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Abstract
The operational semantics of programming constructs involving locally scoped names typically
makes use of stateful dynamic allocation: a set of currently-used names forms part of the state and
upon entering a scope the set is augmented by a new name bound to the scoped identifier. More
abstractly, one can see this as a transformation of local scopes by expanding them outward to an
implicit top-level. By contrast, in a neglected paper from 1994, Odersky gave a stateless lambda
calculus with locally scoped names whose dynamics contracts scopes inward. The properties of
‘Odersky-style’ local names are quite different from dynamically allocated ones and it has not
been clear, until now, what is the expressive power of Odersky’s notion. We show that in fact
it provides a direct semantics of locally scoped names from which the more familiar dynamic
allocation semantics can be obtained by continuation-passing style (CPS) translation. More
precisely, we show that there is a CPS translation of typed lambda calculus with dynamically
allocated names (the Pitts-Stark ν-calculus) into Odersky’s λν-calculus which is computationally
adequate with respect to observational equivalence in the two calculi.
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1 Introduction

Locally scoped names are a ubiquitous feature of programming languages. Here we will be
concerned with properties of this notion that are independent of the nature of the entities
being named, be they mutable storage cells, objects, exceptions, communication channels,
cryptographic keys, or whatever. The only assumption that we make about names is that
the ambient programming language has the ability to test them for equality. The opera-
tional semantics of such locally scoped names is commonly specified in terms of dynamically
allocated fresh names, also known as generative names. This is a state-based explanation
of the meaning of the scoping construct: to execute a program with a locally scoped name,
the current state is augmented with a fresh name and the body of the scope is executed
with the scoped name bound to the fresh one. The combination of this simple mechan-
ism with other features, especially higher-order functions as occurs in the ML family of
languages, can result in programs with very complicated behaviour. The Pitts-Stark ν-
calculus [15, 20] was intended to make this point, taking the measure of behaviour to be
observational equivalence (also known as contextual equivalence), the relation between two
programs of having the same observable behaviour when placed in any program context.
Syntactically, the ν-calculus is simply-typed λ-calculus over ground types Name and Bool
(for names and booleans respectively), augmented with a construct νa. t for restricting the
scope of a name a to a term t. The ν-calculus is given an operational semantics that makes it
a fragment of Standard ML [10] by interpreting Name as ML’s type unit ref of references to
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the unit value and taking νa. t to be let a = ref() in t. The properties of observational
equivalence for the ν-calculus turn out to be remarkably complex, despite the simplicity of
the language. See [2, Sect. 1] for a survey of the literature on the ν-calculus.

The ν-calculus combines dynamically allocated local names with higher-order functions.
But is dynamic allocation the only way to interpret the meaning of locally scoped names? In
fact there is another, but much less well known semantics for them. At about the same time
that the ν-calculus was introduced, Odersky developed what he called the λν-calculus [12].
Syntactically this is essentially identical to the ν-calculus; it has pairs as well as functions,
but the ν-calculus could have had those too (we add them here). However, the local scoping
construct νa. t is given a very different semantics, which we recall in Sect. 4. On the one hand,
its most important feature is that it is stateless, or ‘referentially transparent’; and Odersky
shows that λν-calculus is a conservative extension of λ-calculus with respect to observational
equivalence. On the other hand, it has some properties that seem very strange compared
with the more familiar, generative interpretation. For instance, dynamic allocation of locally
scoped names generally does not commute with function abstraction; whereas in Odersky’s
calculus, νa. λx � t is observationally equivalent to (indeed, reduces to) λx � νa. t. (For
example, in the ν-calculus νa. λx � a and λx � νa. a are not observationally equivalent
terms of type Name � Name—see the discussion after Remark 3.2 below; however, they are
observationally equivalent in the λν-calculus.) Even more radically, in Odersky’s calculus
there is no sharing of local names between the components of a tuple, since νa. (t1 , t2) is
observationally equivalent to (νa1. t1[a1/a] , νa2. t2[a2/a]).

Contribution of this paper. We shed new light on Odersky’s version of locally scoped
names by showing that it stands in a surprising relation to the more familiar, dynamic al-
location interpretation. We prove that Odersky’s version of νa. t provides a ‘direct’ meaning
for locally scoped names from which the behaviour determined by dynamic allocation can be
recovered via continuations. More precisely, we show that a standard continuation passing
style (CPS) transformation on typed λ-calculus can be extended to locally scoped names
so as to provide a computationally adequate translation of ν-calculus into λν-calculus. Dy-
namically allocated names at a particular type are translated to Odersky-style local names
at the corresponding function type of continuations. Quite surprisingly, even though Oder-
sky’s version of νa. (−) behaves quite differently with respect to functions compared to the
dynamic allocation semantics of νa. (−), we show that the CPS translation is sound and
complete for evaluating boolean terms (Theorem 5.1). Since the translation is composi-
tional, it follows that two ν-calculus terms of any type are observationally equivalent if their
CPS-translations are observationally equivalent in the λν-calculus

Our proof of these results is via a new formulation of λν-calculus ‘big step’ operational
semantics and via a by-now standard use of Felleisen-style evaluation contexts for ν-calculus.
At the heart of the proof we construct (in Sect. 5.2) a logical relation between λν-calculus and
ν-calculus tailored to the CPS transformation. Although we use the methods of operational
semantics, as we explain in Sect. 6 our results have their origin in a denotational semantics
of dynamic allocation using nominal sets [18] and, more recently, a simple nominal sets
model for Odersky-style local names [14]. Our results suggest re-evaluating the usefulness of
Odersky’s semantics of locally scoped names and the concluding section gives some avenues
for doing that.
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398 Relating Two Semantics of Locally Scoped Names

T ∈ Type ::=
Name names
Bool booleans
T × T pairs
T � T functions

t ∈ Term ::=
x variable, x ∈ V
a atomic name, a ∈ A
νa. t locally scoped name
t = t name equality test
true truth
false falsity
if t then t else t conditional
(t , t) pair
let (x , x) = t in t unpairing
λx� t function abstraction
t t application

Figure 1 Syntax

2 Simply Typed λ-Calculus with Local Names

We use the same syntax and typing rules for the Pitts-Stark ν-calculus as for the Odersky
λν-calculus. This unification is just a slight deviation from the original syntax [15, 12], but
the expressiveness remains the same. To the usual simply typed λ-calculus with pairs and
booleans we add names that can be tested for equality and locally scoped. The types and
terms of the resulting language are given in Fig. 1.

It is convenient to use two different sorts of identifier in terms, drawn from disjoint
infinite sets V and A. Elements x, y, z . . . of V are called variables and elements a, b, c, . . . of
A are called atomic names. We make this syntactic distinction to emphasise the fact that the
two different sorts of identifier have different substitution properties. Validity of judgements
in the calculi we consider here is preserved under substituting terms for variables; but in
general it is only preserved under permutations of atomic names, rather than more general
forms of substitution for names.

As a matter of notation we write t[t1/x1, . . . , tn/xn] for the (capture-avoiding, simultan-
eous) substitution of terms t1, . . . , tn for free occurrences of the distinct variables x1, . . . , xn
in the term t. We identify terms up to α-equivalence of bound variables and bound atomic
names. The binding forms are as follows: free occurrences of a in t become bound in νa. t;
free occurrences of x1 and x2 in t′ become bound in let (x1 , x2) = t int′; and free occurrences
of x in t become bound in λx� t. We write fv(t) and fn(t) respectively for the finite sets of
free variables and free atomic names of t. We say that a term t is variable-closed if fv(t) = ∅
(even if fn(t) is non-empty).

The grammar in Fig. 1 specifies ‘raw’ terms, but we are only interested in well-typed
terms. We specify those via an inductively defined typing relation Γ ` t : T , where the
typing context Γ = {x1 : T1, . . . , xn : Tn} is a finite map from variables xi to types Ti whose
domain dom(Γ) = {x1, . . . , xn} contains the set fv(t) of free variables of t. Rather than also
recording the free atomic names of t in the typing context, we have chosen to leave them
implicit, because it simplifies notation later. Thus the typing rules involving names are as
follows.

Γ ` a : Name
Γ ` t : T

Γ ` νa. t : T
Γ ` t : Name Γ ` t′ : Name

Γ ` t = t′ : Bool

The typing rules for the other syntactic constructs are entirely conventional, so we omit
them here.
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a ∪ {a} , t ⇓ν a′ , v
a , νa. t ⇓ν a′ , v

(a /∈ a)
a , v ⇓ν a , v

(v = a, true, false, λx� t)

a , t1 ⇓ν a′ , a1 a′ , t2 ⇓ν a′′ , a2

a , t1 = t2 ⇓ν a′′ , δa1 a2

where δa1 a2 ,

{
true if a1 = a2

false if a1 6= a2

a , t1 ⇓ν a′ , true a′ , t2 ⇓ν a′′ , v
a , if t1 then t2 else t3 ⇓ν a′′ , v

a , t1 ⇓ν a′ , false a′ , t3 ⇓ν a′′ , v
a , if t1 then t2 else t3 ⇓ν a′′ , v

a , t1 ⇓ν a′ , v1 a′ , t2 ⇓ν a′′ , v2

a , (t1 , t2) ⇓ν a′′ , (v1 , v2)

a , t ⇓ν a′ , (v1 , v2) a′ , t′[v1/x1, v2/x2] ⇓ν a′′ , v
a , let (x1 , x2) = t in t′ ⇓ν a′′ , v

a , t1 ⇓ν a′ , λx� t a′ , t2 ⇓ν a′′ , v a′′ , t[v/x] ⇓ν a′′′ , v′

a , t1 t2 ⇓ν a′′′ , v′

where v ∈ Val ::= x | a | true | false | (v , v) | λx� t

Figure 2 ν-Calculus evaluation relation

We will be concerned with various congruence relations between well-typed terms. Here
is the general definition of such a relation (cf. [13, Definition 7.5.1]).

I Definition 2.1. A type-respecting binary relation is specified by a set R of quadruples
(Γ, t1, t2, T ), where Γ ` t1 : T and Γ ` t2 : T . We write Γ ` t1 R t2 : T instead of
(Γ, t1, t2, T ) ∈ R. Such a relation is a congruence if it is reflexive, symmetric, transitive and
compatible with the term-forming operations. The latter means

Γ ` a R a : Name
Γ ` t1 R t2 : T ⇒ Γ ` νa. t1 R νa. t2 : T
Γ ` t1 R t2 : Name ∧ Γ ` t : Name ⇒ Γ ` (t1 = t) R (t2 = t) : Bool ∧

Γ ` (t = t1) R (t = t2) : Bool

and similar conditions for the other term-forming operations.

3 ν-Calculus

The language of the previous section becomes the ν-calculus [15, 20] if we evaluate locally
scoped names νa. t using the mechanism of dynamic allocation (and use call-by-value evalu-
ation for pairs and functions). Figure 2 gives rules in the style of the Definition of Standard
ML [10] for inductively defining a relation a , t ⇓ν a′ , v, where

a and a′ are finite subsets of A with a ⊆ a′;
t and v are variable-closed terms with fn(t) ⊆ a and fn(v) ⊆ a′;
v ∈ Val ⊆ Term is a value, as specified by the grammar in Fig. 2.

We use this relation to define observational equivalence for the ν-calculus, Γ ` t1 ≈ν t2 : T .
To do so, we believe it is helpful to take the abstract, relational point of view first advocated
by Gordon and Lassen [8]. We wish ≈ν to be a congruence in the sense of Definition 2.1

CSL’11



400 Relating Two Semantics of Locally Scoped Names

and to be ν-adequate for observing evaluation of boolean terms in the sense that

∅ ` t1 ≈ν t2 : Bool ∧ fn(t1, t2) ⊆ a ⇒ (a , t1 ⇓ν _ , true⇔ a , t2 ⇓ν _ , true) (1)
where a , t ⇓ν _ , true , (∃a′) a , t ⇓ν a′ , true. (2)

I Definition 3.1 (ν-Calculus observational equivalence). Arguing as in the proof of [13, The-
orem 7.5.3], we have that the union of all type-respecting binary relations that are both
compatible (Definition 2.1) and have the ν-adequacy property (1) is an equivalence relation;
and hence it is the largest ν-adequate congruence relation. We denote it by ≈ν and call it
ν-calculus observational equivalence.

The fact that in (1) we observe convergence just to true is not significant; also observing
convergence to false, or to a particular atomic name, does not change ≈ν . On the other hand,
just observing convergence per se would result in a trivial equivalence, since ν-calculus lacks
any non-terminating features such as fixpoint recursion (as a matter of choice rather than
necessity).

I Remark 3.2 (contextual equivalence). The terms ‘observational equivalence’ and ‘contex-
tual equivalence’ are used more or less interchangeably in the literature on ν-calculus. (One
might say that they are contextually equivalent terms.) We have chosen the first, because we
favour the more abstract, ‘context-free’ characterization that we have used as the definition.
However, it is possible to give a more concrete characterization of ≈ν in terms of substitution
of terms into term contexts, that is, syntax-trees with a hole; see [15, Definition 4]. Both free
variables and free atomic names in terms may get captured by this form of substitution. So
term contexts are not identified up to α-equivalence and one has to give separate and more
elaborate typing rules for them. These complications are avoided by using the relational
definition we have given.

However one defines it, the properties of ≈ν are known to be very complicated; see [2]
for a recent discussion of this fact. In particular, terms of function or product type do not
behave extensionally up to observational equivalence. For example

∅ ` νa. λx� a 6≈ν λx� νa. a : Name � Name (3)

(since applying λf � νa. (f a = f a) to each term gives terms that evaluate to true and false
respectively); and yet applying these two terms to any name yields observationally equivalent
results. Similarly

∅ ` νa. νb. (a , b) 6≈ν νa. (a , a) : Name× Name (4)

(since applying λx � let (x1 , x2) = x in (x1 = x2) to each term gives terms that evaluate to
false and true respectively); and yet applying first and second projection functions to them
yields observationally equivalent results in each case.

4 λν-Calculus

Figure 3 inductively defines a state-free evaluation relation t ⇓λν c, where t and c are
variable-closed terms (possibly with free atomic names) and c is a canonical form, that is,
in the subset Cf ⊆ Term of terms specified by the grammar at the bottom of the figure.
The rules for evaluating booleans, pairs and functions are just those of the pure call-by-
name typed λ-calculus. It is the first rule in the figure, for evaluating νa. t, that embodies
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t ⇓λν c
νa. t ⇓λν arc

where arc ,


νa. a if c = a

c if c ∈ (A− {a}) ∪ {νa. a, true, false}
(νa. t1 , νa. t2) if c = (t1 , t2)

λx� νa. t if c = λx� t

c ⇓λν c
t1 ⇓λν c1 t2 ⇓λν c2

t1 = t2 ⇓λν δc1 c2

where δc1 c2 ,

{
true if c1 = c2

false if c1 6= c2

t1 ⇓λν true t2 ⇓λν c
if t1 then t2 else t3 ⇓λν c

t1 ⇓λν false t3 ⇓λν c
if t1 then t2 else t3 ⇓λν c

t ⇓λν (t1 , t2) t′[t1/x1, t2/x2] ⇓λν c
let (x1 , x2) = t in t′ ⇓λν c

t1 ⇓λν λx� t t[t2/x] ⇓λν c
t1 t2 ⇓λν c

where c ∈ Cf ::= a | νa. a | true | false | (t , t) | λx� t

Figure 3 λν-Calculus evaluation relation

Odersky’s semantics of locally scoped names from [12]. Compared with the corresponding
rule in Fig. 2, whose effect is to extrude local scopes outward to the top level, here scoping
intrudes through pairing and function abstraction until it reaches canonical booleans and
names.

I Remark 4.1 (the ‘anonymous name’ anon , νa. a). What we here call the λν-calculus
is essentially the typed calculus described in [12, Sect. 6] equipped with the deterministic
evaluation relation sketched in Sect. 4 of that paper (although our description of evaluation in
Fig. 3 is more direct). However, there are two related respects in which our calculus differs.
Firstly, we choose to regard the term anon , νa. a as a canonical form of type Name
and secondly, we take the boolean term anon = anon to evaluate to true. Whereas Odersky
takes both terms to be stuck with respect to evaluation (and to be bottom, denotationally).
Other choices are possible; for example one might take anon to be canonical, but have
anon = anon evaluate to false, or be stuck. Such choices clearly affect the properties of λν-
calculus contextual equivalence and hence potentially affect the adequacy of translations of
ν-calculus into λν-calculus that we develop in the next section.

Our motivation for taking anon to be a canonical form comes from the nominal sets
model of Odersky-style local names described in [14], where anon is a non-bottom value.
Having stuck terms, Odersky’s original typed system fails to satisfy the usual ‘progress’ part
of type soundness, whereas here we have the following result.

I Theorem 4.2 (λν-calculus type soundness and totality). In the λν-calculus, well-typed
variable-closed terms possess unique canonical forms: for all ∅ ` t : T , there is a unique c
satisfying ∅ ` c : T and t ⇓λν c.

Proof. The proof that evaluation preserves typing is routine. That evaluation is single-
valued follows from the fact that it does not create free atomic names (t ⇓λν c ⇒ fn(c) ⊆
fn(t)); this follows in turn from the fact that in the derived operation arc on canonical
forms used to evaluate νa. t, free occurrences of a in c become bound in arc. Finally one
has to prove that evaluation of well-typed terms is total. This can be done by adapting the

CSL’11



402 Relating Two Semantics of Locally Scoped Names

usual argument for simply typed λ-calculus using Tait-style computability predicates; we
omit the details here. J

As for the ν-calculus, we can give a simple, ‘relational’ definition of observational equi-
valence.

I Definition 4.3 (λν-Calculus observational equivalence). We define ≈λν , to be the largest
congruence relation satisfying the following λν-adequacy property:

∅ ` t1 ≈λν t2 : Bool ⇒ (t1 ⇓λν true ⇔ t2 ⇓λν true). (5)

It can be constructed by observing that the union of all λν-adequate and compatible type-
respecting relations is an equivalence relation (as well as being λν-adequate and compatible).

Modulo the changes mentioned in Remark 4.1, ≈λν is essentially the same notion that
Odersky defines more concretely with term contexts [12, Sect. 5]. He shows that it has many
pleasant properties in common with the pure typed λ-calculus, such as extensionality for
functions and products. One can show that

∅ ` t : T ∧ t ⇓λν c ⇒ ∅ ` t ≈λν c : T (6)
Γ ` t : T ∧ a /∈ fn(t) ⇒ Γ ` νa. t ≈λν t : T (7)
Γ ` t : T ⇒ Γ ` νa. νa′. t ≈λν νa′. νa. t : T. (8)

Hence in particular the pairs of terms in (3) and (4) are observationally equivalent in the
λν-calculus. So ≈ν and ≈λν are not at all the same. Indeed in view of property (6), the
evaluation rules in Fig. 3 imply the characteristic ‘scope intrusion’ laws

Γ ` νa. λx� t ≈λν λx� νa. t : T1 � T2 (9)
Γ ` νa. (t1 , t2) ≈λν (νa. t1 , νa. t2) : T1 × T2 (10)

that distinguish Odersky-style local names from dynamically allocated ones.

5 Translating ν to λν

Figure 4 gives a continuation-passing style (CPS) transformation of the types and terms of
the typed λ-calculus from Sect. 2. The transformations for values (v 7→ v•) and for terms
(t 7→ t◦) are defined by mutual recursion on the structure of these expressions.

The part of the transformation that does not concern local names is very standard:
we have combined Moggi’s call-by-value translation of λ-calculus into his computational
metalanguage [11] with an interpretation of that metalanguage that uses the continuation
monad C(−) , (− � Bool) � Bool. The part of the transformation that does concern local
names is pleasingly simple; dynamically allocated local names at a type T are transformed
into Odersky-style local names at type CT : (νa. t)◦ = νa. t◦.

Recalling the definitions of ⇓ν and ≈ν for the ν-calculus from Sect. 3 and ⇓λν and ≈λν
for the λν-calculus from Sect. 4, we can now state the main result of the paper.

I Theorem 5.1 (computational adequacy).(i) For all ∅ ` t : Bool, with fn(t) ⊆ a say,

a , t ⇓ν _ , true ⇔ t◦(λx� x) ⇓λν true. (11)

(ii) For all Γ ` ti : T (i = 1, 2), if Γ ` t◦1 ≈λν t◦2 : CT , then Γ ` t1 ≈ν t2 : T .
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Types 7→ types T



Name = Name
Bool = Bool

T1 × T2 = T1 × T2
T1 � T2 = T1 � CT2

where CT , (T � Bool) � Bool.

Typing contexts Γ 7→ typing contexts Γ
{

∅ = ∅
Γ, x : T = Γ, x : T .

Values Γ ` v : T 7→ canonical forms Γ ` v• : T

v• = v for v = x, a, true, false
(v1 , v2)• = (v•1 , v•2)

(λx1 � t1)• = λx1 � t◦1.

Terms Γ ` t : T 7→ terms Γ ` t◦ : CT

v◦ = λk � k v•

(νa. t)◦ = νa. t◦

(t1 = t2)◦ = λk � t◦1(λx� t◦2(λx′ � if x = x′ then k true else k false))
(if t1 then t2 else t3)◦ = λk � t◦1(λx� if x then t◦2 k else t◦3 k)

(t1 , t2)◦ = λk � t◦1(λx� t◦2(λx′ � k(x , x′))) when (t1 , t2) /∈ Val
(let (x1 , x2) = t1 in t2)◦ = λk � t◦1(λx� let (x1 , x2) = x in t◦2 k)

(t1 t2)◦ = λk � t◦1(λx� t◦2(λx′ � xx′ k))
(where k, x, x′ /∈ fv(v, t1, t2, t3)).

Figure 4 CPS transformation

Part (ii) of the theorem follows from part (i), because the CPS transformation is com-
positional. More precisely, referring to Definition 2.1, the type-respecting binary relation

R , {(Γ, t1, t2, T ) | Γ ` t1 : T ∧ Γ ` t2 : T ∧ Γ ` t◦1 ≈λν t◦2 : CT}

is easily seen to be a congruence; additionally it has the ν-adequacy property (1) by virtue
of (i) and because ≈λν is a λν-adequate congruence. So since ≈ν is by definition the largest
ν-adequate congruence, it contains R—as required for property (ii).

The rest of this section sketches the proof of part (i) of the theorem. We first re-formulate
the operational semantics of the ν-calculus in terms of an abstract machine with frame
stacks. As a result, property (11) becomes a statement about machine configurations with
an empty stack that can be deduced from a more general bi-implication involving arbitrary
frame stacks (Corollary 5.8). The left-to-right part of this bi-implication is straightforward;
the right-to-left part is harder and we prove it by constructing a suitable logical relation
between the λν-calculus and the ν-calculus.

5.1 Abstract machine
Although the ‘big step’ operational semantics of Sect. 3 gives a clear specification of the
ν-calculus, experience has shown that a small-step semantics formulated in the style of
Felleisen with evaluation contexts [5] is better suited for developing the properties of the
associated observational equivalence, ≈ν ; and to make proofs about evaluation contexts
easier to formalize, it pays to write them ‘inside out’ as a list of basic contexts (evaluation
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〈F , νa. t〉 →ν 〈F , t〉 if a /∈ fn(F )
〈F , t1 = t2〉 →ν 〈F ◦ (· = t2) , t1〉

〈F , if t1 then t2 else t3〉 →ν 〈F ◦ (if · then t2 else t3) , t1〉
〈F , (t1 , t2)〉 →ν 〈F ◦ (· , t2) , t1〉 when (t1 , t2) /∈ Val

〈F , let (x1 , x2) = t in t′〉 →ν 〈F ◦ (let (x1 , x2) = · in t′) , t〉
〈F , t1 t2〉 →ν 〈F ◦ (· t2) , t1〉

〈F ◦ (· = t) , a〉 →ν 〈F ◦ (a = ·) , t〉
〈F ◦ (a1 = ·) , a2〉 →ν 〈F , δa1 a2〉

〈F ◦ (if · then t else t′) , true〉 →ν 〈F , t〉
〈F ◦ (if · then t else t′) , false〉 →ν 〈F , t′〉

〈F ◦ (· , t) , v〉 →ν 〈F ◦ (v , ·) , t〉
〈F ◦ (v1 , ·) , v2〉 →ν 〈F , (v1 , v2)〉

〈F ◦ (let (x1 , x2) = · in t) , (v1 , v2)〉 →ν 〈F , t[v1/x1.v2/x2]〉
〈F ◦ (· t) , v〉 →ν 〈F ◦ (v ·) , t〉

〈F ◦ (λx� t) · , v〉 →ν 〈F , t[v/x]〉

where F ∈ Stack ::= Id | F ◦ E and
E ∈ Frame ::= · = t | v = · | if · then t else t | (· , t) | (v , ·) | let (x , x) = · in t | · t | v ·

Figure 5 ν-Calculus abstract machine

frames). Figure 5 formulates the operational semantics of the ν-calculus in this style. It
defines a binary relation →ν between configurations of the form 〈F , t〉, where

F is a frame stack (a list of evaluation frames E, defined by the grammar in the figure);
t is a term;
both F and t are variable-closed.

Note the first transition in Fig. 5, for dynamically allocated local names. The use of sets of
atomic names a as states in the definition of ⇓ν is not necessary for →ν ; the implicit state
of a configuration 〈F , t〉 is its finite set fn(F )∪ fn(t) of free atomic names. The termination
relation (2) used in the definition of ≈ν can be characterized in terms of termination of the
abstract machine, as follows.

I Lemma 5.2. Let t be a variable-closed term, with fn(t) ⊆ a say. Then a , t ⇓ν _ , true
holds iff 〈Id , t〉 →∗ν 〈Id , true〉, where →∗ν denotes the reflexive-transitive closure of →ν .

Proof. For the left-to-right implication, one can show (by induction on the derivation from
the rules in Fig. 2) that a , t ⇓ν a′ , v implies (∀F ) fn(F )∩ a′ = ∅ ⇒ 〈F , t〉 →∗ν 〈F , v〉. The
right-to-left implication can be deduced from

〈F , t〉 →ν 〈F ′ , t′〉 ∧ fn(F, t, F ′, t′) ⊆ a ∧ a , F ′[t′] ⇓ν _ , v ⇒ a , F [t] ⇓ν _ , v (12)

where the term F [t] is defined by recursion on the length of the frame stack F

Id[t] = t and (F ◦ E)[t] = F [E[t/·]] (13)

and where E[t/·] is the term obtained from an evaluation frame E by replacing its hole · by
the term t. Property (12) is proved by case analysis on the definition of →ν in Fig. 5, using

a , F [t] ⇓ν a′ , v ⇔ (∃a′′, v′) a , t ⇓ν a′′ , v′ ∧ a′′ , F [v′] ⇓ν a′ , v
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Frame stacks Γ ` F : T � Bool 7→ canonical forms Γ ` F ∗ : T � Bool

Id∗ = λx� x

(F ◦ (· = t2))∗ = λx� t◦2(λx′ � if x = x′ then F ∗true else F ∗false)
(F ◦ (v1 = ·))∗ = λx� if v•1 = x then F ∗true else F ∗false

(F ◦ (if · then t1 else t2))∗ = λx� if x then t◦1F ∗ else t◦2F ∗
(F ◦ (· , t2))∗ = λx� t◦2(λx′ � F ∗(x , x′))
(F ◦ (v1 , ·))∗ = λx� F ∗(v•1 , x)

(F ◦ (let (x1 , x2) = · in t))∗ = λx� let (x1 , x2) = x in t◦F ∗
(F ◦ (· t2))∗ = λx� t◦2(λx′ � xx′ F ∗)
(F ◦ (v1 ·))∗ = λx� v•1 xF

∗

(where x, x′ /∈ fv(v1, t1, t2, t, F ) and x1, x2 /∈ fv(F ))

Figure 6 CPS transformation for frame stacks

which in turn is proved by induction on the length of F . J

I Definition 5.3 (typed frame stacks). We use the typing relation for terms from Sect. 2
to type ν-calculus frame stacks by substituting a fresh variable for the hole. Thus we write
Γ ` F : T ′ � T to mean that Γ, x : T ′ ` F [x] : T holds for some/any x /∈ dom(Γ). (An
equivalent, syntax-directed inductive definition of Γ ` F : T ′ � T is of course possible.)

I Notation 5.4. For each type T ∈ Type, we write Term(T ) for the variable-closed terms of
type t, that is, those t ∈ Term satisfying ∅ ` t : T . (Note that such a t may have free atomic
names.) Similarly Val(T ) and Stack(T ′ � T ) denote the sets of variable-closed ν-calculus
values and frame stacks of types T and T ′�T respectively. We define Config(T ) , {〈F , t〉 |
(∃T ′ ∈ Type) F ∈ Stack(T ′ � T ) ∧ t ∈ Term(T ′)}.

The CPS transformation for terms can be extended to frame stacks. This is done in
Fig. 6 and the next lemma proves the soundness of the transformation.

I Lemma 5.5 (soundness of the CPS transformation). For each 〈F , t〉 ∈ Config(Bool), if
〈F , t〉 →∗ν 〈Id , true〉 then t◦ F ∗ ⇓λν true.

Proof. Note that true◦ Id∗ = (λk � k true) (λx � x) ⇓λν true. So it suffices to show that
if 〈F , t〉 →ν 〈F ′ , t′〉 and t′◦ F ′∗ ⇓λν true, then t◦ F ∗ ⇓λν true. This can be proved by
case analysis on the definition of →ν in Fig. 5. For the two cases in that figure involving
substitution of values for variables one first needs to show (t[v/x])◦ = t◦[v•/x], which can
be done by induction on the structure of t. J

5.2 Logical relation

To prove the converse of Lemma 5.5 we use the following logical relation between the λν-
calculus and the ν-calculus.

I Definition 5.6. The relation t′ J v : T , where T ∈ Type, v ∈ Val(T ) and t′ ∈ Term(T ),
is defined by recursion on the structure of types T , making use of auxiliary relations / and
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/∗ for terms and frame stacks that are defined in terms of J:

t′ J a : Name ⇔ t′ ⇓λν a
t′ J b : Bool ⇔ t′ ⇓λν b (b ∈ {true, false})

t′ J (v1 , v2) : T1 × T2 ⇔ (∀t1, t2) t′ ⇓λν (t1 , t2) ⇒ t1 J v1 : T1 ∧ t2 J v2 : T2

t′ J v : T1 � T2 ⇔ (∀t1, v1) t1 J v1 : T1 ⇒ t′ t1 / v v1 : T2

where for T ∈ Type, t ∈ Term(T ), t′ ∈ Term(CT ), F ∈ Stack(T � Bool) and t′′ ∈ Term(T �
Bool) we define

t′ / t : T , (∀t1, F ) t1 /∗ F : T � Bool ⇒ t′ t1 ⇓λν true ⇒ 〈F , t〉 →∗ν 〈Id , true〉
t′′ /∗ F : T � Bool , (∀t1, v) t1 J v : T ⇒ t′′ t1 ⇓λν true ⇒ 〈F , v〉 →∗ν 〈Id , true〉.

The relation J is extended to substitutions:

Γ ` ρ J σ , (∀x ∈ dom(Γ)) ρ(x) J σ(x) : Γ(x)

where ρ (respectively σ) ranges over finite functions from variables to variable-closed terms
(respectively variable-closed values). Finally we extend the relations to open values, terms
and frame stacks:

Γ ` t′ J v : T , Γ ` t′ : T ∧ Γ ` v : T ∧ (∀ρ, σ) Γ ` ρ J σ ⇒ t′[ρ] J v[σ] : T
Γ ` t′ / t : T , Γ ` t′ : T ∧ Γ ` t : T ∧ (∀ρ, σ) Γ ` ρ J σ ⇒ t′[ρ] / t[σ] : T

Γ ` t′ /∗ F : T � Bool , Γ ` t′ : T � Bool ∧ Γ ` F : T � Bool ∧
(∀ρ, σ) Γ ` ρ J σ ⇒ t′[ρ] /∗ F [σ] : T � Bool

I Theorem 5.7 (fundamental property of the logical relation).

Γ ` v : T ⇒ Γ ` v• J v : T (14)
Γ ` t : T ⇒ Γ ` t◦ / t : T (15)

Γ ` F : T � Bool ⇒ Γ ` F ∗ /∗ F : T � Bool. (16)

Proof (sketch). Properties (14) and (15) are proved simultaneously by induction on the
structure of v and t; and then (16) follows by induction on the structure of F . Here we give
just the induction step for the case of locally scoped names; and for this it suffices to show
that t′ / t : T implies νa. t′ / νa. t : T So suppose

t′ / t : T. (17)

Referring to the definition of / in terms of /∗ in Definition 5.6, we have to show that if

t1 /
∗ F : T � Bool (18)

(νa. t′)t1 ⇓λν true (19)

then 〈F , νa. t〉 →∗ν 〈Id , true〉. Since we identify terms up to α-equivalence of bound atomic
names, we may assume a /∈ fn(t1, F ). It follows from the definition of ⇓λν in Fig. 3 that
(19) implies t′t1 ⇓λν true, since a /∈ fn(t1). From this, (17) and (18), the definition of / gives
us 〈F , t〉 →∗ν 〈Id , true〉. Then since a /∈ fn(F ), from the definition of →ν in Fig. 5 we get
〈F , νa. t〉 →∗ν 〈Id , true〉, as required. J
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I Corollary 5.8. If 〈F , t〉 ∈ Config(Bool), then

〈F , t〉 →∗ν 〈Id , true〉 ⇔ t◦F ∗ ⇓λν true. (20)

Proof. The left-to-right implication in (20) is the soundness Lemma 5.5. For the converse,
since 〈F , t〉 ∈ Config(Bool), we have t ∈ Term(T ) and F ∈ Stack(T � Bool) for some
T ∈ Type. Note that by the fundamental property of the logical relation (Theorem 5.7)
we have t◦ / t : T and F ∗ /∗ F : T � Bool. Then the right-to-left implication follows
immediately from the definition of / in terms of /∗ in Definition 5.6. J

We can now complete the proof of the main theorem.

Proof of Theorem 5.1. We have already noted how part (ii) of the theorem follows from
part (i). For the latter, combine Lemma 5.2 with the special case of Corollary 5.8 when
F = Id, for which F ∗ = Id∗ = λx� x. J

6 A Denotational Perspective

The results in this paper have two sources of inspiration.
The FreshML language [19], which adds to an ML-like language facilities for declaring and
computing with data involving name-binding operations. The ‘fresh’ in FreshML refers
to the fact that the language’s mechanism for computing with bound names involves
dynamic allocation of fresh names. FreshML’s type system ensures that even though
programmers have access to the names of bound entities, α-renamed variants of data
are indistinguishable up to observational equivalence in the language. This is proved in
[18] via a denotational semantics of FreshML (and hence of dynamically allocated local
names) using nominal sets [7].
A nominal sets semantics for Odersky-style locally scoped names given by Pitts in con-
nection with his work on structural recursion modulo α-equivalence [14].

In retrospect, one can see that the denotational semantics in [18] uses a continuation monad
in order for the denotation of types to be valued in the ‘nominal restriction sets’ of [14,
Sect. 2.3], rather than just in nominal sets; the restriction operation is then used to interpret
locally scoped names. Thus the following picture emerges.

ν-calculus

���
�
�

� � // FreshML
J K [18]

��
λν-calculus

J K [14]
// nominal sets

The dotted arrow is the syntactic translation of ν-calculus into λν-calculus that we have
developed in this paper. It composes with the denotational semantics in [14] to recover that
in [18] when restricted to the sub-language of FreshML consisting of the ν-calculus.

This suggests an alternative approach to the main result, Theorem 5.1. Instead of the
direct, operationally-based proof we have given, one could define a denotational semantics of
λν-calculus using nominal sets, as in [14]. Composing with the CPS transformation gives a
denotational semantics for ν-calculus which can be proved adequate for ⇓ν by constructing
a logical relation between semantics and syntax along the lines of that in [18, Sect. 3].
The right-to-left implication in (20) follows from this adequacy result and hence we get an
alternative, albeit less direct, proof of the main theorem.
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7 Failure of Full Abstraction

Theorem 5.1(ii) says that the CPS translation of ν-calculus into λν-calculus reflects ob-
servational equivalence. If a language translation not only reflects observational equival-
ence but also preserves it, then one says that the translation is fully abstract (by analogy
with the use of that terminology for a denotational semantics). For this property to hold,
roughly speaking the target language must not be able to observe more about a translated
term than is possible in the source language. This is certainly not the case for the CPS
translation we have used in this paper. For example, it follows from the theory in [15]
that in the ν-calculus the values v1 , λf � (λx � true)(f true) and v2 , λf � true satisfy
∅ ` v1 ≈ν v2 : (Bool � Bool) � Bool. However, in the λν-calculus one has

∅ ` v◦1 6≈λν v◦2 : C(Bool � Bool) � Bool

because one can calculate from the definition in Fig. 3 that v◦1(λf � f F T ) ⇓λν false and
v◦2(λf�f F T ) ⇓λν true, where F , λx�λk�false ∈ Term(Bool � Bool) and T , λx�true ∈
Term(Bool�Bool). (For simplicity we have used a pair of values whose equivalence depends
upon the absence of non-terminating features in the ν-calculus; more complicated counter-
examples exist if one adds recursion to the calculi.)

Note that these evaluations do not involve the novel parts of Fig. 3 to do with loc-
ally scoped names. Thus this failure of full abstraction has more to do with the nature of
continuation-passing transformations than with locally scoped names. Can the CPS trans-
formation we have studied here be modified to give a translation of dynamic allocation into
a calculus with Odersky-style local names that is fully abstract? One possibility is to change
to a version of λν with linear function types (() and make use of linearly used continu-
ations, ((−) � R) ( R. In particular, it would be interesting to consider the relationship
between dynamic allocation and Odersky-style locally scoped names within the enriched
effect calculus of Egger et al, for which the linearly-used CPS translation has a very strong
self-duality property [4]. Another possibility is to add locally scoped names to the poly-
morphic λ-calculus and use continuations with polymorphic result type, ∀R. ((−) � R) � R,
for which the work of Ahmed and Blume [1] suggests there may be a full abstraction result.

Should one care about the full abstraction property? The ν-calculus and the λν-calculus
are not ends in themselves; they are merely vehicles for studying the semantics of higher-
order functions with locally scoped names in as simple a setting as possible. One should
certainly consider extending the results of this paper to richer languages, beginning by
making them Turing-powerful. This could be done by adding fixpoint recursion for functions.
It is reasonable to expect the CPS transformation to extend to a computationally adequate
translation of such extended languages; whereas any full abstraction result for a modification
of the translation probably would not survive such additions.

8 Translating λν to ν

Having given a computationally adequate translation of ν-calculus into λν-calculus, it is
natural to consider such a translation in the reverse direction as well. We sketch one in this
section, leaving the details for future work.

The main idea is to translate an Odersky-style locally scoped name (at type T say) into
the ν-calculus by dynamically generating a fresh name a and then applying to the translated
body a function arT ∈ Val(T � T ) that implements the operation c 7→ arc in Fig. 3. This
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is defined by recursion on the structure of the type T :

arName = λx� if x = a then νa. a else x
arBool = λx� x

arT1×T2 = λx� let (x1 , x2) = x in (arT1x1 , arT2x2)

arT1�T2 = λf � λx� arT2(f x).

We would like any computationally adequate translation of λν-calculus into ν-calculus to
be robust with respect to adding extra features such as fixpoint recursion, where the differ-
ence between call-by-name and call-by-value becomes visible up to observational equivalence.
For a translation to adequately reflect the call-by-name evaluation relation in Fig. 3, one
could combine the above idea for implementing Odersky-style νa. (−) with a standard trans-
lation of call-by-name into call-by-value based on using a lifting monad L(−) = Unit � (−)
to delay evaluation at appropriate points. We did not include a one-element type Unit in
the λ-calculus of Sect. 2, but could easily have done so; one could instead use Bool � (−) for
L. A simpler alternative would be to switch to a call-by-value version of the λν-calculus.

9 Conclusion

We have shown that Odersky’s semantics for νa. t provides a direct meaning for locally scoped
names in higher-order functions (and pairs) from which the more common semantics in terms
of dynamic allocation can be recovered via a continuation-passing transformation. This
does not help much with understanding the subtle properties of observational equivalence
in the Pitts-Stark ν-calculus, because of the complicated nature of the CPS translation.
However, the result does shed new light upon the expressive power of the relatively unfamiliar
semantics of local names given by Odersky. We have seen that dynamically allocated local
names can be encoded with Odersky-style local names. That suggests re-evaluating the
usefulness of Odersky’s notion. We conclude by mentioning some avenues for doing that.

Figures 2 and 3 can easily be augmented with evaluation rules for expressions of recurs-
ively defined and polymorphic types. We believe our main result (Theorem 5.1) will
scale to this extension, using the technique of step-indexing to overcome the difficulty of
defining a suitable logical relation in the presence of recursive types (see [3], for example).
So extended, the λν-calculus gives a core non-strict functional programming language
with Odersky-style local names. For reasons of efficiency one would prefer call-by-need
rather than the call-by-name operational semantics in Figure 3. Can one of the stand-
ard operational descriptions of call-by-need [9, 17] be combined with this form of locally
scoped name? The difficulty is to reconcile its characteristic property of ‘scope intrusion’,
that is, moving νa. (−) inward to evaluation sites, with local (recursively defined) heaps,
let{x1 = e1, . . . , xn = en} in (−).
Odersky’s νa. (−) gives a version of locally scoped names whose evaluation is free of
side-effects. Therefore it makes sense to add it to meta-languages for describing the
denotational semantics of effects, such as Moggi’s computational λ-calculus [11] or the
enriched effect calculus of Egger et al [4]. Is this a useful extension of such languages?
Following [14], it should be possible to produce a version of FreshML [19] in which
the use of dynamically allocated names is replaced by Odersky-style local names and
yet the language still respects α-renaming of bound names in data, up to observational
equivalence. The convenient expressive power of FreshML would not be affected and one
would regain programming laws for observational equivalence (such as extensionality of
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function expressions) that are disrupted by dynamic allocation. (This purer version of
FreshML would not pass all of Pottier’s criteria for purity [16], since it would admit the
anonymous name νa. a as a value.)
Fernández and Gabbay [6] consider rewriting for nominal terms extended with ‘name
generation’, a non-binding scoping construct. The formal relationship between this no-
tion and dynamically allocated, or Odersky-style, local names needs clarifying. In any
case, the combination of Odersky-style local names with term-rewriting seems worth
investigating.
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