΣI is a finite input
alphabet, ΣO is a finite output alphabet, Q is a finite set of states, q0 ∈ Q is an initial state,
L : Q→ ΣO is an output function labeling states with output letters, and δ : Q× ΣI → Q

is a transition function. We define δ∗ : Σ∗I → Q as follows: δ∗(ε) = q0 and for x ∈ Σ∗I and
a ∈ ΣI , δ∗(x · a) = δ(δ∗(x), a). We denote by tree(B), the ΣO-labeled ΣI -tree 〈Σ∗I , τ〉, where
for all x ∈ Σ∗I , we have τ(x) = L(δ∗(x)). We say tree(B) is the unwinding of B. A Σ-labeled
D-tree T is called regular, if there exists a deterministic transducer C such that T = tree(C).

Given a directed graph G = (V,E), a strongly connected component of G is a subset U of
V , such that for all u, v ∈ U , u is reachable from v. We can define a natural partial order on
the set of maximal strongly connected components of G as follows: U1 ≤ U2 if there exists
u1 ∈ U1 and u2 ∈ U2 such that u1 is reachable from u2. Then U ⊆ V is an ergodic set of G
if it is a minimal element of the partial order.

A probability distribution on a finite set X is a function f : X → [0, 1] such that∑
x∈X f(x) = 1. We use Dist(X) to denote the set of all probability distributions on set

X. A probabilistic transducer, is a tuple T = 〈ΣI ,ΣO, Q, q0, δ, F, L〉, where: ΣI is a finite
input alphabet, ΣO is a finite output alphabet, Q is a finite set of states, q0 ∈ Q is an initial
state, δ : (Q− F)× ΣI → Dist(Q) is a probabilistic transition function, F ⊆ Q is a set of
exit states, and L : Q→ ΣO is an output function labeling states with output letters. Note
that there are no transitions out of an exit state. If F is empty, we say T is a probabilistic
transducer without exits.

Given a probabilistic transducerM = (ΣI ,Σo, Q, q0, δ, F, L), a strategy forM is a function
f : Q∗ → Dist(ΣI) that probabilistically chooses an input for each sequence of states. A
strategy is memoryless if the choice depends only on the last state in the sequence. A
memoryless strategy can be written as a function g : Q→ Dist(ΣI). A strategy is pure if

Yoad Lustig, Sumit Nain, and Moshe Y. Vardi 415

the choice is deterministic. A pure strategy is a function h : Q∗ → ΣI , and a memoryless
and pure strategy is a function h : Q→ ΣI .

A strategy f along with a probabilistic transducer M , with set of states Q, induces a
probability distribution on Qω, denoted µf . By standard measure theoretic arguments, it
suffices to define µf for the cylinders of Qω, which are sets of the form β ·Qω, where β ∈ Q∗.
First we extend δ to exit states as follows: for a ∈ ΣI , q ∈ F , q′ ∈ Q, δ(q, a)(q) = 1 and
δ(q, a)(q′) = 0 when q′ 6= q. Then we define µf (q0 · Qω) = 1, and for β ∈ Q∗, q, q′ ∈ Q,
µf (βqq′ ·Qω) = µf (βq)(

∑
a∈ΣI

f(βq)(a)× δ(q, a)(q′)). These conditions say that there is a
unique start state, and the probability of visiting a state q′, after visiting βq, is the same as
the probability of the strategy picking a particular letter multiplied by the probability that
the transducer transitions from q to q′ on that input letter, summed over all input letters.

Let M be a probabilistic transducer, Q be its set of states, and f be a memoryless
strategy for M . We define the graph induced by f on Q, denoted by GM,f , as the directed
graph (Q,E), where (q1, q2) ∈ E if

∑
a∈ΣI

f(q1)(a) δ(q1, a)(q2) > 0. That is, there is an edge
from q1 to q2 if the transducer can transition from the state q1 to the state q2 on an input
letter that the strategy chooses with positive probability. Given q1, q2 ∈ Q, we say that q2 is
reachable from q1 if there is a path from q1 to q2 in GM,f . We say a state is ergodic if it
belongs to some ergodic set of GM,f . An ergodic set is reachable if there is a path from the
start state to some state in the ergodic set. A state q of M is reachable under f , if there is a
path in GM,f from q0 to q.

A library is a set of probabilistic transducers that share the same input and output
alphabets. Each transducer in the library is called a component. Given a finite set of
directions D, we say a library L has width D, if each component in the library has exactly
|D| exit states. Since we can always add dummy unreachable exit states to any component,
we assume, w.l.o.g., that all libraries have an associated width, usually denoted D. In the
context of a particular component, we often refer to elements of D as exits, and subsets of D
as sets of exits. Given a component M from library L, and a strategy f for M , we say that
the exit i ∈ D is selected by f , if the ith exit state of M is reachable under f .

An index function for a transducer is a function that assigns a natural number, called a
priority index, to each state of the transducer. An index function for a library is a function
that assigns a priority to every state of every component in the library. Given an index
function α for a library L, we define max(α) to be the highest priority assigned by α. We
can assume, w.l.o.g., that max(α) is not larger than twice the maximal number of states in
the components of the library. Given a transducer M , index function α, and a strategy f
for M , we say f visits priority p if there exists a state q of M such that α(q) = p and q is
reachable under f .

3 Control-flow Composition from Libraries

We first informally describe our notion of control-flow composition of components from a
library. The components in the composition take turns interacting with the environment,
and at each point in time, exactly one component is active. When the active component
reaches an exit state, control is transferred to some other component. Thus, to define a
control flow composition, it suffices to name the components used and describe how control
should be transferred between them. We use a deterministic transducer to define the transfer
of control. Each library component can be used multiple times in a composition, and we
treat these occurrences as distinct component instances. We emphasize that the composition
can contain potentially arbitrarily many repetitions of each component inside it. Thus, the

CSL’11

416 Synthesis from Probabilistic Components

size of the composition, a priori, is not bounded. Note that our notion of composition is
static, where the components called are determined before run time, rather than dynamic,
where the components called are determined during run time.

Let L be a library with width D. A composer over L is a deterministic tranducer
C = (D,L,M,M0,∆, λ). Here M is an arbitrary finite set of states. There is no bound
on the size of M. Each Mi ∈ M is the name of an instance of a component from L and
λ(Mi) ∈ L is the type of Mi. We use the following notational convention for component
instances and names: the upright letter M always denotes component names (i.e. states
of a composer) and the italicized letter M always denotes the corresponding component
instances (i.e. elements of L). Further, for notational convenience we often write Mi directly
instead of λ(Mi). Note that while each Mi is distinct, the corresponding components Mi

need not be distinct. Each composer defines a unique composition over components from
L. The current state of the composer corresponds to the component that is in control. The
transition function ∆ describes how to transfer control between components: ∆(M, i) = M′
denotes that when the composition is in the ith final state of component M it moves to the
start state of component M ′. A composer can be viewed as an implicit representation of a
composition. We give an explicit definition of composition below.

I Definition 1 (Control-flow Composition). Let C = (D,L,M,M0,∆, λ) be a composer over
library L with width D, such that M = {M0, . . .,Mn}, λ(Mi) = (ΣI ,ΣO, Qi, q

i
0, δi, Fi, Li)

and Fi = {qix : x ∈ D}. The composition defined by C, denoted TC , is a probabilistic
transducer 〈ΣI ,ΣO, Q, q0, δ, ∅, L〉, where Q =

⋃n
i=0(Qi × {i}), q0 = 〈q0

0 , 0〉, L(〈q, i〉) = Li(q),
and the transition function δ is defined as follows: For σ ∈ ΣI , 〈q, i〉 ∈ Q and 〈q′, j〉 ∈ Q,

1. If q ∈ Qi \ Fi, then

δ(〈q, i〉, σ)(〈q′, j〉) =
{
δi(q, σ)(q′) if i = j

0 otherwise

2. If q = qix ∈ Fi, where ∆(Mi, x) = Mk, then

δ(〈q, i〉, σ)(〈q′, j〉) =
{

1 if j = k and q′ = qk0

0 otherwise

Note that the composition is a probabilistic transducer without exits. When the composi-
tion is in a state 〈q, i〉 corresponding to a non-exit state q of component Mi, it behaves like
Mi. When the composition is in a state 〈qf , i〉 corresponding to an exit state qf of component
Mi, the control is transferred to the start state of another component as determined by the
transition function of the composer. Thus, at each point in time, only one component is
active and interacting with the environment.

4 Synthesis for Embedded Parity

In this section we consider a simplified version of the general synthesis problem, where each
state of a component in the library has a priority associated with it and the specification to
be satisfied is that the highest priority visited i.o. must be even with probability 1.

Let M be a probabilistic tranducer and α be an index function. A strategy f for M is
winning for the environment if with positive probability the highest priority visited infinitely
often (i.o.) is odd. We say that M satisfies α if there exists no winning strategy for the
environment. Given a composer C over library L, we say that C satisfies α if TC satisfies α.

Yoad Lustig, Sumit Nain, and Moshe Y. Vardi 417

Given a library L with width D, an exit control relation is a set R ⊆ D×L. We say that
a composer C = (D,L,M,M0,∆, λ) over L is compatible with R, if the following holds: for
all M,M′ ∈M and i ∈ D, if ∆(M, i) = M′ then (i,M ′) ∈ R. Thus, each element of R can be
viewed as a constraint on how the composer is allowed to connect components.

I Definition 2. The embedded parity realizability problem is: Given a library L with width
D, an exit control relation R for L, and an index function α for L, decide whether there
exists a composer C over L, such that C satisfies α and C is compatible with R. If such a
composer exists, we say that L realizes α under R. The embedded parity synthesis problem is
to find such a composer C if it exists.

The following theorem allows us to restrict attention to memoryless strategies. It states
that if a winning strategy exists, then a memoryless winning strategy must also exist. Here
we give a direct combinatorial proof, but we note that the result can also be obtained by
adapting the methods in [4], where a similar result was proved for 2–1/2 player stochastic
parity games by Chatterjee et al.

I Theorem 3. Given a probabilistic transducer M , and index function α, if there exists
a winning strategy for the environment then there exists a pure and memoryless winning
strategy.

Memoryless strategies are important because they induce an ergodic structure on the set
of states. Ergodic sets are useful because they enable us to replace probabilistic reasoning
with combinatorial reasoning. In particular, they have the following crucial properties: (a) the
suffix of a path is contained in some ergodic set with probability 1, and (b) the suffix of a
path is contained in a proper subset of an ergodic set with probability zero [9]. This allows
us to define the winning strategy condition in terms of graph reachability.

I Lemma 4. Let M be a probabilistic transducer and f be a memoryless strategy for M .
Then f is winning for the environment iff GM,f has a reachable ergodic set whose highest
priority is odd.

When the underlying probabilistic transducer is a composition, ergodic sets acquire
additional structure. Given a composer C and a memoryless strategy f for TC , if a reachable
ergodic set X of GTC ,f contains some state from a component M of TC , then either X is
contained in M or all the reachable states of M are contained in X. Formally:

I Lemma 5. Let C = (D,L,M,M0,∆, λ) be a composer over L and f be a memoryless
strategy for TC . Let Mi ∈M and Qi be the state space of Mi. Let X be a reachable ergodic
set of GTC ,f such that X ∩ (Qi×{i}) 6= ∅. Then either X ⊆ Qi×{i} or (Qi×{i})∩Y ⊆ X,
where Y is the set of states of TC that are reachable under f .

Proof. Assume that X ∩ (Qi × {i}) 6= ∅ and X is not contained in Qi × {i}. Let (q, i) ∈
X ∩ (Qi×{i}) and (q′, j) ∈ X− (Qi×{i}), for some j 6= i. Since X is ergodic, there is a path
π in GTC ,f from (q′, j) to (q, i). Let s be the first state along π such that s = (q′′, i) ∈ Qi×{i}.
We claim that q′′ = qi0, where qi0 is the start state of Mi. Let s′ = (q′′′, k), where k 6= i, be
the predecessor of s in π. By the definition of GTC ,f , there is an edge from s′ to s only if TC
can transition from s′ to s on some input with positive probability. By Definition 1, TC can
transition from (q′′′, k) to (q′′, i) only if q′′′ is a final state of Mk and q′′ is the initial state of
Mi. Thus (qi0, i) is in X.

Since X is an ergodic set, if it contains a state s of TC , then it also contains all states
reachable under f from s. By definition, every state in (Qi × {i}) ∩ Y is reachable under f
from (qi0, i). Since X contains (qi0, i), it also contains all states in (Qi × {i}) ∩ Y . J

CSL’11

418 Synthesis from Probabilistic Components

Given a graph G, each of whose vertices is assigned a priority, we say that G has the odd
ergodic property if it has a reachable ergodic set whose highest priority is odd. Consider a
composer C and a memoryless strategy f for TC . Then, by Lemma 4, f is winning for the
environment iff GTC ,f has the odd ergodic property. So the probabilistic notion of winning
strategy is reduced to a combinatorial one. However, the graph GTC ,f is very large as it
contains all the internal states of each component explicitly. Further, to show that C satisfies
α, we have to consider every possible memoryless strategy for C. We tackle this complexity
by simplifying the description of a strategy f and graph GTC ,f so as to abstract away the
inner states of components and the choices that f makes on those inner states. LetM be
the state space of C. We aim to replace GTC ,f by a simpler graph G′, whose set of vertices
isM, such that the odd ergodic property is preserved. We first discuss this transformation
informally, and then give formal definitions and proofs.

Let M be a component of TC . If some reachable ergodic set of GTC ,f lies entirely within
M , we say M is a sink. When the highest priority in the ergodic set is odd (resp. even)
we say M is an odd (resp. even) sink for f . Note that a component can be both an odd
and an even sink for a given strategy. Intuitively, we aim to replace the subgraph of GTC ,f

that corresponds to states of M by a single new vertex xM to obtain a new graph G′ and
assign a suitable priority to xM such that the odd ergodic property is preserved by the
transformation. Now if M is not a sink, then, by Lemma 5, xM lies in a reachable ergodic
set of G′ iff all reachable states of M lie in a reachable ergodic set of GTC ,f . In this case, we
can simply assign the highest reachable priority in M to xM and the odd ergodic property is
preserved. If, however, M is a sink, then the collapse of M to a single vertex might introduce
new ergodic sets in the graph. That is, xM might lie in an ergodic set of G′ which has no
analogue in GTC ,f . We then have to choose the priority of xM such that the odd ergodic
property is still preserved. There are two cases to consider:

M is an odd sink for f . Then, by Lemma 4, f is winning for the environment. Let fM
denote f restricted to the states in M . Then fM is a memoryless strategy for M that is
winning for the environment, and in every composition involving M , the environment
can simply play fM on the states in M to win. So a component that is an odd sink is
not useful for synthesizing compositions. We note that it is easy to check for and remove
any odd sinks from L in a preprocessing step before attempting synthesis. Checking
whether a particular component is a sink is equivalent to model checking Markov decision
processes and can be done in polynomial time [16]. In the rest of the paper, we assume
that the given library L does not contain components that are odd sinks.

M is an even sink for f but not an odd sink for f . Then, by Lemma 5, every reachable
state in M either lies in an even sink or does not lie in an ergodic set. So no reachable
state in M is part of an ergodic set with odd highest priority. Thus collapsing M to xM
does not remove any ergodic sets with odd highest priority. It only remains to consider
the possibility that the transformation can introduce a new ergodic set whose highest
priority is odd. We can avoid this by assigning a priority of 2 max(α) to xM , where
max(α) is the highest parity assigned by the index function α. Then if xM is part of
a reachable ergodic set X ′ in G′, then X ′ has highest priority 2 max(α), which is even.
Thus the odd ergodic property is preserved.

In formalizing the approach given above, instead of explicitly transforming GTC ,f into a
more abstract graph, it is simpler to directly define a suitable graph on the state spaceM of
the composer C such that the odd ergodic property is preserved. Just as a memoryless strategy
f applied to the composition TC gives rise to the graph GTC ,f , we define a combinatorial

Yoad Lustig, Sumit Nain, and Moshe Y. Vardi 419

object, called a choice function, such that choice function g together with composer C gives
rise to a graph GC,g.

I Definition 6 (Choice Function). Given a library L with width D and index function
α, we define the set LABELS(L) ⊆ 2D × {1, . . ., 2 max (α)} × L as follows: (X, j,M) ∈
LABELS(L) iff there exists a memoryless strategy f for M such that

X ⊆ D is the set of exits of selected by f in M .
If M is an even sink for f , then j = 2 max(α).
Otherwise j is the highest priority visited by f in M .

Given a composer C = (D,L,M,M0,∆, λ) over L, a choice function for C, is a function
g : M → 2D × {1, . . ., 2 max (α)}, such that, for all Mi ∈ M, (g(Mi),Mi) ∈ LABELS(L).
The graph induced by g on C, denoted GC,g, is the directed graph (M, E), where (M1,M2) ∈ E
if ∆(M1, i) = M2 for some i ∈ D such that i ∈ X where g(M1) = (X, j). The priority of a
vertex M ∈ M of GC,g is j where g(M) = (X, j). We say that g has rank r, if GC,g has a
reachable ergodic set whose highest priority is r.

The size of the set LABELS(L) is at most max(α)|L|2|D|. For an arbitrary triple
(X, j,M), we can check whether (X, j,M) ∈ LABELS(L) in time polynomial in |M | using
standard techniques for solving Markov decision processes [16]. Thus LABELS(L) can be
computed in time exponential in the size of L.

I Theorem 7. Let C be a composer over L. Then there exists a strategy for TC that is
winning for the environment iff there exists a choice function for C that has an odd rank.

Proof. Let C = (D,L,M,M0,∆, λ). Let Qi be the state space of Mi = λ(Mi), for Mi ∈M,
and let Q =

⋃
(Qi × {i}) be the state space of TC .

Only If: Assume there exists a strategy for TC that is winning for the environment.
Then, by Theorem 3, there exists a memoryless winning strategy f . We construct a choice
function g for C as follows: for all Mi ∈ M, g(Mi) = (X, p), where X is the set of exits of
Mi selected by f , and p = 2 max(α) if Mi is an even sink for f and otherwise p is the highest
priority in Mi visited by f . Since f is winning, GTC ,f has a reachable ergodic set H with
odd highest priority r. Consider the set H ⊆M defined as follows: for all Mi ∈M, Mi ∈ H
if (Qi × {i}) ∩ H 6= ∅. Thus, H contains a state of the composer C if the corresponding
component of TC overlaps with the ergodic set H. Since L contains no components that are
odd sinks, and even sinks can not be a part of an ergodic set whose highest priority is odd,
H must contain all the reachable states in each component named in H.

We claim that H is an ergodic set of GC,g. We first show that H is strongly connected.
Let Mi and Mk be in H. Since all the reachable states of Mi and Mk are contained in H,
in particular their start states are also contained in H. Let these be qi and qk respectively.
Then there is a path in GTC ,f from (qi, i) to (qk, k) because H is an ergodic set of GTC ,f .
Consider the path π from (qi, i) to (qk, k) that contains the least number of exit states. Let
the length of π be n and let (q′i, i) be the first exit state along π. Suppose ∆(Mi, x) = Mj ,
where q′i is the exit state of Mi in direction x, and let qj be the start state of Mj . Then,
if g(Mi) = (X, p), we have x ∈ X, so there is an edge from Mi to Mj in GC,g, and the
immediate next state after (q′i, i) in π is (qj , j). The suffix of π starting from (qj , j) is a
path π′ from (qj , j) to (qk, k) of length less than n. Further, by construction, among all such
paths it has the least number of exit states. Assume, by the induction hypothesis, there is a
path from Mj to Mk in GC,g. Since (Mi,Mj) is also an edge in GC,g, therefore, by induction,

CSL’11

420 Synthesis from Probabilistic Components

there is a path from Mi to Mk in GC,g. Mi and Mk were chosen arbitrarily in H. So H is
strongly connected.

Next, we show that there are no edges that leave H. Assume there is some edge in GC,g
from a vertex Mi ∈ H to a vertex Mj ∈ M−H. Let g(Mi) = (X, p′). Then there exists
x ∈ X such that ∆(Mi, x) = Mj . Let (q′, i) be the exit state of Mi in direction x. Then
(q′, i) is reachable under f and so is (qj , j), where qj is the start state of Mj . Therefore, there
is an edge in GTC ,f from (q′, i) ∈ H to (qj , j) 6∈ H, which contradicts that H is an ergodic
set. Thus no edges leave H in GC,g and H is ergodic.

Finally, we show that the highest priority in H is r. By construction of g, since H does
not contain any even sinks, the priority of a vertex Mi in H is the highest priority visited in
Mi by f . Thus, the highest priority in H is at most the highest priority in H, which is r.
Let (q, j) ∈ H be such that q has priority r. Then the highest priority visited by f in Mj is
r, so g(Mj) = (X, r) for some X ⊆ D. Since Mj ∈ H, the highest priority in H is r, and g
has rank r.

If: Now assume that g is a choice function for C with rank p, for some odd p ≤ max(α).
Then, by the definition of choice function, for all Mi ∈M, there exists a memoryless strategy
fi for Mi, such that g(Mi) = (Xi, pi) where Xi is the set of exit directions of Mi under fi,
and pi = 2 max(α) if Mi is an even sink for fi and otherwise pi is the highest priority visited
by fi.

We define a memoryless strategy f for TC as follows: for all q ∈ Qi, f(q, i) = fi(q). Since
g has rank p, there exists a reachable ergodic set H ⊆ M of GC,g with highest priority p.
Consider the set H = {(q, i) : q ∈ Qi,Mi ∈ H}, which consists of all states in all components
corresponding to the set H. Let Hf be the subset of H that is reachable under f from the
start state of TC . We first show that Hf is strongly connected. Let (qi, i) and (qk, k) be two
arbitrary states in Hf . Then qi is a state of Mi and qk is a state of Mk. Further, Mi and Mk

are both in H. We have the following two cases:

1. qi is the start state of Mi. Consider the shortest path in GC,g from Mi to Mk. Such a
path exists because H is an ergodic set of GC,g. Let the length of the path be n and let
Mj be the successor of Mi in this path. So there is path of length n− 1 in GC,g from Mj

to Mk. Now, by the definition of GC,g, there exists x ∈ D such that ∆(Mi, x) = Mj and
the exit state in direction x is reachable from the start state of Mi under fi. Thus there
is a path in GTC ,f from (qi, i) to (qj , j) where qj is the start state of Mj . By induction,
there is a path in GTC ,f from (qi, i) to (qk, k).

2. qi is not the start state of Mi. Let g(Mi) = (X, p′), where X ⊆ D. Since p is the highest
priority in H and Mi ∈ H, we have p′ ≤ p ≤ max(α). Thus p′ 6= 2 max(α) and so Mi is
not an even sink for f . Also, the library L is assumed to have no components that are
odd sinks. Thus, some exit of Mi must be reachable from qi under fi. Let this exit be in
direction x ∈ D, and let ∆(Mi, x) = Mj . Then there is a path in GTC ,f from (qi, i) to
(qj , j) where qj is the start state of Mj . Now, since qj is a start state, by the previous
case, there is a path from (qj , j) to (qk, k) in GTC ,f . So there is a path from (qi, i) to
(qk, k) and therefore Hf is strongly connected.

Assume that some edge in GTC ,f leaves Hf . Let there be an edge between (q, i) ∈ Hf

and (q′, j) ∈ Q −Hf . Now Mj can not belong to H because otherwise (q′, j) would be in
Hf . So we have i 6= j and (q, i) must be an exit state of Mi. Therefore there is an edge in
GC,g from Mi ∈ H to Mj ∈M−H, which contradicts that H is ergodic. Thus Hf is also an
ergodic set.

Yoad Lustig, Sumit Nain, and Moshe Y. Vardi 421

By Lemma 4, it suffices to show that the highest priority in Hf is odd. Now p is the
highest priority in H, and p is odd, which means p 6= 2 max(α). So there must exist Mi ∈ H
such that some state q in Mi has priority p and is reachable under fi. Then (q, i) is in Hf

and so Hf has highest priority at least p. Assume some state (q′, j) in Hf has priority p′ > p.
Since q′ is reachable under fj , therefore, we have g(Mj) = (X, p′′), for some X ⊆ D and
p′′ ≥ p′ > p. This contradicts the fact that Mj ∈ H. Thus the highest priority in the ergodic
set Hf is p, which is odd. J

Let Γ = LABELS(L). A composer and choice function pair has a natural representation
as a regular Γ-labeled D-tree. Given a composer C = (D,L,M,M0,∆, λ) over L, and a
choice function g for C, we denote by tree(C, g), the regular Γ-labeled full D-tree 〈D∗, τ〉,
where for all x ∈ D∗, we have that τ(x) = (g(∆∗(x)), λ(∆∗(x))). Thus tree(C, g) is the
tree obtained as a result of adding labels to tree(C) such that a node x corresponding to
Mi ∈M that is labeled with Mi in tree(C) is labeled with (X, j,Mi) where (X, j) = g(Mi).
As we show in the next lemma, the mapping is reversible, in the sense that given a regular
Γ-labeled D-tree, we can obtain a composer and choice function in a natural way.

I Lemma 8. Let T be a regular Γ-labeled full D-tree. Then there exist a composer C over L
and a choice function g for C such that tree(C, g) = T .

In light of Lemma 8, we can represent an arbitrary regular Γ-labeled full D-tree as
tree(C, g) for some composer C over L and some choice function g for C. Similarly, we can
represent an arbitrary regular L-labeled full D-tree as tree(C) for some composer C over L.

Since the question of whether a given composition satisfies α boils down to whether its
composer has a choice function that has an odd rank, we find it useful to characterize regular
trees that correspond to choice functions having a particular rank (see [14] for related results).
First, we inductively define the set of marked nodes of a Γ-labeled D-tree as follows: the
root is always marked, and a node y · i, where i ∈ D and y ∈ D∗, is marked if y is marked
and i ∈ X, where (X, j,M) is the label on y · i.

I Lemma 9. Let C = (D,L,M,M0,∆, λ) be a composer over library L with width D, α be
an index function for L, g be a choice function for C, and p ≤ max (α). Then g has rank p
iff tree(C, g) has a full subtree T such that:
1. The root of T is marked.
2. Every node in T that is marked has priority label at most p.
3. From each marked node in T there is a path in T to a marked node with priority label p.

The conditions given by Lemma 9 can be checked by a suitable tree automaton as follows:

I Lemma 10. Let L be a library with width D and let p ≤ k. Then there exists an
nondeterministic Büchi tree automaton (NBT) Ap such that Ap accepts a Γ-labeled regular
D-tree T iff T = tree(C, g) for some composer C over L and choice function g with rank p.

Proof. By Lemma 8 and 9, it suffices to construct an NBT Ap such that Ap accepts a tree
T ′ iff T ′ has a full subtree T that satisfies the three conditions in Lemma 9. For simplicity,
the automaton is defined over binary trees, where D = {0, 1}, but the definition can be easily
extended to n-ary trees.

Let Ap = (Γ, Q, q0, δ, β). We define Q = {search, cut,wait, reach, visit, err}, q0 = search
and β = {visit,wait, cut}. The states of the automaton can then be described as follows:

search: In this state the automaton is searching for the root of the special subtree.
cut: This represents a branch not taken.

CSL’11

422 Synthesis from Probabilistic Components

wait and reach: In these states the automaton has entered the subtree and is looking for
nodes labeled with p.
visit: In this state the automaton has just visited a node with label p in the subtree.
err: This is an error state that is entered if there is a label higher than p in the subtree.
The transition function δ is defined as follows: For all ρ = (X, j,Mi) ∈ Γ,

1. For q ∈ {cut, err}, δ(q, ρ) = {(q, q)}.
2. For q = search

δ(q, ρ) =

{(search, cut), (wait, cut)} if X = {0}
{(cut, search), (cut,wait)} if X = {1}
{(search, cut), (cut, search), (wait,wait)} if X = {0, 1}

3. For q ∈ {wait, reach, visit}, if j > p then δ(q, ρ) = {(err, err)}, if j = p then

δ(q, ρ) =

{(visit, cut)} if X = {0}
{(cut, visit)} if X = {1}
{(visit, visit)} if X = {0, 1}

and if j < p then

δ(q, ρ) =

{(reach, cut)} if X = {0}
{(cut, reach)} if X = {1}
{(reach,wait), (wait, reach)} if X = {0, 1}

In the first stage, Ap guesses the location of the root of the special subtree T . While
searching for this root, Ap remains in the state search. When it encounters the root, it enters
the state wait for the first time. This starts the second stage, where Ap considers only marked
nodes in T . In directions that correspond to a non-marked node, Ap moves to the state cut
and remains there perpetually. From every marked node in T , Ap guesses a path to another
marked node with label p, using the states wait and reach. It starts this search in state wait,
moves to state reach immediately, remains there until it encounters a marked node with label
p, and then moves to state visit. If there is no path from some node to another node with
label p, all runs corresponding to the choice of T as subtree will eventually get stuck in reach.
Thus, some run corresponding to T as the required subtree is accepting iff T satisfies the
required conditions. J

I Theorem 11. Let L be a library with width D, R be an exit control relation for L, and α
be an index function for L. There exists a non-deterministic parity tree automaton (NPT) B
such that, for all composers C over L, B accepts tree(C) iff C satisfies α and C is compatible
with R. Consequently, B is non-empty iff L realizes α under R.

Proof. We define B = BR ∩ Bα, where BR is a safety tree automaton that accepts tree(C)
iff C is compatible with R, and Bα is an NPT that accepts tree(C) iff C satisfies α. Since
the intersection of a safety automaton and an NPT is again an NPT, B is also an NPT.

Construction of BR: For simplicity, we define the automaton for the case D = {0, 1}, and
note that the definition can be easily extended for arbitraryD. BR = {L, {start}∪D, start, δR},
where δR is defined as follows: For all M ∈ L,

δR(start,M) = {(0, 1)}

Yoad Lustig, Sumit Nain, and Moshe Y. Vardi 423

For q ∈ D, if (q,M) ∈ R then δR(q,M) = {(0, 1)}
Note that BR has no transitions out of the states 0 and 1 iff the exit control relation R is
violated. Thus BR accepts tree(C) iff C is compatible with R.

Construction of Bα: Let Γ = LABELS(L) and let Ap = (Γ, Q, q0, δ, β) be the NBT
defined in Lemma 10. We define A′p = (L, Q, q0, δ

′, β), where

δ′(q,Mi) =
∨

(X,j,Mi)∈LABELS(L)

δ(q, (X, j,Mi))

While Ap accepts Γ-labeled D-trees, A′p accepts L-labeled D-trees. A′p simply simulates
Ap by using its larger transition function to guess the missing portion of the labels. We
can characterize the regular trees accepted by A′p as follows: for a composer C over L, A′p
accepts tree(C) iff there exists a choice function for C which has rank p.

Consider the automaton A′α whose language is the union of the language of each A′p, for
all odd p ≤ max(α). Let C be a composer over L. Then A′α accepts tree(C) iff there exists
a choice function for C that has an odd rank. Thus, by Theorem 7, A′α accepts tree(C) iff
C does not satisfy α. Finally, consider the automaton Bα = A′α, which is the complement of
A′α. Then Bα accepts tree(C) iff C satisfies α.

Since an NPT is nonempty iff it accepts a regular tree, and L realizes α under R iff some
composer C over L satisfies α and C is compatible with R, therefore B is non-empty iff L
realizes α under R. J

The NBT A′p accepts |D|-ary trees and has O(1) states, with an alphabet of size |L|, so
A′α is an NBT with O(k) states, where k = max(α). It follows that Bα is a nondeterministic
parity tree automaton (NPT) with kO(k) states and parity index O(k) [12]. Also, BR is a safety
automaton with O(|D|) states. Thus, their intersection B is an NPT with |D|kO(k) states
and parity index O(k), whose nonemptiness can be tested in time |L||D|O(k+|D|)kO(k2+k|D|)

[12]. We thus obtain the following:

I Theorem 12. The embedded parity realizability problem is in EXPTIME.

If an alternating tree automaton is nonempty, then it must accept some regular tree [12].
Given a regular tree accepted by B, we can obtain a finite transducer that generates that
tree. This transducer is a composer that realizes α under R. Thus, we also obtain a solution
to the embedded parity synthesis problem.

I Theorem 13. The embedded parity synthesis problem is in EXPTIME.

The complexity of our solution is exponential in both k2, where k is the highest parity
index, as well as |D|, which is the number of exit states in each component. The exponential
dependence on k is expected, as typical algorithms for solving parity games are exponential in
the parity index, cf. [8]. Improving k2 to k is an open challenge. It is also an open question
whether the exponential dependence on |D| can be avoided.

We remark that the embedded parity synthesis problem can be viewed as a 2-player partial
information stochastic parity game. Informally, the game can be described as follows: The
two players are the composer C and the environment E. The C player chooses components
and the E player chooses paths through the components chosen by C. C cannot see the
moves E makes inside a component. At the start C chooses a component M from the library
L. The turn passes to E, who chooses a sequence of inputs, inducing a path in M from
its start state to some exit x in D. The turn then passes to C, which must choose some
component M ′ in L and pass the turn to E and so on. As C cannot see the moves made by

CSL’11

424 Synthesis from Probabilistic Components

E inside M , C cannot base its choice on the run of E in M , but only on the exit induced by
the inputs selected by E and previous moves made by C. So C must choose the same next
component M ′ for different runs that reach exit x of M . In general, different runs will visit
different priorities inside M . This is a two-player stochastic parity game where one of the
players does not have full information. If C has a winning strategy that requires a finite
amount of memory, then we can use such a strategy to obtain a suitable finite composer
that satisfies the index function α, thus solving the embedded parity synthesis problem. If C
has no winning strategy or if every winning strategy requires infinite memory, then α is not
realizable from the library L.

We also note that, when viewed in the framework of games, our result is a rare positive
result for partial-information stochastic games. In general, 2-player partial information
stochastic games are known to be undecidable even for co-Buchi objectives (and thus for
parity objectives) [3].

5 Synthesis for DPW Specifications

Let A be a deterministic parity automaton (DPW), M be a probabilistic transducer and L
be a library of components. We say A is a monitor for M (resp. L) if the input alphabet of
A is the same as the output alphabet of M (resp. L). Let A be a monitor for M and let LA
be the language accepted by A. We say a strategy f for M is winning for the environment
iff µf (LA) < 1, i.e., the output of M is rejected by A with positive probability. We say that
M satisfies A if there exists no winning strategy for the environment.

I Definition 14. The DPW probabilistic realizability problem is: Given a library L and a
DPW A that is a monitor for L, decide whether there exists a composer C over L, such that
TC satisfies A. If such a composer exists, we say that L realizes A. The DPW probabilistic
synthesis problem is to find such a composer C if it exists.

We transform this problem into a version of the embedded parity problem solved in the pre-
vious section. Let A = (ΣO, QA, s0, δA, αA) be a DPW and M = (ΣI ,ΣO, QM , q0, δM , F, L)
be a probabilistic transducer. For s ∈ QA, we denote by M × As, the probabilistic trans-
ducer (ΣI ,ΣO, QM × QA, (q0, s), δ, F × QA, L′), where δ((q, s′), a)(q′, s′′) = δM (q, a)(q′) if
s′′ = δA(s′, L(q)) and 0 otherwise. Given a library L with width D, we define the augmented
library LA = {M × As : M ∈ L, s ∈ QA}. The width of LA is D × QA. We define the
exit control relation RA ⊆ D ×QA × LA for LA as follows: for all i ∈ D, s ∈ QA, M ∈ L,
we have (i, s,M × As) ∈ RA. We also extend αA to LA as follows: for (q, s′) ∈ QM ×QA,
αA(q, s′) = αA(s′). Thus αA is an index function for LA.

Our first step is to treat this augmented library as a new library and solve the embedded
parity synthesis problem for LA with αA as the index function and RA as the exit control
relation. This gives us a tree automaton that accepts LA-labeled (D ×QA)-trees and that is
empty iff LA does not realize αA under RA. Later, we show how to transform this automaton
into another that accepts L-labeled D-trees and is empty iff L does not realize A. Since,
by definition, LA bijectively maps to L × QA, we find it convenient to use labels from
L ×QA in place of LA. We now define a composer for the augmented library. The states
of the composer are pairs of the form (M, s), where s is a monitor state and M represents
an instance of a component from L. A composer for LA, is a deterministic transducer
C = (D × QA,L × QA,M× QA, (M, s),∆, λ). The following lemma follows directly from

Yoad Lustig, Sumit Nain, and Moshe Y. Vardi 425

Theorem 111.

I Lemma 15. Let L be a library and A be a DPW that is a monitor for L. There exists
an NPT B that accepts a regular tree T iff T = tree(C) for some composer C over LA such
that TC satisfies αA and C is compatible with RA.

Given a composer C over a library L and a monitor A for L, we can extend C to a
composer over the augmented library LA.

I Definition 16 (Augmented Composer). Let L be a library and A be a monitor for L. Let
C = (D,L,M,M0,∆, λ) be a composer over L. The augmentation of C by A, denoted CA,
is a composer over LA such that CA = (D ×QA,L ×QA,M×QA, (M0, s0),∆′, λ′), where
1. For all s ∈ QA, M ∈M, λ′(M, s) = (λ(M), s).
2. For all i ∈ D, M ∈M and s, s′ ∈ QA, ∆((M, s), (i, s′)) = (∆(M, i), s′).

We say CA is an augmented composer. While a composer only keeps track of the transfer
of control between components, the augmented composer also keeps track of the state of
the monitor before and after the control is transferred. To go from augmented composers
to composers, we use techniques from synthesis with incomplete information [10]. We start
by describing a relation between tree(C) and tree(CA). First we need to introduce some
convenient notation.

Let X, Y and Z be finite sets. For a Z-labeled (X × Y)-tree 〈T, V 〉, we denote by
xray(Y, 〈T, V 〉), the (Z × Y)-labeled (X × Y)-tree 〈T, V ′〉 in which each node is labeled by
both its direction in Y and its labeling in 〈T, V 〉. We define operators hideY and wideY .
The operator hideY : (X × Y)∗ → X∗ replaces each letter x · y, where x ∈ X and y ∈ Y ,
by the letter x. The operator wideY maps Z-labeled X-trees to Z-labeled (X × Y)-trees
as follows: wideY (〈X∗, V 〉) = 〈(X × Y)∗, V ′〉, where for each node w ∈ (X × Y)∗, we have
V ′(w) = V (hideY (w)).

I Lemma 17. Let L be a library and A be a monitor for L. Let C be a composer over L
and CA be the augmentation of C by A. Then tree(CA) = xray(QA, wideQA

(tree(C))).

I Theorem 18. Let L be a library and A be a monitor for L. Let C be a composer over L
and CA be the augmentation of C by A. Then C satisfies A iff CA satisfies αA.

Given a library L and monitor A, we can solve the embedded realizability problem for
the augmented library LA to obtain a regular tree T , where T = tree(C) for some composer
C over LA such that C satisfies αA. Then the tree T ′ = xray(QA, wideQA

(tree(C))) is also
regular, so T ′ = tree(C ′) for some composer C ′ over L. Now we would like to use C ′ to
solve the DPW realizability problem, but C ′ is only guaranteed to satisfy A if C is the
augmentation of C ′ by A. Therefore, to solve the DPW realizability problem, we have to
obtain an automaton that accepts a tree T ′ = tree(C ′) if the augmentation of C ′ by A

satisfies αA.

I Theorem 19. Let X, Y and Z be finite sets. Given an alternating automaton B over
(Z × Y)-labeled (X × Y)-trees, we can construct an alternating automaton B′ over Z-labeled
X-trees such that B′ accepts a labeled tree 〈X∗, V 〉 iff B accepts xray(Y,wideY (〈X∗, V 〉)).
Further, B and B′ have the same acceptance condition and |B′| = O(|B|).

1 Note that even with the slightly modified definition of composer, the results of the previous section still
apply because a pair (M, s) ∈ L ×QA still uniquely identifies an element of LA.

CSL’11

426 Synthesis from Probabilistic Components

Given an alternating automaton B, let narrowY (B) denote the corresponding automaton
constructed in Theorem 19.

I Theorem 20. Let L be a library and A be a monitor for L. Then there exists an alternating
parity tree automaton (APT) B such that, for all composers C over L, B accepts tree(C) iff
C satisfies A. Consequently, B is non-empty iff L realizes A.

Proof. Let A = (ΣO, QA, s0, δA, αA). Let B′ be the NPT that accepts tree(C ′) iff C ′ satisfies
αA and C ′ is compatible with RA, for all composers C ′ over LA. Such a B′ exists by Lemma
15. Let B = narrowQA

(B′). We show that B, which is an APT, is the required automaton.
Let C be a composer over L. By Theorem 18, C satisfies A iff CA satisfies αA. Therefore,

B′ accepts tree(CA) iff C satisfies A. By Lemma 17, tree(CA) = xray(QA, wideQA
(tree(C))),

and by Theorem 19, B accepts a tree T iff B′ accepts xray(QA, wideQA
(T)). Thus, B accepts

tree(C) iff C satisfies A. Since an APT is nonempty iff it accepts a regular tree, and L
realizes A iff some composer C over L satisfies A, hence B is non-empty iff L realizes A. J

Each transducer in the augmented library LA has a set of final states of size |D||QA|.
Thus the automaton B′ has size exponential in both |D| and |QA|. The translation from B′ to
B adds no blowup, but B is an APT, while B′ is an NPT. Since emptiness for an alternating
parity tree automaton can be checked in time exponential in the size of the automaton [12],
therefore B can be be checked for emptiness in time doubly exponential in |D| and |QA|.

I Theorem 21. The DPW probabilistic realizability problem is in 2EXPTIME.

Again, if an alternating tree automaton is nonempty, then it must accept some regular
tree [12], and given a regular tree accepted by B, we can obtain a finite transducer that
generates that tree. This transducer is a composer that realizes A. Thus, we also obtain a
solution to the DPW probabilistic synthesis problem.

I Theorem 22. The DPW probabilistic synthesis problem is in 2EXPTIME.

The doubly exponential upper bound for our solution can be viewed as follows: we inherit
one exponential from the embedded parity solution and the second exponential is introduced
by the use of an APT to deal with incomplete information. It is an open question whether
the second exponential can be avoided.

6 Discussion and Future Work

Component-based synthesis seeks to build systems that satisfy a given specification using
pre-existing components. This contrasts with classical synthesis, where the aim is to build a
system from scratch. The component-based approach is closer in spirit to how systems are
built in the real world. In this paper, we generalize the component-based synthesis problem
to a probabilistic setting. Our components are modeled as probabilistic transducers and
the specification is given as a deterministic parity automaton. The composition itself is
described by a deterministic transducer, called a composer, which governs the transitions
between components.

We break the problem down in two stages. First we solve a simpler version, which we
call the embedded parity synthesis problem, where the specification is embedded as parities in
the components themselves. Our solution combines techniques from Markov chain analysis
and automata theoretic verification. Then we show how to solve the more general case of a
separate specification, which we call the DPW probabilistic synthesis problem, by reducing it
to the simpler case using techniques from synthesis with incomplete information.

Yoad Lustig, Sumit Nain, and Moshe Y. Vardi 427

We show that the embedded parity synthesis problem is in EXPTIME and the DPW
probabilistic synthesis problem is in 2EXPTIME. The question of tighter lower and upper
bounds we leave for future work. In particular, it is an open question whether the DPW
probabilistic synthesis problem is in EXPTIME. Another line of work is suggested by the
possibility of probabilistic composers. While we do not know how to synthesize probabilistic
composers, we do know that a direct reduction to the deterministic case will not work as
probabilistic composers are more expressive.

References
1 C. Baier, M. Größer, M. Leucker, B. Bollig, and F. Ciesinski. Controller synthesis for

probabilistic systems. In Proc. IFIP TCS’04, pages 493–506. Kluwer, 2004.
2 D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Mecella. Automatic

composition of e-services that export their behavior. In Proc. ICSOC’03, LNCS 2910,
pages 43–58. Springer, 2003.

3 K. Chatterjee and L. Doyen. The complexity of partial-observation parity games. In Proc.
LPAR’10, LNCS 6397. Springer, 2010.

4 K. Chatterjee, M. Jurdzinski, and T. A. Henzinger. Simple stochastic parity games. In
Proc. CSL’03, LNCS 2803, pages 100–113. Springer, 2003.

5 C. Courcoubetis and M. Yannakakis. Markov decision processes and regular events. In
Proc. ICALP’90, LNCS 443, pages 336–349. Springer, 1990.

6 C. Courcoubetis and M. Yannakakis. The complexity of probabilistic verification. Journal
of the ACM, 42:857–907, 1995.

7 L. de Alfaro and T.A. Henzinger. Interface-based design. In Engineering Theories of
Software-intensive Systems, NATO Science Series: Mathematics, Physics, and Chemistry
195, pages 83–104. Springer, 2005.

8 M. Jurdzinski. Small progress measures for solving parity games. In Proc. STACS’00,
LNCS 1770, pages 290–301. Springer, 2000.

9 J.G. Kemeny and J.L. Snell. Finite Markov Chains. Van Nostrad, 1960.
10 O. Kupferman and M.Y. Vardi. Synthesis with incomplete informatio. In 2nd Int. Conf.

on Temporal Logic, pages 91–106. Kluwer, 1997.
11 Y. Lustig and Moshe Y. Vardi. Synthesis from component libraries. In Proc. FOSSACS’09,

LNCS 5504, pages 395 – 409. Springer, 2009.
12 D.E. Muller and P.E. Schupp. Simulating alternating tree automata by nondeterministic

automata: New results and new proofs of theorems of Rabin, McNaughton and Safra.
Theoretical Computer Science, 141:69–107, 1995.

13 A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proc. 16th ACM Symp.
on Principles of Programming Languages, pages 179–190, 1989.

14 S. Schewe. Synthesis for probabilistic environments. In Proc. ATVA’06, LNCS 4218.
Springer, 2006.

15 J. Sifakis. A framework for component-based construction extended abstract. In Proc. 3rd
Int. Conf. on Software Engineering and Formal Methods, pages 293–300. IEEE, 2005.

16 M.Y. Vardi. Automatic verification of probabilistic concurrent finite-state programs. In
Proc. FOCS’85, pages 327–338. IEEE, 1985.

17 M.Y. Vardi. Probabilistic linear-time model checking: An overview of the automata-
theoretic approach. In Formal Methods for Real-Time and Probabilistic Systems, LNCS
1601, pages 265–276. Springer, 1999.

CSL’11

	Introduction
	Preliminaries
	Control-flow Composition from Libraries
	Synthesis for Embedded Parity
	Synthesis for DPW Specifications
	Discussion and Future Work

