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Abstract
We show that the satisfiability and the finite satisfiability problems for two-variable logic, FO2,
over the class of structures with three linear orders, are undecidable. This sharpens an earlier
result that FO2 with eight linear orders is undecidable. The theorem holds for a restricted case
in which linear orders are the only non-unary relations. Recently, a contrasting result has been
shown, that the finite satisfiability problem for FO2 with two linear orders and with no additional
non-unary relations is decidable. We observe that our proof can be adapted to some interesting
fragments of FO2, in particular it works for the two-variable guarded fragment, GF2, even if the
order relations are used only as guards. Finally, we show that GF2 with an arbitrary number
of linear orders which can be used only as guards becomes decidable if except linear orders only
unary relations are allowed.
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1 Introduction

In the field of logic in computer science the two-variable fragment of first order logic, FO2,
plays a prominent role. With respect to the number of variables it appears to be the maximal
fragment whose satisfiability problem is decidable. The importance of FO2 can be justified
by the fact that it, or its natural extensions and variants, embeds many formalisms used in
computer science, such as modal, temporal or description logics.

The decidability of FO2 was shown in [18] by establishing a finite model property, namely,
that every satisfiable formula has a finite model of size at most doubly exponential with
respect to its length. This bound on the size of models was later improved in [7] to singly
exponential, which implied NExpTime-upper bound on the complexity of the satisfiability
problem. A corresponding lower bound follows from [15, 5], so the satisfiability problem for
FO2 is NExpTime-complete.

One particular drawback of FO2 is that it cannot express transitivity of a binary relation.
Similarly, it is not possible to say that a relation is, e.g., an equivalence relation or a linear
order. Such properties of relations are very natural and desirable in practical applications.
Thus researchers started to investigate FO2 over restricted classes of structures, in which
some distinguished binary symbols have to be interpreted as transitive relations, equival-
ences, or linear orders. The idea for such a kind of research comes from the world of modal
logics, where, e.g., in Kripke structures for multimodal logic K4 accessibility relations are
transitive and for multimodal logic S5 they are equivalences. Linear orders are very natural

∗ Partially supported by Polish Ministry of Science and Higher Education grant N N206 371339.

© Emanuel Kieronski;
licensed under Creative Commons License NC-ND

Computer Science Logic 2011 (CSL’11).
Editor: Marc Bezem; pp. 337–351

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62916476?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.CSL.2011.337
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


338 Decidability Issues for Two-Variable Logics with Several Linear Orders

when we consider temporal logics, where they model time flow, but can be also applicable in
different scenarios, like in databases or description logics, to compare objects with respect
to some parameters.

Unfortunately, the results are generally negative. It appeared that both the satisfiability
and the finite satisfiability problems for FO2 are undecidable in the presence of several
equivalence or several transitive relations [8, 9]. These results were later strengthened: FO2

is undecidable in the presence of two transitive relations [11, 10], three equivalence relations
[12], one transitive and one equivalence relation [14], or eight linear orders [19]. On the
positive side it is known that FO2 with one or two equivalence relations [12, 14], or with one
linear order [19] are decidable.

A related line of work, motivated by XML, concerns the so called data words. A data
word is a word over a finite alphabet. Positions of a word are naturally ordered by the linear
order and may be related by an equivalence relation (such an equivalence relation models
equality of data values). It was shown in [3] that FO2 is decidable over data words, even in
the case when except the linear order we are allowed to use the associated successor relation.
Some other interesting results related to data words have been recently obtained in [4], [17]
and [20]. In particular it is shown in [17] that FO2 is decidable over words whose positions
are ordered by two linear orders, with the assumption that the orders are only accessible by
the successor relations.

In this paper we perform a next step towards completing the classification of FO2 with
linear orders. We show that the satisfiability and the finite satisfiability problems for FO2 are
undecidable in the presence of three linear orders. The proof works for a restricted language,
in which, besides three linear orders, only unary predicates are used. This theorem improves
the above mentioned result from [19], where eight linear orders were used. It also sharpens
a theorem from [21] that FO2 is undecidable in the presence of two linear orders and one
total preorder. Our result seems to be optimal with respect to the number of linear orders,
since it contrasts with the main theorem from [21], that the finite satisfiability problem for
FO2 with a linear order and a total preorder (and thus also for FO2 with two linear orders)
is decidable. The proof of the last result works only in the case in which the order relations
are the only non-unary symbols; it is very likely however that it can be extended to the
general case.

It is an interesting question if there exists a natural decidable fragment of FO2 in which
elements could be compared by an unbounded number of linear orders (or, at least, by more
than two orders). When looking for analogous fragments with transitive or equivalence
relations the attention is often turned to the two-variable guarded fragment, GF2. In the
guarded fragment each occurrence of a quantifier has to be relativised by an atomic formula
containing all the variables that are free in the scope of this quantifier, e.g. ∀xy(x < y →
(Px ∧ Qy ∧ Bxy)). The guarded fragment was introduced in [1] to simulate the way ac-
cessibility relations in modal logics or roles in description logics are used. The satisfiability
problem for the guarded fragment is 2ExpTime-complete and for its two-variable version –
ExpTime-complete [6].

It appeared that GF2 is decidable with an arbitrary number of transitive or equivalence
relations, if the usage of transitive or equivalence symbols is restricted only to guards [22,
11, 13]. This last restriction is natural, since to the obtained fragment we may still translate
multimodal logics K5, S4 or some description logics with transitive roles.

In the case of linear orders the situation appears to be different. Our undecidability
proof for FO2 can be easily adapted to the case of GF2, even if linear orders are allowed to
appear only as guards. This can be done by enforcing that some additional binary relations
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are identical to the linear orders. On the other hand, if we assume that linear orders are
the only non-unary symbols and are used only as guards then GF2 becomes decidable. The
obtained variant allows only for a very limited interaction among different linear orders
(in fact, because of the syntactic restrictions, such interaction can be obtained only in an
indirect way), however it seems that not much more can be done: we explain that, e.g.,
extending the fragment by allowing guards built from conjunctions of atoms instead of just
atoms, e.g. guards like x ≤1 y ∧ x ≤2 y ∧ y ≤3 x, leads to undecidability.

The organisation of the paper is as follows. In Section 2 we present our main undecidab-
ility result for FO2 with three linear orders and discuss some of its refinements. In Section
3 we show that GF2 with an arbitrary number of linear orders is decidable if linear orders
are used only as guards and if there are no additional non-unary symbols.

2 Undecidability

2.1 Tilings and grids
The reduction of the tiling problem to satisfiability of some variants of two-variable logic
was presented in [8, 9]. Some ramifications, particularly suited for the case of linear orders,
were given in [19]. For convenience we present (adaptations of) some basic definitions and
lemmas (without proofs) from [19].

Let GZ be the canonical grid structure on Z × Z: GZ = (Z2, H, V ), H = {((p, q), (p +
1, q)) : p, q ∈ Z}, V = {((p, q), (p, q + 1)) : p, q ∈ Z}. Similarly, let GN be the canonical grid
on N × N and let Gm denote the standard grid on a finite m ×m torus: Gm = (Z/mZ ×
Z/mZ, H, V ), H = {((p, q), (p′, q)) : p′ − p ≡ 1 mod m}, V = {((p, q), (p, q′)) : q′ − q ≡ 1
mod m}.

Let Gi = (Gi, Hi, Vi), i = 1, 2. G1 is homomorphically embeddable into G2 if there is a
homomorphism π : G1 → G2, i.e. a mapping π such that for all v, v′ ∈ G1: (v, v′) ∈ H1 ⇒
(π(v), π(v′)) ∈ H2 and (v, v′) ∈ V1 ⇒ (π(v), π(v′)) ∈ V2.

We are interested in structures which are grid-like in the following sense.

I Definition 1. An infinite structure G = (G,H, V ) is called grid-like if GN is homomorph-
ically embeddable into G; a finite G is grid-like if some Gm is homomorphically embeddable
into G.

Grid-likeness is implied by a simple local criterion. We say that H is complete over V
in G = (G,H, V ) if G satisfies ∀xyx′y′((Hxy ∧ V xx′ ∧ V yy′)→ Hx′y′).

I Lemma 2. Assume that G = (G,H, V ) satisfies the FO2-axiom ∀x(∃yHxy ∧ ∃yV xy). If
H is complete over V , then G is grid-like.

I Lemma 3. Let C be a class of structures. If there exists an FO2 sentence η such that:

(a) GZ can be expanded to a structure in C satisfying η,
(b) for every n ∈ N there exists k ∈ N such that Gkn can be expanded to a structure in C
satisfying η,

(c) every model of η from C is grid-like,

then both satisfiability and finite satisfiability of FO2 over C are undecidable. In fact FO2

forms even a conservative reduction class over C. If at least (a) and (c) hold then the
(general) satisfiability problem is undecidable.

CSL’11
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For a more detailed exposition of the technique see [19]. For some background on con-
servative reduction classes see [2].

The general idea of our proof of the undecidability of FO2 with three linear orders is
similar to the idea from the proof for the case of eight linear orders from [19], however details
are much tricker.

To postpone some technical problems and present the main ideas of the proof clearly, in
the first instance we consider only the (general) satisfiability case. First, we describe the
expansion ḠZ of the standard infinite Z×Z grid by three linear orders ≤1,≤2,≤3 and some
unary predicates. Then we construct a formula η capturing some important properties of
ḠZ. We argue that every model of η, interpreting symbols ≤i as linear orders, is grid-like.
By Lemma 3 this implies the undecidability of the satisfiability problem for FO2 over the
class of structures with three linear orders.

Further, we describe expansions of the finite 12k×12k grids, Ḡ′12k in a signature contain-
ing some additionall unary symbols. We modify slightly the formula η, obtaining η′ which
will be satisfied in Ḡ′12k for all k ∈ N. It will also appear that η′ satisfies all assumptions of
Lemma 3, which shows that FO2 forms a conservative reduction class (in particular the finite
satisfiability problem is undecidable) over the class of structures with three linear orders.

2.2 Intended infinite model
We describe the expansion ḠZ of the standard Z × Z grid. The basic repeating pattern of
the grid expansion consists of 24 elements, forming a 4×6 rectangle. To distinguish types of
elements inside such rectangles we use unary predicates Pij , 0 ≤ i ≤ 3, 0 ≤ j ≤ 5. Namely,
if a = (k, l) then ḠZ |= Pija if and only if i = k mod 4 and j = l mod 6.

In Fig. 1 we illustrate the order ≤1. The set of elements Z×Z is divided into horizontal
≤1-zones, each of them consisting of three rows of elements. Formally, the ≤1-zones are
defined as Z≤1

k = {(i, 3k), (i, 3k + 1), (i, 3k + 2) : i ∈ Z} for k ∈ Z. If a ∈ Z≤1
k , b ∈ Z≤1

l ,
and k < l then ḠZ |= b ≤1 a. The points in a zone are organised in U-shaped six-element
blocks, called ≤1-blocks. If for elements a, b ∈ Z≤1

k , a belongs to a ≤1-block located to the
left from the ≤1-block of b then ḠZ |= b ≤1 a. Look at Fig. 1 to see the ≤1-ordering inside
the ≤1-blocks. Note that the ≤1-blocks in the odd zones are shifted by 1 with respect to
the even zones.

The orders ≤2 and ≤3 follow the same pattern, but are shifted with respect to the order
≤1. To obtain the picture for ≤2 we shift the picture for ≤1 by the vector (1, 1). Similarly,
the picture for ≤3 is obtained by shifting the picture for ≤1 by (0, 2). This implies that
the zones determined by different order relations do not coincide. See Fig. 2 to see how
≤i-blocks of all three orders are located in the grid. For clarity ≤i-relations are shown only
inside ≤i-blocks. Recall that ≤i-arrows among ≤i-zones go from up to down and among the
≤i-blocks inside a zone – from right to left.

Fig. 3 shows relations ≤1 and ≤3 between the neighbouring points from two consecutive
rows of the grid. Note that elements connected by H or by V are related by ≤1, ≤3
incompatibly. This observation extends to the crucial property of ḠZ, which will be used to
axiomatise the grid relations H, V : all three orders coincide on points whose y-coordinates
differ by at least 3, or which belong to the same row and their x-coordinates differ by at least
2; and, on the other hand, points connected by the grid relation H or by the grid relation V
are related incompatibly by some pair of the orders. We state it precisely in the following
observation. We also formalise another important property of our grid expansion (part (iv))
which will be captured by the formula η; this will allow to show that in all models of η, H
is complete over V .
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Figure 1 The order ≤1. Solid arrows represent the successor relation, dotted arrows illustrate
relations among ≤1-zones. The lower-left element is the point (0, 0).

I Observation 4. (i) Let (k, l), (k′, l′) ∈ Z × Z be two points in ḠZ, such that l′ − l ≥ 3.
Then for all i we have (k′, l′) ≤i (k, l).

(ii) Let (k, l), (k′, l′) ∈ Z× Z be two points in ḠZ, such that l = l′ and k′ − k ≥ 2. Then
for all i we have (k′, l′) ≤i (k, l).
(iii) If (k, l) and (k′, l′) are connected by H or by V , i.e, if k = k′ and l′ − l = 1 or l = l′

and k′ − k = 1, then there exist i, j such that (k, l) ≤i (k′, l′) and (k′, l′) ≤j (k, l) or
(k, l) ≤j (k′, l′) and (k′, l′) ≤i (k, l). Namely, if l mod 3 = 0 then i = 1, j = 3, if l
mod 3 = 1 then i = 1, j = 2, and if l mod 3 = 2 then i = 2, j = 3.
(iv) For all points a, b, c, d ∈ Z × Z, if ḠZ |= V ba ∧Hbc ∧ V cd, then there exist i, j such
that a ≤i b ≤i c ≤i d and d ≤j c ≤j b ≤j a. Namely, if b = (k, l) then i, j can be chosen
as in point (iii).

Proof. Claim (i) follows from the fact that for all i the point (k′, l′) belongs to a ≤i-zone
located above the zone of (k, l). Claim (ii) follows from the fact that for all i both points
belong to the same ≤i-zone, and that for all orders the point (k, l) belongs to a ≤i-block
located to the left from the ≤i-block of (k′, l′). Claims (iii),(iv) follow from an inspection of
Fig. 2. J

2.3 The formula η

The formula η consists of four conjuncts η = ηG∧ηH ∧ηV ∧ηC . The first conjunct explicitly
enforces horizontal and vertical successors in the grid:

ηG = ∀x(∃yHxy ∧ ∃yV xy).

CSL’11
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Figure 2 U-shaped blocks in the orders: ≤1 (black arrows), ≤2 (blue arrows), ≤3 (red arrows).
For clarity only successor ≤i-connections inside ≤i-blocks are shown.

Figure 3 Relations ≤1 (black arrows) and ≤3 (red arrows) between the neighbouring points
from two consecutive rows. Solid arrows represent successor relations, dotted arrows represent
non-successor ≤i-relations.

The next conjunct ηH axiomatises H:

ηH = ∀xy(Hxy ↔
∨

0 ≤ i ≤ 3
0 ≤ j ≤ 5

(Pijx ∧ Pi+1,jy ∧ λHij (x, y))),

where i+ 1 is calculated modulo 4, and λHij (x, y) says how points x, y are related by two of
the three orders; namely λHi0 and λHi3 speak about ≤1 and ≤3, λHi1 and λHi4 speak about ≤1
and ≤2, λHi2 and λHi5 speak about ≤2 and ≤3, e.g.:

λH00 = x ≤1 y ∧ y ≤3 x,

λH01 = x ≤1 y ∧ y ≤2 x,

λH31 = y ≤1 x ∧ x ≤2 y.
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The next conjunct ηV speaks about V -connections. It is similar to ηH , however this time
we impose only the implication from left to right:

ηV = ∀xy(V xy →
∨

0 ≤ i ≤ 3
0 ≤ j ≤ 5

(Pijx ∧ Pi,j+1y ∧ λVij(x, y)),

where j + 1 is calculated modulo 6; again λVi0 and λVi3 speak about ≤1 and ≤3, λVi1 and λVi4
speak about ≤1 and ≤2, λVi2 and λVi5 speak about ≤2 and ≤3, e.g.:

λV00 = y ≤1 x ∧ x ≤3 y,

λV10 = x ≤1 y ∧ y ≤3 x,

λV21 = y ≤1 x ∧ x ≤2 y.

Finally, ηC says that some points, related incompatibly by two of the three orders are
connected by the third one in a specific way:

ηC = ∀xy
∧

0 ≤ i ≤ 3
0 ≤ j ≤ 5

((Pijx ∧ Pi+1,jy)→ κij(x, y)),

where i+ 1 is calculated modulo 4. Formulae κi0 and κi3 enforce ≤1 relations, κi1 and κi4
– ≤2 relations, κi2 and κi5 – ≤3 relations, e.g.:

κ01 = (x ≤1 y ∧ y ≤3 x)→ y ≤2 x

κ15 = (x ≤1 y ∧ y ≤2 x)→ x ≤3 y

It can be readily checked that ḠZ is a model of η. In particular, the implication from
right to left in ηH does not impose any unwanted H-connections. Indeed, by Observation 4
(i), (ii) the formula

∨
i,j

(Pija ∧ Pi+1,jb ∧ λHij (a, b)) is not satisfied by non-neighbouring points

a, b of the grid, since λHij (a, b) says that a, b are related incompatibly by some two orders.

2.4 Grid-likeness
Now let us see that every model M |= η interpreting ≤1,≤2,≤3 as linear orders1 is grid like.
Since M |= ηG, by Lemma 2, it suffices to check that H is complete over V . Assume, that
a, b, c, d ∈M are such that M |= Hbc∧V ba∧V cd. We want to see that M |= Had. We need
to consider several cases, depending on the Pij-type of b. Let us go through one of them.
Assume that M |= P00b. Then, the implications from left to right in ηH and ηV imply

M |= P10c ∧ P01a ∧ P11d ∧ a ≤1 b ∧ b ≤1 c ∧ c ≤1 d ∧ d ≤3 c ∧ c ≤3 b ∧ b ≤3 a.

Since ≤1 and ≤3 are linear orders, and thus transitive, it follows that M |= a ≤1 d∧ d ≤3 a.
Now, consider ηC . It follows that M |= κ01(a, d). The implication in κ01 guarantees that
M |= d ≤2 a. Thus M |= P01a ∧ P11d ∧ λH01(a, d), so the implication from right to left in ηH
finally enforces M |= Had.

The remaining cases can be treated in a similar way.
This finishes the proof of the undecidability of the general satisfiability problem. To

obtain the undecidability of finite satisfiability we need to work further on some details.

1 Actually, for grid-likeness it is enough to assume that they are interpreted as transitive relations.

CSL’11
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2.5 Finite models

We describe first how to construct our intended expansions Ḡ′12k of the standard grids on
12k×12k tori, for k ≥ 1. Then we explain how to modify η to a formula η′ which is satisfied
in such expansions, without losing the property that all models of η′ are grid-like.

To simplify the presentation we describe the grid expansion Ḡ′12. The larger grid expan-
sions are constructed analogously. Let Ḡ12 be the restriction of ḠZ to the set {0, . . . , 11} ×
{0, . . . , 11} in which additionally, for all l, the element (11, l) is connected by H to (0, l), and
the element (l, 11) is connected by V to (l, 0) (i.e. the sides of the square are appropriately
glued). Ḡ12 is not a model of η for some trivial reasons; among other things the implication
from left to right in ηH is violated, e.g. (11, 1) is inappropriately related to (0, 1) by ≤1.

Thus we slightly modify Ḡ12 to obtain Ḡ′12. In Fig. 4 the order≤1 is shown. The≤1-zones
are defined analogously to the infinite case. In all odd zones, i.e. zones built from elements
of types Pi3, Pi4, Pi5, the ≤1-connections remain as they are in Ḡ12. The ≤1-connections
are modified in even zones. We describe the zone built from the rows 0, 1, 2. The element
(10, 2) is made the minimal element in this zone. The next elements in the order are (10, 1),
(10, 0), as in Ḡ12, the next one however is not (11, 0) but (8, 2). Then the order coincides
with the order in Ḡ12 until the element (1, 2) is reached. Its successor is (11, 0), the next
element is (11, 1), and the maximal element in this zone is (11, 2). More intuitively, we may
think that the rightmost U in Ḡ12 is cut into two parts: the left one is made minimal in the
zone and the right one – maximal, with respect to ≤1.

Analogously to the case of infinite models, to obtain the pictures for ≤2 and ≤3 we shift
the picture for ≤1 by the vectors (1, 1) and (0, 2), respectively, taking into account that this
time shifts are made on a torus, so, e.g., the minimal element with respect to ≤2 will be the
element (0, 0).

We also introduce new unary symbols S0 – S3, intended to mark four consecutive columns
of the grid (columns 10, 11, 0, 1 in our example) and Z0 – Z3, intended to mark four consec-
utive rows of the grid (rows 2, 1, 0, 11 in our example). Their relevance will become clear in
a moment.

The described structure Ḡ′12 satisfies ηG, ηV and the implication from left to right in ηH .
Unfortunately, parts (i) and (ii) of Observation 4 are not true this time, which makes the
implication from right to left in ηH not satisfied. Let us explain why.

Note first that ηH enforces H-connections between distant elements from the same row.
Consider e.g. the element (11, 1). In its row this element is maximal with respect to ≤1 and
minimal with respect to ≤2. Thus ηH enforces a H-connection e.g. from (2, 1) to (11, 1).

Similarly, some unwanted H-connections are enforced also between elements from dif-
ferent zones. Each of the orders divides the set of elements into four zones. In Fig. 5 it is
shown how ≤1-, ≤2- and ≤3-zones are related by ≤1, ≤2 and ≤3, respectively. Note that the
elements in the row marked Z1 belong to the ≤3-zone which is minimal with respect to ≤3,
and to the ≤2- and ≤3-zones which are maximal with respect to, resp., ≤1 and ≤3. Similarly,
the elements in the row marked Z2 belong to the ≤2- and ≤3-zones which are minimal with
respect to, resp., ≤2 and ≤3, and to the ≤1-zone which is maximal with respect to ≤1. This
means that ηH enforces some unwanted H-connections to (or from) Z1 and Z2, from (or to)
some distant elements in the grid, e.g. the element (1, 0) should be connected by H to (2, 6).

To fix the problems we use the mentioned unary relations S0, S1, S2, S3 and Z0, Z1, Z2, Z3.
Let

αS(x, y) = (S0x ∧ S1y) ∨ (S1x ∧ S2y) ∨ (S2x ∧ S3y) ∨ (¬S1x ∧ ¬S1y ∧ ¬S2x ∧ ¬S2y),
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Figure 4 The order ≤1 in the finite grid Ḡ′
12

αZ(x, y) =
∧

0≤i≤3
(Zix↔ Ziy).

For Ḡ′12k we have now a slightly weaker observation than Observation 4 part (i) and (ii).
I Observation 5. Let a = (k, l), b = (k′, l′) ∈ Z×Z be two distinct points in Ḡ′12k, such that
Ḡ′12k |= αS(a, b) ∧ αZ(a, b). Then:

(i) If the distance in the torus between the row l and the row l′ is at least 3 then for all
i we have (k′, l′) ≤i (k, l) or for all i we have (k, l) ≤i (k′, l′).
(ii) If l = l′ and the distance in the torus between columns k′ and k is at least 2 then for
all i we have (k′, l′) ≤i (k, l) or for all i we have i we have (k, l) ≤i (k′, l′).

Proof. To see claim (i) note that elements a, b cannot belong to the rows marked by Zi (since
they satisfy αZ(a, b)). For the remaining rows an argument similar to the argument from the
proof of Observation 4 (i) works. To see claim (ii) note that the elements a, b cannot belong
to the columns marked S1 or S2 (since they satisfy αS(a, b)). For the remaining columns an
argument similar to the argument from the proof of Observation 4 (ii) works. J

Observe that points (iii) and (iv) from Observation 4 remain true.
We modify η to allow and impose H-connection to S1 only from S0, to S2 only form S1,

from S1 only to S2, from S2 only to S3; and to Zi only from Zi, for 0 ≤ i ≤ 3.
We change ηH to:

η′H = ∀xy(Hxy ↔ (αS(x, y) ∧ αZ(x, y) ∧
∨

0 ≤ i ≤ 3
0 ≤ j ≤ 5

(Pijx ∧ Pi+1,jy ∧ λHij (x, y))).

CSL’11
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Figure 5 The ≤1- ≤2- and ≤3-zones in Ḡ′
12

We define additional conjuncts which say that V -connected elements are given consistent
Si- and Zi-values:

ηS =
∧

0≤i≤3
∀xy(V xy → (Six↔ Siy)),

ηZ = ∀xy(V xy → ((δ(x) ∧ δ(y)) ∨ (δ(x) ∧ Z3y) ∨ (Z0x ∧ δ(y)) ∨
∨

1≤i≤3
(Zix ∧ Zi−1y))),

where δ(x) =
∧

0≤i≤3 ¬Zix.
We modify also ηC , since it may also generate some unwanted relations:

η′C = ∀xy
∧

0 ≤ i ≤ 3
0 ≤ j ≤ 5

(Pijx ∧ Pi+1,jy ∧ αS(x, y) ∧ αZ(x, y))→ κij(x, y)).

Finally, let the conjunct ηU says that every element satisfies at most one of the Si-
predicates and at most one of the Zi-predicates, and the Si and Zi-values imply proper Pij
values, e.g. ∀x(Z0x→ (P02x ∨ P12x ∨ P22x ∨ P32x)).

Now let η′ = ηG ∧ η′H ∧ ηV ∧ ηS ∧ ηZ ∧ η′C ∧ ηU . Every grid G12k can now be expanded to
a model Ḡ′12k of η′ analogously to the described expansion of G12. Also the infinite grid GZ
has an expansion to a model of η′. It is enough to take ḠZ and mark columns −2,−1, 0, 1
with, resp., S0, S1, S2, S3, and rows 2, 1, 0,−1 with, resp., Z0, Z1, Z2, Z3.

Let us finally sketch a fragment of the argument that every model M of η′ interpreting ≤i
as linear orders is grid-like. Assume, that a, b, c, d ∈M are such that M |= Hbc∧V ba∧V cd.
We want to see that M |= Had. This time the cases we have to consider are distinguished
not only by the values o Pij but also by the values of the additional relations Si, Zi. Let us
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consider one of the cases, namely, M |= P00b∧S2b∧Z2b. Then, the implication from left to
right in η′H , and the formulae ηV , ηS , and ηZ imply

M |= P10c ∧ P01a ∧ P11d ∧ S2a ∧ Z1a ∧ S3c ∧ Z2c ∧ S3d ∧ Z1d

and
M |= a ≤1 b ∧ b ≤1 c ∧ c ≤1 d ∧ d ≤3 c ∧ c ≤3 b ∧ b ≤3 a.

Since ≤1 and ≤3 are linear orders, and thus transitive, it follows that M |= a ≤1 d∧ d ≤3 a.
Now, consider η′C . Note that αS(a, d) and αZ(a, d) are true. It follows that M |= κ01(a, d).
The implication in κ01 guarantees that M |= d ≤2 a. Thus M |= P01a ∧ P11d ∧ λH01(a, d) ∧
αS(a, d) ∧ αZ(a, d). Finally, the implication from right to left in ηH enforces M |= Had.

We left the remaining cases to the reader.

We have proved that FO2 forms a conservative reduction class over the class of structures
with three linear orders.

2.6 Remarks on the proof and discussion
In our proof we use the binary symbols H and V . They are convenient to present the
construction but do not play a crucial role. In a reduction from the tiling problem they
can be simulated by combinations of unary predicates and the order relations. Namely, in η
the conjunct ηG can be substituted by the conjunction of formulae enforcing for every x the
existence of two elements related to x by the linear orders in a specific way:

∧
i,j

∀x(Pijx →

∃y(ηHij (x, y) ∧ Pi+1,jy) ∧ ∃y(ηVij(x, y) ∧ Pi,j+1y)). The formulae ηH and ηV can then be
omitted. Thus we obtain the following, strong version of our main undecidability result.

I Theorem 6. FO2 forms a conservative reduction class over the structures with three linear
orders and no additional non-unary symbols.

A question arises whether there exists an elegant and useful fragment of FO2 which is
decidable in the presence of an arbitrary number of linear orders (or at least in the presence
of three linear orders). A natural candidate is the two-variable guarded fragment, GF2. Let
us recall the definition of the guarded fragment. The guarded fragment, GF, of first-order
logic is defined as the least set of formulae such that: (i) every atomic formula belongs to
GF; (ii) GF is closed under logical connectives ¬,∨,∧,→; and (iii) quantifiers are relativised
by atoms, i.e. if ϕ(x,y) is a formula of GF and γ(x,y) is an atomic formula containing all
the free variables of ϕ, then the formulae ∀y(γ(x,y) → ϕ(x,y)) and ∃y(γ(x,y) ∧ ϕ(x,y))
belong to GF. The atoms γ(x,y) are called guards.

Syntactically, not all of the formulae we use in our undecidability proof are guarded.
However there is no problem to make them guarded, since linear orders are total and thus
can be used as guards if necessary, e.g. ∀xyψ(x, y) can be rewritten as ∀xy(x ≤1 y →
ψ(x, y)) ∧ ∀xy(y ≤1 x → ψ(x, y)). Thus GF2 is undecidable in the presence of three linear
orders. This situation is similar to the case of GF2 with equivalence or transitive relations,
which are also undecidable (with three equivalences [12], and with two transitive relations
[11, 10]). However if we restrict the usage of special relations (i.e. equivalence or transitive
relations) to guards only, then GF2 becomes decidable, with an arbitrary number of special
relations [22, 11, 13]. Unfortunately, a similar restriction does not help in the case of linear
orders. A simple formula ∀xy(x ≤i y → (x 6= y → (Rixy ∧ ¬Riyx))) ∧ ∀xRixx, in which
Ri is a fresh binary symbol, enforces Ri to behave exactly as ≤i. Thus Ri can replace all
occurrences of ≤i outside guards.
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I Corollary 7. The satisfiability and the finite satisfiability problems for GF2, in the class
of structures with three linear orders, are undecidable even if linear orders are used only in
guards.

We emphasise that to obtain Corollary 7 some binary symbols except linear orders are
required. It appears that if we allow only unary symbols except linear orders and allow
to use linear orders only as guards then, as it is argued in the next section, GF2 becomes
decidable with an arbitrary number of linear orders. The obtained decidable variant, which
will be called monadic GF2, allows only for a very restricted interaction among different
linear orders (in fact, because of the syntactic restrictions such interaction can be obtained
only in an indirect way). However, it seems that the situation cannot be improved too
much. For example, if instead of just linear orders we allow conjunctions of linear orders as
guards then the logic becomes undecidable. This fact can be inferred using the exponential
translation of FO2 to a variant of Boolean modal logic from [16], but can be also proved
directly, by observing that the formulae we construct in Section 2 can be rewritten to the
desired variant. Indeed, consider the place which looks most problematically, i.e. the formula
ηC . It says e.g. that elements x, y satisfying P01x and P11y which are related by ≤1 and ≤3
in the following way: x ≤1 y ∧ y ≤3 x should satisfy also y ≤2 x. This can be enforced by
saying: ∀xy((x ≤1 y∧y ≤3 x∧x ≤2 y)→ (¬P01x∨¬P11y)). Again we use the fact that x, y
has to be connected by ≤2 and we only forbid the connection in the unwanted direction.

I Corollary 8. The satisfiability and the finite satisfiability problems for the extension of
monadic GF2 with three linear orders, which allows conjunctions of atoms of the form x ≤i y
and y ≤i x (for i = 1, 2, 3) as guards, are undecidable.

3 Decidability

In this section we work with signatures of the form (σ,≤1, . . . ,≤k), where σ is a set of
unary symbols and ≤i are binary symbols. We assume that the equality is also allowed.
Formally, monadic GF2 is the fragment of GF2 containing formulae over such signatures in
which symbols ≤1, . . . ,≤k are used only as guards. We consider satisfiability of monadic
GF2 in the class of structures in which ≤1, . . . ,≤k are interpreted as linear orders, which
we denote as LIN (≤1, . . . ,≤k). We will simply say that a monadic GF2 sentence ϕ has a
model (is satisfiable, finitely satisfiable) if it has a model (is satisfiable, finitely satisfiable)
in LIN (≤1, . . . ,≤k).

A 1-type (over σ) is a subset of σ. If α is a 1-type then we denote by α(x) the conjunction
of the atoms Px, for all P ∈ α, and the atoms ¬Qx, for all Q 6∈ α. For a given structure A

we say that an element a realises a type α if A |= α(a).

I Definition 9. A monadic GF2 sentence ϕ is in normal form if it is a conjunction of
formulae of the following form:
∃x(γ(x) ∧ ψ(x)),
∀x(γ(x)→ ∃y(x ≤i y ∧ x 6= y ∧ ψ(x, y))),
∀x(γ(x)→ ∃y(y ≤i x ∧ x 6= y ∧ ψ(x, y))),
∀x(γ(x)→ ψ(x)),
∀xy(x ≤i y → (x 6= y → ψ(x, y))).

where all γ(x) are atomic formulae (possibly of the form x = x), and ψ(x), ψ(x, y) are
quantifier-free formulae over monadic vocabulary σ.

The (finite) satisfiability problem for monadic GF2 can be reduced to the (finite) satis-
fiability problem for disjunctions of exponential number of linearly bounded monadic GF2
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sentences in normal form. See [22] for the proof of a similar result. Since we are going to
show that (finite) sastisfiability is in NExpTime it is enough to consider formulae in normal
form.

The decidability proof for monadic GF2 is based on the proof for FO2 with one linear
order from [19]. Roughly speaking, after fixing the universe, the (slightly simplified) con-
struction from [19] is applied here to the particular orders. Below we present a sketch of the
proof.

3.1 General satisfiability
I Definition 10. Let a tuple (T ,K,S1, . . .Sk) be such that:
T is a set of 1-types over σ,
K is a subset of T , called the set of royal 1-types,
for every 1 ≤ i ≤ k, Si = (Si1, . . . , Siki

) is a sequence of subsets of T , such that
⋃ki

j=1 S
i
j =

T , each type from K belongs to exactly one set from Si, and the types from K appear
only in singletons.

We say that such a tuple is a certificate of satisfiability for a normal form monadic GF2

sentence ϕ if the following conditions hold:

(a) For every conjunct of ϕ of the form ∃x(γ(x) ∧ ψ(x)) there exists a type α ∈ T such
that α(x) |= γ(x) ∧ ψ(x).

(b) For every i, j, for every type α ∈ Sij and for every conjunct of ϕ of the form ∀x(γ(x)→
∃y(x ≤i y ∧ x 6= y ∧ ψ(x, y))), if α(x) |= γ(x) then there exists α′ in Sij′ , such that
α(x), α′(y) |= ψ(x, y), where j′ ≥ j, and if α ∈ K then j′ > j.

(c) For every i, j, for every type α ∈ Sij and for every conjunct of ϕ of the form ∀x(γ(x)→
∃y(y ≤i x ∧ x 6= y ∧ ψ(x, y))), if α(x) |= γ(x) then there exists α′ in Sij′ , such that
α(x), α′(y) |= ψ(x, y), where j′ ≤ j, and if α ∈ K then j′ < j.
(d) For every type α ∈ T and for every conjunct of ϕ of the form ∀x(γ(x) → ψ(x)), we
have α(x) |= γ(x)→ ψ(x).
(e) For every i, j ≤ j′, for every pair of types α ∈ Sij , α′ ∈ Sij′ , such that it is not the
case that α = α′ and α ∈ K, then for every conjunct of the form ∀xy(x ≤i y → (x 6=
y → ψ(x, y))), we have α(x), α′(y) |= ψ(x, y).

I Lemma 11. Let ϕ be a monadic GF2 sentence in the normal form. Then ϕ is satisfiable
if and only if it has a certificate of satisfiability.

Proof. ⇐ Assume that (T ,K,S1, . . .Sk) is a certificate of satisfiability for ϕ. We build
a model A whose universe A consists of exactly one realisation of each type from K and
infinitely many realisations of each type from T \K. For every i we define the order ≤i. We
split A into sets Ai1, . . . , Aiki

in such a way that Aij contains infinitely many realisations of
α ∈ Sij if α 6∈ K and exactly one realisation of α ∈ Sij if α ∈ K. Now if a ∈ Aij , a′ ∈ Aij′
and j < j′ then we set A |= a ≤i a′. If Sij consists of non-royal types α0, . . . , αl−1 then
we make the order ≤i on Aij isomorphic to the natural order on Z, in such a way that the
element corresponding to the number m has 1-type αm mod l. It is readily checked that the
conditions on the certificate imply that A |= ϕ.
⇒ Let A |= ϕ. We show how to extract a certificate of satisfiability for ϕ from A. We

define T to be the set of 1-types realised in A and K to be the set of 1-types realised exactly
once in A.

For a given i and a type α ∈ T we define Biα to be the minimal set containing all the
realisations of α such that for all a ≤i b ≤i c, if a, c ∈ Biα then b ∈ Biα. Let us denote by
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Aiα− the subset of A consisting of the elements smaller than all the elements from Biα, and
by Aiα+ the union of Biα and Aiα− . Observe that the sets Aiα+ , Aiα− are closed downwards.
Let F i0, . . . , F iki

be an ordered list of all the sets from {Aiα+ , Aiα− : α ∈ T } such that if k < l

then F ik ⊆ F il . Note that ki is linear in the number of 1-types and that F i0 = ∅ and F iki
= A.

Let us define Di
j = F ij \ F ij−1 for 1 ≤ j ≤ ki. The sets Di

j are called i-regions.
Let Sij be the set of 1-types realised inDi

j . This finishes the definition of (T ,K,S1, . . .Sk).
The properties (a)-(d) of the certificate are satisfied in an obvious way. Let us prove (e).

If j < j′ then the conclusion is straightforward. Similarly, if j = j′ and α = α′ is a royal
type. Assume that j = j′ and α, α′ ∈ Sij are two non-royal types. It is enough to show that
in A there are two distinct elements aα, bα of type α and two distinct elements a′α′ , b′α′ of
type α′ such that A |= aα ≤i a′α′ and A |= b′α′ ≤i bα.

If α = α′ then we have at least two realisations a, b of α in A. Assume that a ≤i b.
Then we can take aα = b′α = a and a′α = bα = b. If α 6= α′ consider elements a, a′ from A,
of types α, α′, respectively, in the i-region Di

j . Assume that a ≤i a′ (the opposite case is
symmetric). Assume that there is no realisation of α, which is greater, with respect to ≤i
than a′. It means that a′ 6∈ Biα (since otherwise Biα would not be minimal). Since a ∈ Biα
we have a contradiction with the assumption that a, a′ are member of the same i-region.
So there exists a realisation b of α such that A |= a′ ≤i b. We can take aα = a, bα = b,
aα′ = bα′ = a′. J

The construction in the proof of the lemma shows that every satisfiable monadic GF2

sentence ϕ in the normal form has a certificate of size polynomial in the number of 1-types.
Since we may assume that σ contains only symbols appearing in ϕ it implies that the size
of a certificate can bounded exponentially in |ϕ|. Checking that a given tuple is indeed a
certificate of satisfiability can easily be done in polynomial time. Thus:

I Corollary 12. The satisfiability problem for monadic GF2 is decidable in NExpTime.

3.2 Finite satisfiability
The case of finite satisfiability is even simpler than the case of general satisfiability.

I Lemma 13. Let ϕ be a GF2 sentence in normal form. If ϕ is finitely satisfiable then ϕ

has a model with at most 2k · 2|σ| elements, where k is the number of linear orders in the
signature.

Proof. Let A be a model of ϕ. Mark in A all the elements whose 1-types are realised only
once. For every 1-type α, such that there are at least two realisations of α in A, and for
every 0 ≤ i ≤ k, mark the ≤i-minimal and the ≤i-maximal realisations of α. Let A′ be the
substructure of A induced by the marked elements. It is easy to verify that A′ |= ϕ. J

I Corollary 14. The finite satisfiability problem for monadic GF2 is in NExpTime.

3.3 Lower bound
The satisfiability problem for GF2 in the class of all structures is in ExpTime [6]. On the
other hand FO2 is NExpTime-hard even if only unary symbols are allowed [15, 5]. Clearly
such monadic FO2 can be reduced to monadic GF2 with just one linear order ≤, since
this order can alway be used as a guard, e.g. a formula ∀xyψ(x, y) can be translated to
∀xy(x ≤ y → ψ(x, y)) ∧ ∀xy(y ≤ x→ ψ(x, y)). Thus:

I Theorem 15. The satisfiability and the finite satisfiability problems for monadic GF2 are
NExpTime-complete.
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