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Abstract
We extend first-order logic with counting by a new operator that allows it to formalise a limited
form of recursion which can be evaluated in logarithmic space. The resulting logic LREC has a
data complexity in LOGSPACE, and it defines LOGSPACE-complete problems like deterministic
reachability and Boolean formula evaluation. We prove that LREC is strictly more expressive than
deterministic transitive closure logic with counting and incomparable in expressive power with
symmetric transitive closure logic STC and transitive closure logic (with or without counting).
LREC is strictly contained in fixed-point logic with counting FP+C. We also study an extension
LREC= of LREC that has nicer closure properties and is more expressive than both LREC and
STC, but is still contained in FP+C and has a data complexity in LOGSPACE.

Our main results are that LREC captures LOGSPACE on the class of directed trees and that
LREC= captures LOGSPACE on the class of interval graphs.
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1 Introduction

Descriptive complexity theory gives logical characterisations for most of the standard com-
plexity classes. For example, Fagin’s Theorem [6] states that a property of finite structures
is decidable in NP if and only if it is definable in existential second-order logic Σ1

1. More
concisely, we say that Σ1

1 captures NP. Similarly, Immerman [11] and Vardi [23] proved
that fixed-point logic FP captures PTIME,1 and Immerman [13] proved that deterministic
transitive closure logic DTC captures LOGSPACE. However, these and all other known logical
characterisations of PTIME and LOGSPACE and all other complexity classes below NP have
a serious drawback — they only hold on ordered structures. (An ordered structure is a
structure that has a distinguished binary relation which is a linear order of the elements of
the structure.) The question of whether there are logical characterisations of these complexity
classes on arbitrary, not necessarily ordered structures, is viewed as the most important open
problem in descriptive complexity theory. For the class PTIME this problem goes back to
Chandra and Harel’s fundamental article [3] on query languages for relational databases.

1 More precisely, Immerman and Vardi’s theorem holds for least fixed-point logic and the equally expressive
inflationary fixed-point logic. Our indeterminate FP refers to either of the two logics. For the counting
extension FP+C considered below, it is most convenient to use an inflationary fixed-point operator. See
any of the textbooks [4, 9, 14, 20] for details.
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For PTIME, at least partial positive results are known. The strongest of these say that
fixed-point logic with counting FP+C captures PTIME on all classes of graphs with excluded
minors [10] and on the class of interval graphs [17]. It is well-known that fixed-point logic
FP (without counting) is too weak to capture PTIME on any natural class of structures that
are not ordered. The idea that the extension FP+C by counting operators might remedy the
weakness of FP goes back to Immerman [12]. Together with Lander he proved that FP+C
captures PTIME on the class of trees [15]. Later, Cai, Fürer, and Immerman [2] proved that
FP+C does not capture PTIME on all finite structures.

Much less is known for LOGSPACE. In view of the results described so far, an obvious
idea is to try to capture LOGSPACE with the extension DTC+C of deterministic transitive
closure logic DTC by counting operators. However, Etessami and Immerman [5] proved that
(directed) tree isomorphism is not definable in DTC+C, not even in the stronger transitive
closure logic with counting TC+C. Since Lindell [21] proved that tree isomorphism is decidable
in LOGSPACE, this shows that DTC+C does not capture LOGSPACE.

We introduce a new logic LREC and prove that it captures LOGSPACE on directed trees.
An extension LREC= captures LOGSPACE on the class of interval graphs (and on the class
of undirected trees). The logic LREC is an extension of first-order logic with counting by
a “limited recursion operator”. The logic is more complicated than the transitive closure
and fixed-point logics commonly studied in descriptive complexity, and it may look rather
artificial at first sight. To explain the motivation for this logic, recall that fixed-point logics
may be viewed as extensions of first-order logic by fixed-point operators that allow it to
formalise recursive definitions in the logics. LREC is based on an analysis of the amount
of recursion allowed in logarithmic space computations. The idea of the limited recursion
operator is to control the depth of the recursion by a “resource term”, thereby making sure
that we can evaluate the recursive definition in logarithmic space. Another way to arrive at
the logic is based on an analysis of the classes of Boolean circuits that can be evaluated in
LOGSPACE. We will take this route when we introduce the logic in Section 3.

LREC is easily seen to be (semantically) contained in FP+C. We show that LREC contains
DTC+C, and as LREC captures LOGSPACE on directed trees, this containment is strict and,
moreover, LREC is not contained in TC+C. Then we prove that undirected graph reachability
is not definable in LREC. Hence LREC does not contain transitive closure logic TC, not even
in its symmetric variant STC, and therefore LREC is strictly contained in FP+C.

It can be argued that our proof of the inability of LREC to express graph reachability
reveals a weakness in our definition of the logic rather than a weakness of the limited recursion
operator underlying the logic: LREC is not closed under (first-order) logical reductions. To
remedy this weakness, we introduce an extension LREC= of LREC. It turns out that undirected
graph reachability is definable in LREC= (this is a convenient side effect of the definition and
not a deep result). Thus LREC= strictly contains symmetric transitive closure logic with
counting. We prove that LREC= captures LOGSPACE on the class of interval graphs. To
complete the picture, we prove that plain LREC, even if extended by a symmetric transitive
closure operator, does not capture LOGSPACE on the class of interval graphs.

The paper is organised as follows: After giving the necessary preliminaries in Section 2,
in Section 3 we introduce the logic LREC and prove that its data complexity is in LOGSPACE.
Then in Section 4, we prove that directed tree isomorphism and canonisation are definable in
LREC. As a consequence, LREC captures LOGSPACE on directed trees. In Section 5, we study
the expressive power of LREC and prove that undirected graph reachability is not definable
in LREC. The extension LREC= is introduced in Section 6. Finally, our results on interval
graphs are presented in Section 7. We close with concluding remarks and open problems.
Due to space limitations, we defer many of the proofs to the full version of this paper.
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2 Basic Definitions

N denotes the set of all non-negative integers. For all m,n ∈ N, we define [m,n] := {p ∈ N |
m ≤ p ≤ n}, and [n] := [1, n]. For mappings f : A→ B, and tuples ā = (a1, . . . , ak) over A,
we let f(ā) := (f(a1), . . . , f(ak)). For a tuple ā = (a1, . . . , ak), we let ã := {a1, . . . , ak}.

A vocabulary is a finite set τ of relation symbols, where each R ∈ τ has a fixed arity ar(R).
A τ -structure A consists of a non-empty finite set V (A), its universe, and for each R ∈ τ a
relation R(A) ⊆ V (A)ar(R). For logics L, L′ we write L ≤ L′ if L is semantically contained in
L′, and L < L′ if this containment is strict.

All logics considered in this paper are extensions of first-order logic with counting (FO+C);
see, e.g., [4, 9, 14, 20] for a detailed discussion of FO+C and its extensions. FO+C extends first-
order logic by a counting operator that allows for counting the cardinality of FO+C-definable
relations. It lives in a two-sorted context, where structures A are equipped with a number
sort N(A) := [0, |V (A)|]. FO+C-variables are either structure variables that range over the
universe of a structure, or number variables that range over the number sort. For each variable
u, let Au := V (A) if u is a structure variable, and Au := N(A) if u is a number variable.
Tuples (u1, . . . , uk) and (v1, . . . , v`) of variables are compatible if k = `, and for every i ∈ [k]
the variables ui and vi have the same type. Let A(u1,...,uk) := Au1×· · ·×Auk . An assignment
in A is a mapping α from the set of variables to V (A) ∪N(A), where for each variable u
we have α(u) ∈ Au. For tuples ū = (u1, . . . , uk) of variables and ā = (a1, . . . , ak) ∈ Aū, the
assignment α[ā/ū] maps ui to ai for each i ∈ [k], and each variable v 6∈ ũ to α(v).

FO+C is obtained by extending first-order logic with the following formula formation
rules: p ≤ q is a formula for all number variables p, q; and #ū ψ = p̄ is a formula for all
tuples ū of variables, all tuples p̄ of number variables, and all formulae ψ. Free variables are
defined in the obvious way, with free(#ū ψ = p̄) := (free(ψ) \ ũ) ∪ p̃. Formulas #ū ψ = p̄

hold in a structure A under an assignment α in A if |{ā ∈ Aū | (A,α[ā/ū]) |= ψ}| = 〈α(p̄)〉A ,
where for tuples n̄ = (n1, . . . , nk) ∈ N(A)k we let 〈n̄〉A be the number

〈n̄〉A :=
k∑

i=1
ni · (|V (A)|+ 1)i−1.

If A is understood from the context, we write 〈n̄〉 instead of 〈n̄〉A.
We write ϕ(u1, . . . , uk) to denote a formula ϕ with free(ϕ) ⊆ {u1, . . . , uk}. Given a

formula ϕ(u1, . . . , uk), a structure A and a1, . . . , ak ∈ A(u1,...,uk), we write A |= ϕ[a1, . . . , ak]
if ϕ holds in A with ui assigned to the element ai, for each i ∈ [k]. We use similar notation
for substitution: For a tuple (v1, . . . , vk) of variables that is compatible to (u1, . . . , uk), we
let ϕ(v1, . . . , vk) be the result of substituting vi for ui for every i ∈ [k]. We write ϕ[A,α; ū]
for the set of all tuples ā ∈ Aū with (A,α[ā/ū]) |= ϕ.

In many places throughout this paper we refer to various transitive closure and fixed-point
logics (all mentioned in the introduction). Our results and remarks about the relation
between these logics and our new logics LREC and LREC= are relevant for a reader familiar
with descriptive complexity theory to put our results in context, but they are not essential
to follow the technical core of this paper. Therefore, we omit the definitions and refer the
reader to the textbooks [4, 9, 14, 20].

3 The Logic LREC

Let us start our development of LREC by looking at how certain kinds of Boolean circuits
can be evaluated in LOGSPACE.

CSL’11
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The figure on the right shows a Boolean formula, i.e., a Boolean
circuit whose underlying graph is a tree. It is easy to evaluate such
circuits in LOGSPACE: Start at the output node, determine the
value of the first child recursively, then determine the value of the
second child, and so on. We only have to store the current node and
its value (if it has been determined already), since the parent node
and the next child of the parent (if any) are uniquely determined
by the current node. It is known that Boolean formula evaluation is LOGSPACE-complete
under NC1-reductions [1].2 In contrast, Boolean circuit evaluation is PTIME-complete.

≥ 2

≥ 1

1 0

1 ¬

≥ 2

1 0 1 1

Let us now turn to formulas with threshold gates, which may
contain gates of the form “≥ i” for a number i in addition to the
Boolean gates. An example is shown on the left. To evaluate such
formulas in LOGSPACE, we again start at the root and evaluate
the values of the children recursively. For each node we count how
many 1-values we have seen already. To this end, when evaluating
the values of the children of a node v, we begin with the child with

the largest subtree and proceed to children with smaller subtrees. Note that the ith child of
v in this order has a subtree of size at most s/i, where s is the size of the subtree of v. So,
we can store a counter of up to log2 i bits for the number of 1-values seen so far. It is easy to
extend the algorithm to formulas with other arithmetic gates such as modulo-gates.

∧
∨

∨ ∧

≥ 2 ∧ ¬ ∨

¬ ∧ ≥ 2 ∧

0 1 1 1

As a more complicated example, let us consider the following
circuits. A circuit C has the m-path property if for all paths P in C
the product of the in-degrees of the nodes on P is at most m. For
example, formulas have the 1-path property, whereas the circuit
on the right has the 16-path property. It is not hard to see that
for every k ≥ 1, circuits C having the |C|k-path property can be
evaluated in LOGSPACE. The |C|k-path property here guarantees
that in addition to a counter we can also store the path from the
current node to the root, so that we can always find the parent of
the current node. Another way of evaluating the circuit is to first
“unravel” the circuit to a tree (i.e., a formula) which can be done in
LOGSPACE due to the |C|k-path property, and then to evaluate the formula as above.

The logic LREC allows it to recursively define sets X of tuples based on graphs G that
have the |G|k-path property for some k ≥ 1.

We turn to the formal definition of the logic LREC. To define the syntax, let τ be a
vocabulary. The set of all LREC[τ ]-formulae is obtained by extending the formula formation
rules of FO+C[τ ] by the following rule: If ū, v̄, w̄ are compatible tuples of variables, p̄, r̄ are
non-empty tuples of number variables, and ϕE and ϕC are LREC[τ ]-formulae, then

ϕ := [lrecū,v̄,p̄ ϕE , ϕC ](w̄, r̄) (1)

is an LREC[τ ]-formula, and we let free(ϕ) := (free(ϕE) \ (ũ∪ ṽ))∪ (free(ϕC) \ (ũ∪ p̃))∪ w̃∪ r̃.
To define the semantics of LREC[τ ]-formulae, let A be a τ -structure and α an assignment

in A. The semantics of LREC[τ ]-formulae that are not of the form (1) is defined as usual.
Let ϕ be an LREC[τ ]-formula of the form (1). We define a set X ⊆ Aū × N recursively

as follows. We consider E := ϕE [A,α; ū, v̄] as the edge relation of a directed graph with

2 Here, the Boolean formula is represented by the list of all edges plus gate types in the circuit representing
the formula.
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vertex set V := Aū. Moreover, for each vertex ā ∈ V we think of the set C(ā) := {〈n̄〉 |
n̄ ∈ ϕC [A,α[ā/ū]; p̄]} of integers as the label of ā. Let āE := {b̄ ∈ V | āb̄ ∈ E} and
Eb̄ := {ā ∈ V | āb̄ ∈ E}. Then, for all ā ∈ V and ` ∈ N,

(ā, `) ∈ X :⇐⇒ ` > 0 and
∣∣∣∣{b̄ ∈ āE ∣∣∣∣ (b̄,⌊`− 1

|Eb̄|

⌋)
∈ X

}∣∣∣∣ ∈ C(ā).

Notice that X contains only elements (ā, `) with ` > 0. Hence, the recursion eventually stops
at ` = 0. We call X the relation defined by ϕ in (A,α). Finally, we let

(A,α) |= ϕ :⇐⇒
(
α(w̄), 〈α(r̄)〉

)
∈ X.

I Example 3.1 (Boolean circuit evaluation). Let σ := {E,P∧, P∨, P¬, P0, P1}. A Boolean
circuit C may be viewed as a σ-structure, where E(C) is the edge relation of C, and
P?(C) contains all ?-gates for ? ∈ {∧,∨,¬, 0, 1}. If C has the |C|-path-property, then
∃r1, r2 [lrecx,y,p E(x, y), ϕC ](z, (r1, r2)) with ϕC(x, p) := (P∧(x)∧#y E(x, y) = p)∨(P∨(x)∧
“p > 0”) ∨ (P¬(x) ∧ “p = 0”) ∨ P1(x) states that gate z evaluates to 1. J

I Example 3.2 (Deterministic transitive closure). Let ψ(ū, v̄) be an LREC[τ ]-formula, and let
s̄, t̄ be tuples of variables such that ū, v̄, s̄, t̄ are pairwise compatible. We give a formula ϕ
such that for any τ -structure A and assignment α in A, we have (A,α) |= ϕ(s, t) iff in the
graph G = (V,E) defined by V := Aū and E := ψ[A,α; ū, v̄] there is a deterministic path
from α(s̄) to α(t̄), i.e., a path v1, . . . , vn from α(s̄) to α(t̄) such that for every i ∈ [n − 1],
vi+1 is the unique out-neighbour of vi. This is the same as reversing the edges of G and
finding a path vn, . . . , v1 from α(t̄) to α(s̄) such that for every i ∈ [n− 1], vi+1 is the unique
in-neighbour of vi. Therefore,

ϕ := ∃r̄ [lrecū,v̄,p̄ ϕE(ū, v̄), ϕC(ū, p̄)](t̄, r̄), (2)

where p̄ and r̄ are (|ū|+ 1)-tuples of number variables, and

ϕE(ū, v̄) := ψ(v̄, ū) ∧ ∀ū′(ψ(v̄, ū′)→ ū′ = ū), ϕC(ū, p̄) := ū = s̄ ∨ (ū 6= s̄ ∧ p̄ 6= 0̄).

In the following, we use [dtc ū,v̄ ψ](s̄, t̄) as an abbreviation for the LREC-formula in (2). J

The following theorem shows that the data complexity of LREC is in LOGSPACE.

I Theorem 3.3. For every vocabulary τ , and every LREC[τ ]-formula ϕ there is a deterministic
logspace Turing machine that, given a τ -structure A and an assignment α in A, decides
whether (A,α) |= ϕ.

I Remark. It follows from Example 3.2 that DTC+C ≤ LREC. This containment is strict
as directed tree isomorphism is definable in LREC (we will show this in the next section),
but not in DTC+C. On the other hand, it is easy to see that the relation X defined by an
LREC-formula of the form (1) in an interpretation (A,α) can be defined in fixed point logic
with counting FP+C. Hence, LREC ≤ FP+C, and this containment is strict since we show in
Section 5 that undirected graph reachability is not LREC-definable.

4 Capturing Logspace on Directed Trees

In this section we show that LREC captures LOGSPACE on the class of all directed trees.
Our construction is based on Lindell’s LOGSPACE tree canonisation algorithm [21]. Note,
however, that Lindell’s algorithm makes essential use of a linear order on the tree’s vertices

CSL’11
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that is given implicitly by the encoding of the tree. Here we do not have such a linear order,
so we cannot directly translate Lindell’s algorithm to an LREC-formula. We show that we
can circumvent using the linear order if we have a formula for directed tree isomorphism.
Hence, our first task is to construct such a formula.

4.1 Directed Tree Isomorphism
Let T be a directed tree. For every v ∈ V (T ) let Tv be the subtree of T rooted at v, let
size(v) := |V (Tv)| be the size of v, and let #s(v) be the number of children of v of size
s. We construct an LREC[{E}]-formula ϕ∼=(x, y) that is true in a directed tree T with
interpretations v, w ∈ V (T ) of x, y if and only if Tv

∼= Tw. We assume that |V (T )| ≥ 4, but
it is easy to adapt the construction to directed trees with less than 4 vertices.

We implement the following recursive procedure to check whether Tv
∼= Tw:

1. If size(v) 6= size(w) or if #s(v) 6= #s(w) for some s ∈ [0, |V (Tv)| − 1], return “Tv 6∼= Tw”.
2. If for all children v̂ of v there is a child ŵ of w and a number k such that

a. Tv̂
∼= Tŵ,

b. there are exactly k children ẘ of w with Tv̂
∼= Tẘ, and

c. there are exactly k children v̊ of v with Tv̊
∼= Tŵ,

then return “Tv
∼= Tw”.

3. Return “Tv 6∼= Tw”.
Clearly, this procedure outputs “Tv

∼= Tw” if and only if Tv
∼= Tw.

To simplify the presentation we fix a directed tree T and an assignment α in T , but the
construction will be uniform in T and α.

We construct a directed graph G = (V,E) with labels C(v) ⊆ N for each v ∈ V as follows.
Let V := N(T )× V (T )4×N(T ). The first component of each vertex is its type; the meaning
of the other components will become clear soon. Although G will not be a tree, it is helpful
to think of it as a decision tree for deciding Tv

∼= Tw. For each pair (v, w) ∈ V (T )2, we
designate the vertex āv,w = (0, v, w, v, w, 0) to stand for “Tv

∼= Tw”. Let us call (v, w) easy if
v, w satisfy the condition in line 1 of the procedure (i.e., size(v) 6= size(w), or #s(v) 6= #s(w)
for some s ∈ [0, |V (Tv)| − 1]). Note that the set of all such easy pairs is LREC-definable.3 If
(v, w) is easy, then āv,w has no outgoing edges and C(āv,w) = ∅. On the other hand, if (v, w)
is not easy, then G contains the following edges and labels (see Figure 1 for an illustration):

The vertex āv,w has an outgoing edge to āv,w,v̂ := (1, v, w, v̂, w, 0), for each child v̂ of v.
Furthermore, C(āv,w) = {# of children of v}. This corresponds to “for all children v̂ of
v. . . ” in the above procedure’s step 2.
The vertex āv,w,v̂ has an outgoing edge to āv,w,v̂,ŵ,k := (2, v, w, v̂, ŵ, k), for each child ŵ of
w with size(ŵ) = size(v̂) and each k ∈ [#size(v̂)(v)]. Furthermore, C(āv,w,v̂) = N(T )\{0}.
This branching corresponds to “. . . there is a child ŵ of w and a number k such that. . . ”.
The vertex āv,w,v̂,ŵ,k has an outgoing edge to āv̂,ŵ. If v̂ is the only child of v of size
size(v̂), then this is the only outgoing edge, and we let C(āv,w,v̂,ŵ,k) = {1}. Otherwise,
there are additional outgoing edges to āi

v,w,v̂,ŵ,k = (3 + i, v, w, v̂, ŵ, k) for i ∈ {0, 1}, and
we let C(āv,w,v̂,ŵ,k) = {3}. This corresponds to conditions 2a–2c.
The vertex ā0

v,w,v̂,ŵ,k has outgoing edges to āv̂,ẘ for each child ẘ of w of size size(v̂),
and ā1

v,w,v̂,ŵ,k has outgoing edges to āv̊,ŵ for each child v̊ of v of size size(ŵ) = size(v̂).

3 Using the dtc-operator from Example 3.2 we can construct an LREC[{E}]-formula defining the descendant
relation between vertices in a directed tree, and using this formula it is easy to determine the size and
the number of children of size s of a vertex.
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āv,w n = # children of v

āv,w,v̂ n > 0

āv,w,v̂,ŵ,k n = 1 if #size(v̂)(v) = 1; n = 3 otherwise

ā0
v,w,v̂,ŵ,kn = k ā1

v,w,v̂,ŵ,k n = kāv̂,ŵ

āv̂,ẘ āv̊,ŵ

Figure 1 Sketch of “decision tree” for deciding Tv
∼= Tw. Here, v̂, v̊ range over the children of v;

ŵ, ẘ range over the children of w; and k ∈ [#size(v̂)(v)]. Moreover, v̂, v̊, ŵ, ẘ all have the same size.
Labels indicate which integers n belong to the set C(ā) labelling each vertex ā. If v̂ is the only child
of v of size size(v̂), then āv̂,ŵ is the only child of āv,w,v̂,ŵ,k.

Furthermore, C(āi
v,w,v̂,ŵ,k) = {k}. The vertex āi

v,w,v̂,ŵ,k corresponds to condition 2b for
i = 0, and to 2c for i = 1.

From the above description it should be easy to construct LREC[{E}]-formulae ϕE(ū, ū′) and
ϕC(ū, p), where ū = (qt, x, y, x̂, ŷ, qk) and ū′ = (q′t, x′, y′, x̂′, ŷ′, q′k), such that ϕE [T, α; ū, ū′] =
E, and {〈n〉 | n ∈ ϕC [T, α[ā/ū]; p]} = C(ā) for each ā ∈ V .

Let ϕ∼=(x, y) := ∃r̄ [lrecū,ū′,p ϕE , ϕC ]((0, x, y, x, y, 0), r̄), where r̄ is a 5-tuple of number
variables.4 Let X be the relation defined by ϕ∼= in (T, α). By induction on size(v) it is easy
to see that (āv,w, `) ∈ X implies Tv

∼= Tw. It remains to prove completeness:

I Lemma 4.1. If Tv
∼= Tw, then for all ` ≥ size(v)5 we have (āv,w, `) ∈ X.

Proof. The proof is by induction on size(v). Suppose that size(v) = 1 and Tv
∼= Tw. Then

size(w) = 1 which implies that (v, w) is not easy. Furthermore, as v has no children in T ,
we know that āv,w has no children in G and C(āv,w) = {0}. Hence, (āv,w, `) ∈ X for all
` ≥ 1 = size(v)5.

Now suppose that size(v) = s+ 1 for some s ≥ 1, and Tv
∼= Tw. First note that (v, w) is

not easy. Let ` ≥ (s+ 1)5. We show that (āv,w,v̂, `− 1) ∈ X for all children v̂ of v, which
implies (āv,w, `) ∈ X. Let v̂ be a child of v in T . Since Tv

∼= Tw, there is a child ŵ of w of
size s′ := size(v̂) and a number k ∈ [#s′(v)] such that

Tv̂
∼= Tŵ,

there are exactly k children ẘ of w of size s′ such that Tv̂
∼= Tẘ, and

there are exactly k children v̊ of v of size s′ such that Tv̊
∼= Tŵ.

Pick such ŵ and k.
Let us deal with the case #s′(v) = 1 first. In this case, āv̂,ŵ is the only child of

āv,w,v̂,ŵ,k; moreover, āv,w,v̂,ŵ,k and āv̂,ŵ have exactly one incoming edge each. Since Tv̂
∼= Tŵ

and ` − 3 ≥ (s′)5, the induction hypothesis implies (āv̂,ŵ, ` − 3) ∈ X. Consequently
(āv,w,v̂, `− 1) ∈ X.

In the following we assume #s′(v) ≥ 2. Let d := 3 ·#s′(v)2. Note that all vertices in
Figure 1 except the type 0-vertices have exactly one incoming edge, and that the in-degree
d′ of a type 0-vertex āv′,w′ , where v′, w′ are children of v and w, respectively, of size s′ is at
most d, because it has incoming edges from

vertices āv,w,v′,w′,k, where v and w are the (unique) parents of v′ and w′, respectively,
and k ∈ [#s′(v)];

4 We use 0 as a constant, but clearly we can modify ϕ∼= to a formula that does not use the constant 0.
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vertices ā0
v,w,v′,ŵ,k, where v, w, k are as above and ŵ is a child of w of size s′; and

vertices ā1
v,w,v̂,w′,k, where v, w, k are as above and v̂ is a child of v of size s′.

Let `′ := b(`− 4)/dc. Then

`′ ≥ `− d− 3
d

≥ s5

d
+ s4

d
− 2 ≥ #s′(v)5 · (s′)5

3 ·#s′(v)2 + #s′(v)4

3 ·#s′(v)2 − 2 ≥ 2(s′)5 − 1 ≥ (s′)5,

where for the second inequality we use (s+1)5 ≥ s5+s4, for the third one we use #s′(v)·s′ ≤ s,
and for the fourth one we use #s′(v) ≥ 2. Hence, by the induction hypothesis we have:

(āv̂,ŵ, b(`− 3)/d′c) ∈ X (note that b(`− 3)/d′c ≥ `′).
There are exactly k children ẘ of w of size s′ with (āv̂,ẘ, b(` − 4)/d′c) ∈ X (note that
b(`− 4)/d′c ≥ `′), which implies (ā0

v,w,v̂,ŵ,k, `− 3) ∈ X.
There are exactly k children v̊ of v of size s′ with (āv̊,ŵ, b(`− 4)/d′c) ∈ X, which implies
that (ā1

v,w,v̂,ŵ,k, `− 3) ∈ X.
It follows immediately that (āv,w,v̂,ŵ,k, `− 2) ∈ X, and therefore (āv,w,v̂, `− 1) ∈ X. J

Finally, let (v, w) ∈ V (T )2. Then we have size(v)5 ≤ |V (T )|5 ≤ |N(T )||r̄| − 1, and
therefore T |= ϕ∼=[v, w] iff (āv,w, |N(T )||r̄| − 1) ∈ X iff Tv

∼= Tw.

4.2 Defining an Order on Directed Trees
Lindell’s tree canonisation algorithm is based on a logspace-computable linear order on
isomorphism classes of directed trees. We show that a slightly refined version of this order is
LREC-definable.

Let T be a directed tree. For each v ∈ V (T ) let π(v) :=
(
size(v),#1(v), . . . ,#size(v)−1(v)

)
be the profile of v.5 Let � be the total preorder on V (T ),6 where v ≺ w whenever
1. π(v) < π(w) lexicographically, or
2. π(v) = π(w) and the following is true: Let v1, . . . , vk and w1, . . . , wk be the children of v

and w, respectively, ordered such that v1 � · · · � vk and w1 � · · · � wk. Then there is
an i ∈ [k] with vi ≺ wi, and for all j < i we have vj � wj and wj � vj .

Note that v � w and w � v imply Tv
∼= Tw. We show that � is LREC-definable.

To simplify the presentation, we again fix a directed tree T and an assignment α, and we
assume that |V (T )| ≥ 4.

We apply the lrec-operator to the following graph G = (V,E) with labels C(v) ⊆ N
for each v ∈ V . Let V := N(T ) × V (T )4 × N(T ). For each (v, w) ∈ V (T )2, the vertex
āv,w = (0, v, w, v, w, 0) represents “v ≺ w”. If π(v) < π(w), then āv,w has no outgoing edges
and C(āv,w) = {0}. If π(v) > π(w), then āv,w has no outgoing edges and C(āv,w) = ∅. Note
that the relation “π(v) ≤ π(w)” is LREC-definable.

Suppose that π(v) = π(w). For all t, u ∈ V (T ) let θu(t) be the number of children u′ of
u with Tu′ ∼= Tt. Call a child v̂ of v good if θv(v̂) > θw(v̂) and for all children v′ of v with
size(v′) < size(v̂) we have θv(v′) = θw(v′). Then it is not hard to see that v ≺ w precisely if
there is a good child v̂ of v, a child ŵ of w of size s := size(v̂) and a k ∈ [#s(v)] such that
v̂ ≺ ŵ, there are exactly k children ẘ of w of size s with ẘ ≺ v̂, there are exactly k children
v̊ of v of size s with v̊ ≺ ŵ and Tv̊ 6∼= Tv̂, and for all k children w′ of w of size s with w′ ≺ v̂
we have θv(w′) = θw(w′). The “decision tree” in Figure 2 checks precisely these conditions.

Using the formula ϕ∼= from the previous section it is now straightforward to construct
LREC[{E}]-formulae ϕE(ū, ū′) and ϕC(ū, p) that define the edge relation E of G and the

5 Lindell’s order can be obtained by replacing π(v) with π′(v) :=
(
size(v),#children of v

)
.

6 That is, � is a preorder on V (T ) such that for all v, w ∈ V (T ) we have v � w or w � v.
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āv,w n > 0

(1, v, w, v̂, ŵ, k) n = 1 if #size(v̂)(v) = 1; n = 4 otherwise

āv̂,ŵ (2, v, w, v̂, ŵ, k) n = k

āẘ,v̂

(3, v, w, v̂, ŵ, k) n = k

āv̊,ŵ

(4, v, w, v̂, ŵ, k) n = k

āw′,v̂

Figure 2 Gadget for deciding v ≺ w when π(v) = π(w). Here, v̂ ranges over good children of v;
v̊ ranges over children of v of size s := size(v) and Tv̊ 6∼= Tv̂; ŵ, ẘ range over children of w of size
s; w′ ranges over children of w of size s with θv(w′) = θw(w′); and k ∈ [#s(v)]. The edges from
(2, v, w, v̂, ŵ, k) to (t, . . . ) for t ∈ {2, 3, 4} exist only if #s(v) > 1. Labels indicate which integers n
belong to the set C(ā) labelling each vertex ā.

sets C(ā) for each ā ∈ V , where ū and ū′ are as in the definition of ϕ∼=. Let ϕ≺(x, y) :=
∃r̄ [lrecū,ū′,p ϕE , ϕC ]((0, x, y, x, y, 0), r̄), where r̄ is a 5-tuple of number variables. Let X be
the relation defined by ϕ≺ in (T, α). It is then possible to show by induction on size(v) that
(āv,w, `) ∈ X implies v ≺ w and that v ≺ w implies (āv,w, `) ∈ X for all ` ≥ size(v)5. Hence,
T |= ϕ≺[v, w] iff (āv,w, |N(T )||r̄| − 1) ∈ X iff v ≺ w.

4.3 Canonising Directed Trees
We now construct an LREC-formula γ(p, q) such that for every directed tree T we have
T ∼= ([|V (T )|], γ[T ; p, q]). Since DTC captures LOGSPACE on ordered structures [13] and a
linear order is available on the number sort, we immediately obtain:

I Theorem 4.2. LREC captures LOGSPACE on the class of directed trees.

Since directed tree isomorphism is in LOGSPACE by Lindell’s tree canonisation algorithm,
but not TC+C-definable [5], we obtain:

I Corollary 4.3. LREC 6≤ TC+C on the class of all directed trees.

We use l-recursion to define a set X ⊆ V (T ) × N(T )2 (for simplicity, we omit the
“resources” in the description) such that for every v ∈ V (T ) the set Xv := {(m,n) ∈ N(T )2 |
(v,m, n) ∈ X} is the edge relation of an isomorphic copy ([|V (Tv)|], Xv) of Tv. Each vertex
of T is numbered by its position in the preorder traversal sequence, e.g., the root is numbered
1, its first child v1 is numbered 2, its second child v2 is numbered 2 + size(v1), and so on.

To apply the lrec-operator, we define a graph G = (V,E) with labels C(v) ⊆ N for each
v ∈ V as follows. Let V := V (T )×N(T )2, where (v,m, n) ∈ V stands for “(m,n) ∈ Xv?”.
If v is a leaf, then Xv should be empty, so for all m,n ∈ N(T ) we let (v,m, n) have
no outgoing edges and define C((v,m, n)) := ∅. Suppose that v is not a leaf and w is
a child of v. Let Sw be the set of all children w′ of v with w′ ≺ w, and let ew be the
number of children w′ of v with Tw

∼= Tw′ . For each i ∈ [0, ew − 1], the set Xv will
contain an edge from 1 to pw,i := 2 +

∑
w′∈Sw

size(w′) + i · size(w), and the edges in
{(pw,i − 1 +m, pw,i − 1 + n) | (m,n) ∈ Xw}. Hence we let (v, 1, pw,i) have no outgoing edges
and define C((v, 1, pw,i)) := {0}. Furthermore, for all m,n ∈ N(T ) and all i < ew, we let
ā := (v, pw,i − 1 +m, pw,i − 1 + n) have an edge to (w,m, n) and define C(ā) := {1}.

It is now easy to construct LREC-formulae ϕE(x1, p1, p
′
1, x2, p2, p

′
2) and ϕC(x1, p1, p

′
1, q)

that define the graph G and the labels C(·). Let

γ(p1, p2) := ∃x∃r
(
“x is the root” ∧ [lrec(x1,p1,p′

1),(x2,p2,p′
2),q ϕE , ϕC ]((x, p1, p2), r)

)
.
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Noting that the in-degree of each vertex (v,m, n) is at most ev, it is straightforward to show
that γ defines an isomorphic copy of a directed tree.

5 Inexpressibility of Reachability in Undirected Graphs

In LREC it is not possible to define reachability in undirected graphs:

I Theorem 5.1. There is no LREC[{E}]-formula ϕ(x, y) such that for all undirected graphs
G and all v, w ∈ V (G), G |= ϕ[v, w] iff there is a path from v to w in G.

As an immediate corollary we obtain:

I Corollary 5.2. STC 6≤ LREC

For the proof of Theorem 5.1, we consider the following undirected graphs Gn, for n ≥ 1.
Each graph Gn consists of 2 · n2 vertices partitioned into layers V 1

1 , . . . , V
1

n , V
2
1 , . . . , V

2
n with

|V j
i | = n, where every two vertices in consecutive layers V j

i and V j
i+1 are connected by an

edge, i.e., E(Gn) = {(v, w) ∈ V j
i × V j

i+1 | i ∈ [n− 1], j ∈ [2]}. Vertices of Gn that belong to
the same layer are called siblings. We show that reachability is not LREC-definable on the
class C of all graphs that are isomorphic to Gn for some n ≥ 1.

More precisely, we show that on C every LREC[{E}]-formula ϕ is equivalent to a formula
in the infinitary counting logic L∗∞ω(C) (see [19] or [20, Section 8.2]). Theorem 5.1 then
immediately follows from the fact that every L∗∞ω(C)-formula without free number variables
is Gaifman-local [19].

To construct an equivalent L∗∞ω(C)-formula we proceed by induction on the structure
of the formula ϕ. The only interesting case is that of an LREC[{E}]-formula of the form
ϕ = [lrecū1,ū2,p̄ ϕE , ϕC ](w̄, r̄). Let v̄E be an enumeration of all variables in free(ϕE) that are
not listed in ū1ū2 and let v̄C be an enumeration of all variables in free(ϕC) that are not listed
in ū1p̄. Let n > |ū1|+ |v̄E |+ 2, and consider an assignment α in Gn. Further, let V := Gū1

n

and E := ϕE [Gn, α; ū1, ū2]. For every ā ∈ V and ` ∈ N, let Pn,`(ā) be the set of all sequences
((ā0, `0), . . . , (ām, `m)) ∈ (V × [0, `])m+1, where m ∈ N, (ā0, `0) = (ā, `), (ā0, . . . , ām) is a
path in (V,E), and `i = b(`i−1 − 1)/|Eāi|c for each i ∈ [m]. The key property which enables
us to construct a L∗∞ω(C)-formula equivalent to ϕ on C is:

I Lemma 5.3. Let ā ∈ V , ` ∈ N, and ((ā0, `0), . . . , (ām, `m)) ∈ Pn,`(ā). Let I be the set of
all i ∈ [m] such that (ãi−1 ∪ α(ṽE)) ∩ V (Gn) 6= (ãi ∪ α(ṽE)) ∩ V (Gn). Then |I| is bounded
by a constant that depends only on ϕ.

The main insight for proving the lemma is that for every two siblings b, b′ ∈ V (Gn) there is
an automorphism of Gn swapping b and b′ and fixing all other vertices pointwise. Therefore, if
((ā0, `0), . . . , (ām, `m)) ∈ Pn,`(ā) and i ∈ [m] is such that ãi−1∩V (Gn) * (ãi∪α(ṽE))∩V (Gn),
then for any b ∈ ãi−1 ∩ V (Gn) with b /∈ ãi ∪ α(ṽE), there is a linear number of siblings of b
that do not occur in ãi ∪ α(ṽE) ∪ {b}, each leading to an incoming edge at āi. It is not hard
to bound the number of all other i ∈ I by a constant.

6 An Extension of LREC

The previous section’s Theorem 5.1 reveals that LREC is not closed under (first-order) logical
reductions.7 To remedy this weakness, we introduce the following extension LREC= of LREC.

7 There is an FO-reduction that takes the graphs Gn, n ≥ 3, considered in Section 5 to disjoint unions Ĝn

of two undirected paths on n vertices each by identifying siblings. It is not hard to see that reachability
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The idea is to admit a third formula ϕ= in the lrec-operator that generates an equivalence
relation on the vertices of the graph defined by ϕE .

Let τ be a vocabulary. The set of all LREC=[τ ]-formulae is obtained from LREC[τ ] by
replacing the rule for the lrec-operator from Section 3 as follows: If ū, v̄, w̄ are compatible
tuples of variables, p̄, r̄ are non-empty tuples of number variables, and ϕ=, ϕE and ϕC are
LREC=-formulae, then the following is an LREC=[τ ]-formula:

ϕ := [lrecū,v̄,p̄ ϕ=, ϕE , ϕC ](w̄, r̄). (3)

We let free(ϕ) :=
(
free(ϕ=) \ (ũ ∪ ṽ)

)
∪
(
free(ϕE) \ (ũ ∪ ṽ)

)
∪
(
free(ϕC) \ (ũ ∪ p̃)

)
∪ w̃ ∪ r̃.

To define the semantics of LREC=[τ ]-formulae ϕ of the form (3) let A be a τ -structure and
α an assignment in A. Let V0 := Aū and E0 := ϕE [A,α; ū, v̄]. We define ∼ to be the reflexive,
symmetric, transitive closure of the binary relation ϕ=[A,α; ū, v̄] over V0. For every ā ∈ V0
let [ā] be the equivalence class of ā with respect to ∼. Now consider the graph with vertex set
V := {[ā] | ā ∈ V0} and edge set E := {[ā][b̄] ∈ V 2 | there are ā′ ∈ [ā], b̄′ ∈ [b̄] with ā′b̄′ ∈ E0}.
To every [ā] ∈ V we assign the set C([ā]) := {〈n̄〉 | n̄ ∈ ϕC [A,α[ā′/ū]; p̄], ā′ ∈ [ā]} of labels.
Then the definition of X can be taken verbatim from Section 3. We let (A,α) |= ϕ if and
only if

(
[α(w̄)], 〈α(r̄)〉

)
∈ X.

As for LREC, the data complexity of LREC= is in LOGSPACE and LREC= ≤ FP+C.
Furthermore, LREC= is closed under logical reductions.

The following example shows that undirected graph reachability is definable in LREC=.
This does not involve an implementation of Reingold’s algorithm in our logic, but just
uses the observation that the computation of the equivalence relation ∼ boils down to the
computation of undirected reachability.

I Example 6.1 (Undirected reachability). The following LREC-formula defines undirected
graph reachability:

ϕ(s, t) := [lrecx,y,p ϕ=(x, y), ϕE(x, y), ϕC(x, p)](s, 1),

where ϕ=(x, y) := E(x, y), ϕE(x, y) := x 6= x and ϕC(x, p) := x = t. Let G be an undirected
graph and α an assignment in G. Define V , E, C and the set X as above. Clearly, the set
V consists of the connected components of G. Furthermore, the set E is empty since ϕE is
unsatisfiable. Therefore, for all v ∈ V (G) we have ([v], 1) ∈ X iff 0 ∈ C([v]). The latter is
true precisely if α(t) ∈ [v], i.e., if v and α(t) are in the same connected component of G. It
follows that for all v, w ∈ V (G) we have G |= ϕ[v, w] if and only if v and w are in the same
connected component of G, that is, if there is a path from v to w in G. J

It follows immediately from the previous example that STC+C ≤ LREC=. Actually, the
containment is strict, because LREC 6≤ STC+C. Since trees can be made directed in STC+C,
the results from Section 4 imply that LREC= captures LOGSPACE on the class of all trees.

7 Capturing Logspace on Interval Graphs

We now prove that LREC= captures LOGSPACE on the class of all interval graphs. The result
is shown by describing an LREC=-definable canonisation procedure for interval graphs, which
relies on a specific decomposition of graphs known as modular decomposition (first introduced

on the class of all graphs Ĝn is LREC-definable. Hence, if LREC was closed under FO-reductions, then
reachability on the class of all graphs Gn would be LREC-definable, contradicting Theorem 5.1.
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by Gallai [7]). It combines algorithmic techniques from [16] with the logical definability
framework in [17]. The results in [17] are stated for fixed-point logic with counting only, but
many of the results that are of interest for our construction hold in fact for STC+C. Parts of
Sections 7.1 and 7.2 can be found in more detail in [18].

7.1 Definition of Interval Graphs and Basic Properties
I Definition 7.1 (Interval graph). Let I be a finite collection of closed intervals Ii = [ai, bi] ⊂
N. The graph GI = (V,E) has vertex set V = I and edge relation IiIj ∈ E :⇔ Ii ∩ Ij 6= ∅.
I is called an interval representation of a graph G if G ∼= GI , and a graph G is an interval
graph if there is a collection of closed intervals I which is an interval representation of G.

A clique of a graph G = (V,E) is a subset C ⊆ V of the vertex set, such that the subgraph
induced by C is complete. A maximal clique, or max clique, is a clique that is not properly
contained in another clique. It is known [8, 22] that a graph G is an interval graph if and only
if its max cliques can be brought into a linear order, so that each vertex of G is contained
in consecutive max cliques. Let us denote the set of a graph’s max cliques by M. For
canonisation it is essential to linearly order the max cliques of G.

Let Nc(v) denote the closed neighbourhood of a vertex v, i.e. the set containing v and all
vertices adjacent to v. The first lemma shows that the maximal cliques are FO-definable, as
is the equivalence relation on V 2 of vertex pairs defining the same max clique.

I Lemma 7.2 ([17], Lemma 4.1). Let G be an interval graph and let M be a max clique of G.
Then there are vertices u, v ∈M , not necessarily distinct, such that M = Nc(u) ∩Nc(v). J

The span of a vertex v ∈ V , denoted span(v), is the number of max cliques of G that v is
contained in. Since equivalence classes can be counted in STC+C (Lemma 2.7. in [17]), the
span of a vertex is STC+C-definable on the class of interval graphs.

7.2 Modular Decomposition Tree
A set W of vertices in a graph G = (V,E) is a module if for all vertices v ∈ V \W either
{v}×W ⊆ E or ({v}×W )∩E = ∅. The vertex set V and all vertex sets of size 1 are trivial
modules by this definition. A module W is proper if W ⊂ V .

Let us call a vertex of G which is adjacent to all other vertices an apex of G. If G is a
connected interval graph without an apex, then the complement graph of G is connected
as well, and by [7] the set of maximal proper modules of G is a partition of G’s vertex set.
Thus, the set of proper modules WG = {W1, . . . ,Wk} of G which replaces every maximal
proper module that is a subset of just one maximal clique by modules of size 1 for all
contained vertices is also partition of G’s vertex set. Each pair of modules Wi,Wj , i 6= j,
is either completely connected or completely disconnected. Let ∼G be the equivalence
relation corresponding to the partition WG, and let LG = G

/
∼G:= (V

/
∼G, EL), where

[u][v] ∈ EL ⇔ ∃x ∈ [u], y ∈ [v] such that xy ∈ E. If G contains an apex, we let ∼G be the
equivalence relation for which x ∼G y if and only if x = y or x, y ∈ V \A, where A ⊆ V is
the set of apices, and define LG equivalently.

It is easy to see that LG is an interval graph, that if A is a max clique of G, then
ALG

:= {[v] | v ∈ A} is a max clique of LG, and that all max cliques of LG are of this form.
The following lemma gives further information about LG.

I Lemma 7.3. Let m be the number of max cliques of LG.
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1. There are STC+C-formulae ϕ∼G
, ϕLG

such that for all connected interval graphs, ϕ∼G

defines the equivalence relation ∼G, and ϕLG
the graph LG.

2. If m > 1, then there exist exactly two linear orderings of LG’s max cliques, each the
reverse of the other. There is an STC+C-formula that given a max clique A of G defines
the one with ALG

appearing within the first bm
2 c max cliques of LG.

3. There is an STC+C-formula that for all connected interval graphs G canonises LG.

According to the preceding lemma we can define an isomorphic copy K(LG) of LG on
the number sort. What is left is to deal with the contents of the non-singular modules
Wi1 , . . . ,Wil

of WG. If we continue decomposing the graphs G[Wi1 ], . . . , G[Wil
] inductively

until we arrive at singular sets everywhere, we obtain a modular decomposition of G.
Let P ′ =

{
(M,n)

∣∣M ∈M, n ∈ [|V |]
}
. For each (M,n) ∈ P ′ define VM,n as the set of

vertices of the connected component of G[
{
v ∈ V

∣∣ span(v) ≤ n
}

] which intersects M (if
non-empty).

Let W be a non-singular maximal proper module. We define C to be the set of max
cliques C such that C ∩W 6= ∅. It is immediate from the definition of a module W that
W =

⋃
C∈C VC,|C|. Thus, for any C ∈ C, the set VC,|C| defines a component of W .

Let P be the set of those (M,n) ∈ P ′ for which n is maximal among all n′ with the property
that VM,n′ = VM,n and which satisfy that VM,n is the connected component of a module
occurring in the modular decomposition of G. Then P contains exactly all the components of
modules occurring in the modular decomposition. There exists an STC+C-formula deciding
whether (M,n) is in P .

Now we want to construct a coloured modular decomposition tree T = (VT , ET ). An
illustration of the tree can be found in the full version. We will later need STC+C-definability
of this coloured tree. Thus, notice that the tree’s vertices are equivalence classes, which are
STC+C definable. Also the edge relation and the colours are STC+C-definable (Lemma 7.3).

Let VT be the union of the following sets:
the set V of component vertices vVM,n

, one for each set VM,n with (M,n) ∈ P ,
the set A of arrangement vertices a≺Q,VM,n

where ≺Q is the distinguished order on
LVM,n

’s max cliques if K(LVM,n
) is not order isomorphic under its two linear orderings,

and if K(LVM,n
) is order isomorphic under its two linear orderings, then max clique Q

identifies an order ≺Q, namely, the order where QLVM,n
occurs first. (Q defines both

orders if QLVM,n
is in the middle.)

the set S of module vertices sWA,VM,n
for which WA is the module of VM,n that contains

vertices of max clique A, and
{sV }, where sV is a special vertex acting as the root of T .

We colour the vertices in V by assigning to each vVM,n
∈ V the ordered graph K(LVM,n

).
The vertices in A remain uncoloured and may therefore be exchanged by an automorphism of
T whenever their subtrees are isomorphic. Each sWA,VM,n

∈ S is coloured with the multiset
of integers corresponding to the positions that the max clique ALVM,n

takes in the orders of
LVM,n

.
The edge relation ET of T is now defined in a straight-forward manner, with all edges

directed away from the root sV .

sV is connected to all vVM,n
∈ V with n = |V |.

Each vVM,n
∈ V is connected to all vertices in A of the form a≺Q,VM,n

with Q∩ VM,n 6= ∅.
Each a≺Q,VM,n

∈ A is connected to all those sWA,VM,n
∈ S so that ≺Q belongs to the

set of orders of LVM,n
under which module WA ∈ LVM,n

attains its minimal position,
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that is, for every max clique Q that intersects with a non-singular module of VM,n

vertex a≺Q,VM,n
∈ A is connected to sWQ,VM,n

∈ S.
Every sWA,VM,n

∈ S is connected to those vVM′,n′ ∈ V for which VM ′,n′ is a connected
component of the module WA, that is, sWA,VM,n

∈ S is connected to vVA,n′ ∈ V with
n′ = max{m < n | (VA,m) ∈ P}.

The point of the arrangement vertices A is to ensure that the order of submodules is
properly accounted for. If our modular tree did not have such a safeguard, exchanging
modules in symmetric positions might give rise to a non-isomorphic graph, but it would not
change the tree, so T would be useless for the task of distinguishing between these two graphs.

Lemma 7.4 below shows that our modular trees are a complete invariant of interval
graphs, so modular trees can be used to tell whether two interval graphs are isomorphic.

I Lemma 7.4 ([16], see full version for further remarks). Let G and H be interval graphs. If
their modular trees are isomorphic, then so are G and H. J

7.3 Canonisation
We can now make use of the STC+C-definable modular decomposition tree:

I Lemma 7.5. Let θV (ū), θ≈(ū, v̄), θE(ū, v̄) and θL(ū, q̄) be STC+C-formulae with ū, v̄

compatible tuples and q̄ a tuple of number variables, such that for all interval graphs G
and assignments α, θ≈[G,α; ū, v̄] generates an equivalence relation ≈, θV [A,α; ū]

/
≈ the

vertices, θE [A,α; ū, v̄]
/
≈ the edge relation and θL[A,α; ū, q̄]

/
≈ the colours of the modular

decomposition tree TG. Then there is an LREC=-formula ψ�′(ū, v̄) such that ψ�′ [A,α; ū, v̄]
/
≈

defines for all G a total preorder on the vertices of TG, which is more precisely, a linear order
on the isomorphism classes of the (coloured) subtrees of TG identified by its root vertices.

Finally, we can use the modular decomposition tree and the total preorder on its vertices
for canonisation. We use l-recursion on the modular decomposition tree, and as we have done
for canonising trees we build the canon from the leaves to the root of the tree. Recursively,
we construct the canon by first building the disjoint union of the canons of the components
of submodules, then use the arrangement vertices to insert all submodules at the correct side
and build the canon of the correspondent component of a module.
I Remark. It is possible to show that there is no LREC+TC[{E}]-sentence ϕ such that for
all connected interval graphs G1, G2 we have G1 ]G2 |= ϕ if and only if G1 ∼= G2. The proof
is based on similar ideas as the proof of Theorem 5.1.

8 Conclusion

We introduce the new logics LREC and LREC=, extending first-order logic with counting by
a recursion operator that can be evaluated in logarithmic space. By capturing LOGSPACE
on trees and interval graphs, we obtain the first nontrivial descriptive characterisations of
LOGSPACE on natural classes of unordered structures. It would be interesting to extend our
results to further classes of structures such as the class of planar graphs or classes of graphs
of bounded tree width.

The expressive power of LREC= is not yet well-understood. For example, it is an open
question whether directed graph reachability is expressible in LREC=, and even whether
LREC= has the same expressive power as FP+C. (Of course assumptions from complexity
theory indicate that the answer to both questions is negative.) It is also an open question
whether reachability on undirected trees is expressible in plain LREC.
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It is obvious that our capturing results can be transferred to nondeterministic logarithmic
space NL by adding a transitive closure operator to the logic. However, it would be much
nicer to have a natural “nondeterministic” variant of our limited recursion operator that
allows it to express directed graph reachability and thus yields a logic that contains TC. We
leave it as an open problem to find such an operator.
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