
Transfinite Update Procedures for Predicative
Systems of Analysis
Federico Aschieri

Dipartimento di Informatica, Università di Torino
Italy
School of EECS, Queen Mary, University of London
United Kingdom

Abstract
We present a simple-to-state, abstract computational problem, whose solution implies the 1-
consistency of various systems of predicative Analysis and offers a way of extracting witnesses
from classical proofs. In order to state the problem, we formulate the concept of transfinite update
procedure, which extends Avigad’s notion of update procedure to the transfinite and can be seen
as an axiomatization of learning as it implicitly appears in various computational interpretations
of predicative Analysis. We give iterative and bar recursive solutions to the problem.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases Update procedure, epsilon substitution method, predicative classical
analysis, bar recursion

Digital Object Identifier 10.4230/LIPIcs.CSL.2011.20

1 Introduction

The aim of this paper is to provide an abstract description of learning as it is appears
in various computational interpretations of predicative fragments of classical second order
Arithmetic. Our account has a twofold motivation and interest.

Its first purpose is to provide a foundation that will serve to extend Aschieri and Berardi’s
learning based realizability for Heyting Arithmetic with EM1 (see [3]) to predicative fragments
of Analysis: a possible path to follow is the one suggested here. In particular, we describe
and prove the termination of the learning processes that should arise when extending the
approach of learning based realizability to predicative Arithmetic.

Secondly, we continue the work of Avigad on update procedures [4] and extend it to the
transfinite case by introducing the concept of transfinite update procedure. The concept
may be seen as an axiomatization of learning as implicitly used in the epsilon substitution
method for Elementary Analysis and Ramified Analysis as formulated in the work of Mints
et al. ([8], [9]). The idea is that one can associate with any classical proof in those systems of
any formula ∃xNP (x), with P computable, a transfinite update procedure. Each transfinite
update procedure has a so called zero, representing a finite approximation of some transfinite
sequence of oracles thanks to which it is possible to compute a n such that P (n) holds. The
problem is both to formulate efficient learning processes that build step by step this finite
zero and to prove their termination. The notion of update procedure is useful to understand
the combinatorial content and the fundamental ideas of the epsilon method in a totally
abstract way. By formulating an abstract self-contained concept, we also hope to present to
non-specialists a very challenging computational problem, whose efficient solution is of great
importance for program extraction purposes in the proof theory of classical logic.

© Federico Aschieri;
licensed under Creative Commons License ND

Computer Science Logic 2011 (CSL’11).
Editor: Marc Bezem; pp. 20–34

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62916433?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.CSL.2011.20
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

F. Aschieri 21

Plan of the Paper. In section §2 we introduce and motivate the concept of transfinite
update procedure and give a very short non-constructive proof of the existence of finite zeros.

In section §3 we formulate the notion of “learning process generated by an update
procedure” and prove that every learning process terminates with a zero for the associated
update procedure. The result represents a semi-constructive proof of the existence of finite
zeros and the learning processes generated are “optimal”, in the sense that one may provide
constructively the best possible ordinal bounds to their length and to the size of finite zeros
(by applying techniques of Mints et al. [8]).

In sections §4 and §5 we formalize the notion of update procedure in typed lambda
calculus plus bar recursion and prove the existence of zeros for update procedures of ordinal
less than ωω by writing down simple bar recursive terms. These results are enough to give
computational interpretation to proofs of Elementary Analysis and Ramified Analysis, as
formulated in [8], [9] (see the full version of this paper [1]). In fact, our methods yield bar
recursive proofs of termination for epsilon substitution method as formulated in [9].

Acknowledgments. I’d like to thank Paulo Oliva for his advice throughout this work.

2 Learning in Predicative Analysis

It is very well-known and of fundamental importance that intuitionistic Arithmetic is
constructive. This in particular implies that from a proof that there exists an object with a
given property, one can always extract a computer program that construct an object with
that property. Such feature of intuitionistic Arithmetic depends on the fact that all its
axioms and inference rules never assert the existence of something that has not already been
implicitly constructed.

In the classical framework, the situation is much different. From the computational point
of view, any classical predicative subsystem of second order Arithmetic poses very difficult
problems. The axioms that it adds on top of intuitionistic Arithmetic are ontologically very
strong. For every formula φ(x), there is an axiom of comprehension asserting the existence
of a function g able to decide the truth of φ(x):

∃gN→N∀xN. g(x) = 0↔ φ(x)

Axioms of countable choice assert the existence of functions computing existential witnesses
of truth of formulas:

(∀xN∃yA φ(x, y))→ ∃gN→A∀xNφ(x, g(x))

In order to give a natural computational interpretation even for the most simple form of the
excluded middle

EM1 : ∀nN.∃xNPnx ∨ ∀yN¬Pny

one would have to provide a program for deciding, given any number n, the truth of the
formula ∃xNPnx, with P decidable.

Given the situation, a direct computational interpretation of classical logic might seem
impossible. Fortunately, there is a fundamental observation that enables us to partially solve
this problem: whatever the function or the decision procedure whose existence is assumed,
it will be used only a finite number of times in actual computations of finite results! In
other words, non-computable functions exist – and we cannot do anything about that –
but one only needs to compute finite approximations of them in order to carry out actual
computations.

CSL’11

22 Transfinite Update Procedures for Predicative Systems of Analysis

Over this observation, what we call “learning-based computational interpretations” of
classical Arithmetic build their success. We include in this category Hilbert’s epsilon
substitution method, Avigad’s update procedures [4] and Aschieri and Berardi’s learning-
based realizability [3] for intuitionistic Arithmetic plus EM1.

2.1 Learning Based Realizability for Intuitionistic Arithmetic with EM1

In the case of learning-based realizability for Intuitionistic Arithmetic with EM1, one just
considers a class of realizers recursive in the oracle for the Halting problem. Such programs
easily interpret EM1, but are ineffective; to recover effectiveness they are evaluated with
respect to finite oracle approximations. Since approximations may be inadequate, results of
computations may be wrong. But learning-based realizers are self-correcting programs, able
to identify wrong oracle values used during computations and to correct them with right
values that they learn during the same computations. Realizers keep correcting mistakes
until they find a good finite approximation of the oracle they use.

2.2 Avigad’s Finite Update Procedures for Peano Arithmetic
If one wants to provide a direct computational interpretation of excluded middle EM for
arbitrary arithmetical formulas

∀nN. ∃xN
1∀yN

1 . . . ∃xN
k∀yN

k P (n, x1, y1, . . . , xk, yk) ∨ ∀xN
1∃yN

1 . . . ∀xN
k∃yN

k¬P (n, x1, y1, . . . , xk, yk)

he needs much more computational power: an oracle for the Halting problem is no longer
enough. For example, if one wants to interpret

EM2 := ∀nN. ∃xN∀yNP (n, x, y) ∨ ∀xN∃yN¬P (n, x, y)

he also needs an oracle for the Halting problem for programs recursive in the oracle for the
Halting problem. This is due to the fact that in order to check, for any fixed m, whether
the formula ∀yNP (n,m, y) is true, one can use a program p(m) recursive in the oracle of
the Halting problem. But in order to determine the truth of ∃xN∀yNP (n, x, y), one has to
determine whether there exists an m such that p(m) outputs the answer that the formula
∀yNP (n,m, y) is true.
In general, in order to interpret EMn one needs a sequence of oracles Φ0, . . . ,Φn such that
for every 1 ≤ i ≤ n, Φi is an oracle for the Halting problem for programs recursive in the
subsequence {Φj}1≤j<i. More precisely, let Ti(x, y, z) the predicate, recursive in {Φj}1≤j<i,
that holds iff the x-th Kleene’s partial recursive function fx, recursive in {Φj}1≤j<i, terminates
on input y after z reduction steps. Then Φi must satisfy the following Skolem axiom:

∀xN, yN, zN. Ti(x, y, z)→ Ti(x, y,Φi(|x, y|))

where |_,_| is a bijective coding of pairs of natural numbers into natural numbers.
Now, an Avigad update procedure is a functional U that takes as argument a finite

sequence of functions f0, . . . , fn approximating some oracles Φ0, . . . ,Φn. Then, it uses those
functions to compute some witnesses for some provable Σ0

1 formula of Peano Arithmetic PA
(i.e. a formula of the form ∃xNP (x), with P computable). Afterwards, it checks whether the
result of its computation is sound. If it is not, it identifies some wrong value of fi used in the
computation and it corrects it with a new one. U , remarkably, can always do that, thanks to
the fact that in this case an instance of the Skolem axiom for Φi, for some i, (computed by
substituting its oracles with their approximation f0, . . . , fn) must be false. But if an instance

Ti(n,m, l)→ Ti(n,m, fi(|n,m|))

F. Aschieri 23

is false, then its antecedent is true and its consequent is false. Therefore, U learns a new value
for fi on argument |n,m|, namely l, which will replace its former wrong value fi(|n,m|).

I Definition 1 (Avigad’s Finite Update Procedures). A k-ary update procedure, k ∈ N+, is
a continuous function U : (N → N)k → N3 ∪ {∅} (i.e., its output is determined by a finite
number of values of the input functions) such that the following holds:
1. for all function sequences f = f1, . . . , fk

Uf = (i, n,m) =⇒ 1 ≤ i ≤ k

2. for all function sequences f = f1, . . . , fk and g = g1, . . . , gk, for all 1 ≤ i < k, if
Uf = (i, n,m)
for all j < i, fj = gj
gi(n) = m

then: Ug = (i, h, l) =⇒ h 6= n.

If U is a k-ary update procedure, a zero for U is a sequence f = f1, . . . , fk of functions such
that Uf = ∅.

Condition (2) of definition 1 means that the values of the i-th function depend on the
values of some of the functions fj , with j < i, and learning on level i is possible only if
all the lower levels j have “stabilized". In particular, if U is a k-ary update procedure and
f : (N → N)k is a sequence of functions approximating the oracles Φ1, . . . ,Φk, there are
two possibilities: either f is a fine approximation and then Uf = ∅; or f is not and then
Uf = (i, n,m), for some numerals n,m: U says the function fi should be updated as to
output m on input n. Moreover, if Uf = (i, n,m), one in a sense has learned that Φi(n) = m:
by definition of update procedure, if g is a function sequence agreeing with f in its first i− 1
elements, gi is another candidate approximation of Φi and gi(n) = m, then Ug does not
represent a request to modify the value of gi at point n, for Ug = (i, h, l) implies h 6= n.

The main theorem about update procedures is that they always have zeros and these
latter can be computed through learning processes guided by the former. Intuitively a zero of
an update procedure represents a good approximation of the oracles used in a computation,
and in particular a good enough one to yield some sought classical witness.

2.3 Transfinite Update Procedures for Predicative Systems of Analysis
In general, learning based computational interpretations of predicative fragments of classical
analysis (see Mints et al. [8], [9]) provide answers to the computational challenges of classical
axioms by the following three-stage pattern:

1. They identify a sequence {Φβ}β<α – possibly transfinite – of non-computable functions
N→ N.

2. They define classical witnesses for provable Σ0
1 formulas by using programs recursive in Φ.

3. They define update procedures through which it is possible to find, for every particular
computation, a suitable finite approximation of the functions of Φ such that one can
effectively compute the witnesses defined at stage two.

The functions in the sequence Φ of stage (1) are the computational engine of the
interpretation. Given the difficulty of computing witnesses in classical Arithmetic, they are
always non-computable. It is therefore not surprising that given this additional computational

CSL’11

24 Transfinite Update Procedures for Predicative Systems of Analysis

power, one is able to define at stage (2) witnesses for classical formulas. If we picture the
sequence Φ as a sequence of infinite stacks of numbers, the learning process of point (3) finds
a “vertical" approximation of Φ: functions of Φ are infinite stacks of numbers whereas their
finite approximations are finite stacks. Moreover, a crucial point is that the sequence Φ is not
an arbitrary sequence. In a sense, Φ is also “horizontally" approximated: for every ordinal
α, the recursion theoretic Turing degree of Φα is approximated by the degrees of Φβ , for
β < α. This property is very important: in this way, the values of the functions in Φ can be
gradually approximated and learned.

More precisely, Φ can be seen as a sequence of functions obtained by transfinite iteration
of recursion theoretic jump operator (see for example Odifreddi [10]). That is, for every β, if
β is a successor, Φβ has the same Turing degree of an oracle for the halting problem for the
class of functions recursive in Φβ−1 (jump); if β is limit, Φβ has the same Turing degre of
the function mapping the code of a pair (α, n), with α < β, into Φα(n) (join or β-jump). A
fundamental property of such a sequence is that the assertion Φβ(n) = m depends only on
the values of the functions Φα, for α < β, and the values of Φβ are learnable in the limit1 by
a program g recursive in the join of Φα for α < β, which is a guarantee that the learning
processes will terminate.

We now give an informal example of the kind of analysis which is needed to carry out the
first stage of a learning-based interpretation, in the case of Elementary Analysis EA.

I Example 2 (Elementary Analysis). Consider a subsystem EA of second order Peano Arith-
metic in which second order quantification is intended to range over arithmetical sets and
hence over arithmetical formulas (formulas with only numerical quantifiers and possibly
set parameters). Since one has to interpret excluded middle over arbitrary formulas, it
is necessary to provide at least programs that can decide truth of formulas. Numerical
quantifiers correspond to Turing jumps. That is, if we have a program t (with the same
function parameters of φ) such that for every pair of naturals n,m

t(n,m) = True ⇐⇒ φ(n,m)

then the truth of ∃xNφ(n, x) is equivalent to the termination of a program Q(n) exhaustively
checking

t(n, 0), t(n, 1), t(n, 2), . . .

until it finds - if there exists - an m such that t(n,m) = True. Applying the jump operator to
the Turing degree t belongs to, one can write down a program χt which is able to determine
whether Q(n) terminates. That is

χt(n) = True ⇐⇒ ∃xNφ(n, x)

Similarly, one eliminates universal numerical quantifiers, thanks to the fact that ∀ ≡ ¬∃¬.
Iterating these reasoning and applying 2k times the jump operator - and given a recursive
enumeration φ0, φ1, . . . , of arithmetical formulas - one can obtain for every Σ0

2k formula

φn(m) := ∃xN
1∀yN

1 . . . ∃xN
k∀yN

k P (m,x1, y1, . . . , xk, yk)

a program tn such that

tn(m) = True ⇐⇒ φn(m)

1 In the sense of Gold [7]: Φβ(n) = m ⇐⇒ limk→∞ g(n, k) = m. We remark that we need here the
sequence of oracles {Φα}α<β ; without it, it would not be to possible learn values of the powerful Φβ .

F. Aschieri 25

Using the ω-jump operator, one can write down a program u such that

u(n,m) = True ⇐⇒ tn(m) = True

and hence

u(n,m) = True ⇐⇒ φn(m)

Now a Σ1
1 formula ∃fN→Boolφi - provided we assume that fN→Bool ranges over arithmetical

predicates - can also be expressed as

∃nNti[λmNu(n,m)/f]

So applying again a jump operator to the recursive degree of ti[λmNu(n,m)/f], one is able
to write a program determining the truth value of ∃fN→Boolφi. Iterating this reasoning, one
can decide the truth of arbitrary Σ1

n formulas.
Summing up, in order to decide truth in Elementary Analysis, one needs to apply the jump
operator ω + ω times and thus produces a sequence Φ of non-computable functions Φ of
length ω + ω. All the programs that we have described can be thought as recursive in some
initial segment of Φ.

We are now in a position to introduce our axiomatization of the learning procedures cited
in point (3) above.

I Definition 3 (Transfinite Update Procedures). Let α ≥ 1 be a numerable ordinal. An update
procedure of ordinal α is a function U : (α→ (N→ N))→ (α× N× N) ∪ {∅} such that:

1. U is continuous. i.e. for any f : α → (N → N) there is a finite subset A of α × N such
that for every g : α→ (N→ N) if fγ(n) = gγ(n) for every (γ, n) ∈ A, then Uf = Ug.

2. For all functions f, g : α→ (N→ N) and every ordinal β ∈ α, if
t(f) = (β, n,m)
for all γ < β, fγ = gγ
gβ(n) = m

then: t(g) = (β, i, j) =⇒ i 6= n

The concept of transfinite update procedure is a generalization of Avigad’s notion of finite
update procedure. A transfinite update procedure, instead of taking just a finite number of
function arguments, may get as input an arbitrary transfinite sequence of functions, which are
intended to approximate a target sequence Φ; as output, it may return an update (β, n,m),
which means that the β-th function taken as argument is an inadequate approximation of
Φβ and must be updated as to output m on input n. Condition (2) means that the values
for the β-th function depend only on the values of functions of ordinal less than β in the
input sequence and an update procedure returns only updates which are relatively verified
and hence need not to be changed. In this sense, if Uf = (β, n,m), one has learned that
Φβ(n) = m; so if gβ is a candidate approximation of Φβ and gβ(n) = m, then Ug does not
represent a request to modify the value of gβ at point n, whenever f and g agree on all
ordinals less than β.
We remark that the choice of the type for an update procedure is somewhat arbitrary: we
could have chosen it to be

(α→ (X → Y))→ (α×X × Y) ∪ {∅}

CSL’11

26 Transfinite Update Procedures for Predicative Systems of Analysis

as long as the elements of the sets X and Y can be coded by finite objects. Since such coding
may always be performed by using natural numbers, we choose to consider X = Y = N.

The use of transfinite update procedures made by learning-based computational inter-
pretations of classical arithmetic can be described as follows. Suppose those interpretations
are given a provable formula with an attainable computational meaning, for example one of
the form ∀xN∃yN Pxy, with P decidable. Then, for every numeral n, they manage to define
a term tn : (α→ (N→ N))→ N and an update procedure Un of ordinal α such that

Un(f) = ∅ =⇒ Pn(tn(f))

for all f : α→ (N→ N). The idea is that a witness for the formula ∃yNPny is calculated by
tn with respect to a particular approximation f of the oracle sequence Φ we have previously
described. If the formula Pn(tn(f)) is true, there is nothing to be done. If it is false, then
Un(f) = (β, n,m) for some β, n,m: a new value for Φβ is learned. This is what we call
“learning by counterexamples": from every failure a new positive fact is acquired. An instance
of this kind of learning appears in the case on learning-based realizability for HA + EM1,
when one defines realizability for atomic formulas: in that case the pair (n,m) is produced
by the realizer of the excluded middle. We have seen another example in the section on
Avigad update procedures for PA and will see a further one in the full version of this paper
([1]) in the case α = ω + k, with k ∈ N: the triple (β, n,m) will be produced through the
evaluation of Skolem axioms for epsilon terms in the system EA. In general, the Skolem
axioms used to define oracles are those who make possible learning by counterexamples.

The effectiveness of the above approach depends on the fact that every update procedure
has a finite zero, as defined below.

I Definition 4 (Finite Functions, Finite Zeros, Truncation and Concatenation of Function
Sequences). Let U be an update procedure of ordinal α.
1. f : α→ (N→ N) is said to be a finite function if the set of (γ, n) such that fγn 6= 0 is finite.

2. A finite zero for U is a finite function f : α→ (N→ N) such that Uf = ∅.

3. Let f : α→ (N→ N) and β < α. Let f<β : β → (N→ N) be the truncation of f at β:

f<β := γ ∈ β 7→ fγ

4. Let α1, α2 be two ordinals, f1 : α1 → (N→ N) and f2 : α2 → (N→ N). Then the
concatenation f1 ∗ f2 : (α1 + α2)→ (N→ N) of f and g is defined as:

(f ∗ g)γ(n) :=
{
fγ(n) if γ < α1

gβ(n) if γ = α1 + β < α1 + α2

5. With a slight abuse of notation, a function f : N→ N will be sometimes identified with
the corresponding length-one sequence of functions 0 7→ (n ∈ N 7→ f(n)).

We now prove that every update procedure has a finite zero. We will give other more and
more constructive proofs of this theorem, that will allow to compute finite zeros for update
procedures and thus witnesses for classically provable formulas, thanks to learning-based
interpretations. But for now we are only interested in understanding the reason of the
theorem’s truth and give a very short non-constructive proof. All the subsequent proofs
can be seen as more and more sophisticated and refined constructivizations of the following
argument.

F. Aschieri 27

I Theorem 5 (Zero Theorem for Update Procedures of Ordinal α). Let U be an update
procedure of ordinal α. Then U has a finite zero.

Proof. We define, by transfinite induction, a function f : α→ (N→ N) as follows. Suppose
we have defined fγ : N→ N, for every γ < β. Define the sequence f<β : β → (N→ N) of
them all

f<β := γ ∈ β 7→ fγ

Then define

fβ(x) =
{

0 if ∀g(α−β)→(N→N) ∀zN U(f<β ∗ g) 6= 〈β, x, z〉
y otherwise, for some y such that ∃g(α−β)→(N→N) U(f<β ∗ g) = 〈β, x, y〉

By axiom of choice and classical logic, for every β, f<β and fβ are well defined. So we can let

f := f<α

Suppose U(f) = 〈β, x, z〉, for some β < α: we show that it is impossible. For some
h : (α− (β + 1))→ (N→ N), f = f<β ∗ fβ ∗ h. Hence, for some g : (α− β)→ (N→ N)

U(f<β ∗ g) = 〈β, x, y〉 ∧ fβ(x) = y

by definition of f . But U is an update procedure and so

(U(f<β ∗ g) = 〈β, x, y〉 ∧ fβ(x) = y ∧ U(f<β ∗ fβ ∗ h) = 〈β, x, z〉) =⇒ x 6= x

which is impossible. We conclude that U(f) = ∅ and, by continuity, that U has a finite zero.
J

3 Learning Processes Generated by Transfinite Update Procedures

In this section we show that every update procedure U generates a learning process and this
learning process always terminates with a finite zero of U . This result is an abstract version
of the termination of the H-process as defined in the various versions of epsilon substitution
method (see Mints et al. [8]). The proof of termination is semi-constructive and is similar to
the one in Mints et al. [8] (which however is by contradiction while ours is not).

If U is an update procedure and U(f) = 〈γ, n,m〉, then the value of fγ at argument n
must be updated as to be equal to m. But as explained in the introduction, we may imagine
that all the values of all the functions fβ , with β > γ, depend on the values of the current
fγ . Therefore, if we change some of the values of fγ , we must erase all the values of all
the functions fβ , for β > γ, because they may be inconsistent with the new values of fβ .
In a sense, f is a fragile structure, that may be likened to an house of cards: if we change
something in a layer, then all the higher ones collapse. We define an update operator ⊕ that
performs those operations.

I Definition 6 (Controlled Update of Functions). Let f : α → (N→ N) and 〈γ, n,m〉 ∈
α× N× N. We define a function f ⊕ 〈γ, n,m〉 : α→ (N→ N) such that

(f ⊕ 〈γ, n,m〉)β(x) :=

fβ(x) if β < γ or (β = γ and x 6= n)
m if γ = β and x = n

0 otherwise

We also define f ⊕ ∅ := f .

CSL’11

28 Transfinite Update Procedures for Predicative Systems of Analysis

We now define the concept of “learning process generated by an update procedure U”. It
may be thought as a process of updating and learning new values of functions, which is guided
by U . It corresponds to the step three of the learning based computational interpretations of
classical arithmetic we have described in the introduction. Intuitively, such a learning process
starts from the always zero function 0α. If U says that some value of 0α must be updated - i.e.
U(0α) = 〈γ, n,m〉 - then the learning process generates the function U (1) := 0α ⊕ 〈γ, n,m〉.
Similarly, if U says that some value of U (1) must be updated - i.e. U(U (1)) = 〈γ′, n′,m′〉 -
then the learning process generates the function U (2) := U (1) ⊕ 〈γ′, n′,m′〉. The process goes
on indefinitely in the same fashion.

I Definition 7 (Learning Processes Generated by U). Let U be an update procedure of ordinal
α. For every n ∈ N, we define a function U (n) : α→ (N→ N) by induction as follows:

U (0) := 0α := γ ∈ α 7→ (n ∈ N 7→ 0)

U (n+1) := U (n) ⊕ U(U (n))

Moreover, a function f : α → (N→ N) is said to be U-generated if there exists an n such
that f = U (n).

The aim of the learning process generated by U is to find a finite zero for U . Indeed, if for
some n, U(U (n)) = ∅, then for all m ≥ n, U (m) = U (n) and we thus say that the learning
process terminates. We now devote ourselves to the proof that learning processes always
terminate. In other words, every update procedure U has a U-generated finite zero.

Given an update procedure U , its useful to define a new “simpler” update procedure,
obtained from U by fixing some initial segment of its input, ignoring all updates relative to
this fixed part of the input and adjusting their indices.

I Definition 8. Let U be an update procedure of ordinal α. Then, for any function
g : β → (N→ N), with β < α, define a function

Ug : ((α− β)→ (N→ N))→ (α− β)× N× N ∪ {∅}

as follows:

Ug(f) =
{
〈γ, n,m〉 if U(g ∗ f) = 〈β + γ, n,m〉
∅ otherwise

(We point out that if β = 0 = ∅, Ug = U as it should be)

Indeed Ug as defined above is an update procedure.

I Lemma 9. Let U be an update procedure of ordinal α. Then, for any function g : β →
(N→ N), with β < α:
1. Ug is an update procedure of ordinal α− β.

2. For every h : N→ N, Ug∗h = (Ug)h.

Proof. Immediate. J
The strategy of our termination proof can be described as follows. Given an update

procedure U of ordinal α, we shall define a sequence of functions g : α→ (N→ N) such that
a “reduction lemma” can be proved: if, for some β < α, Ug<β has a Ug<β -generated finite
zero, then for some γ < β also Ug<γ has a Ug<γ -generated finite zero. But the greater the
ordinal β the easier it is to compute with a learning process a finite zero for Ug<β , because

F. Aschieri 29

the sequence g<β becomes so long that the input for U<β becomes short. So we shall be able
to show that for some large enough β, β < α, Ug<β has a Ug<β -generated finite zero, which
proves the theorem in combination with the reduction lemma. This technique can be seen as
a generalization of Avigad’s [4] to the transfinite case.

We now prove the reduction lemma in the limit case.

I Lemma 10 (Reduction Lemma, Limit Case). Let U be an update procedure of ordinal α and
g : β → (N→ N), with β limit ordinal and β < α. Then
1. If f : (α− β)→ (N→ N) is Ug-generated, then there exists γ < β such that 0β−γ ∗ f is
Ug<γ -generated.

2. If Ug has a Ug-generated finite zero, then there exists γ < β such that Ug<γ has a
Ug<γ -generated finite zero.

Proof. See the full version of this paper [1]. J
We now prove the reduction lemma in the successor case.

I Lemma 11 (Reduction Lemma, Successor Case). Let U be an update procedure of ordinal
α. Define g : N→ N as follows:

g(x) :=
{
y if ∃i. U(U (i)) = 〈0, x, y〉 ∧ i = min{n | ∃z U(U (n)) = 〈0, x, z〉}
0 otherwise

Then:
1. For every finite function g0 ≤ 2g, if g0 ∗ 0α−1 is U-generated and f is Ug0-generated, then

g0 ∗ f is U-generated.

2. If Ug has a Ug-generated finite zero, then U has a U-generated finite zero.

Proof. See the full version of this paper [1]. J
We are now able to prove the main theorem: update procedures generate terminating

learning processes.

I Theorem 12 (Termination of Learning Processes). Let U be an update procedure of ordinal
α. Then, U has a finite zero. In particular, there exists k ∈ N such that U(U (k)) = ∅.

Proof. See the full version of this paper [1]. J

4 Spector’s System B and Typed Update Procedures of Ordinal ωk

Zeros of trasfinite update procedures cannot in general be computed in Gödel’s system T: as
we will show, already update procedures of ordinal ω + k, with k ∈ ω, can be used to give
computational interpretation to Elementary Analysis and hence their zeros can be used to
compute the functions provably total in Elementary Analysis. We will show however that
Spector’s system B is enough to compute zeros.

2 We define g0 ≤ g iff for all x g0(x) 6= 0 =⇒ g0(x) = g(x)

CSL’11

30 Transfinite Update Procedures for Predicative Systems of Analysis

I Definition 13 (Bar Recursion Operator, Spector’s System B, Type Level of Bar Recursion).
In the following, we will work with Spector’s system B (see Spector [12] and, for a mod-
ern exposition, Kohlenbach [6]) which is Gödel’s T augmented with constants BRτ,σ,Ψτ,σ

respectively of type

T1 → T2 → T3 → T4 → τ and T1 → T2 → T3 → T4 → Bool→ τ

with

T1 = (N→ σ)→ N

T2 = σ∗ → τ

T3 = σ∗ → (σ → τ)→ τ

T4 = σ∗

where σ∗ is a type representing finite sequences of objects of type σ. The meaning of BRτ,σ
is defined by the equation

BRτ,σY GHs
τ=

{
Gs if Y ŝ < |s|
Hs(λxσBRτ,σY GH(s ∗ x)) otherwise

(1)

where s ∗ x denotes the finite sequence s followed by x, ŝ denotes the function mapping n to
sn, if n < |s|, to 0σ otherwise, where sn is the n-th element of s and |s| is the number of
elements in s. If σ, τ, Y,G,H are determined by the context, we we will just write BR(s) in
place of BRτ,σY GHs.
BRτ,σ is said to be bar recursion of type σ. The type level of bar recursion BRτ,N of type
N (said also type 0), is the type level of the constant BRτ,N, that is, assuming N∗ = N,
max(1, typelevel(τ)) + 2.
In order to obtain a strongly normalizing system such that equation 1 holds, we have to add
to system B the following reduction rules (for a proof of strong normalization, see Berger [5]):

BRτ,σY GHs 7→ Ψτ,σY GHs(Y ŝ < |s|)
Ψτ,σY GHs(True) 7→ Gs

Ψτ,σY GHs(False) 7→ Hs(λxσBRτ,σY GH(s ∗ x))

where < is a term coding the correspondent relation on natural numbers.

Since we are interested only in computable update procedures, we now fix a system for
representing them. For the aim of computationally interpreting Elementary Analysis, update
procedures can be assumed to belong to system T. However, for more powerful systems one
may need more capable update procedures, so we define them to belong to B. Here, we limit
ourselves to the ordinal ωk, for k ∈ ω, since this ordinal is enough to interpret Elementary
Analysis and even fragments of Ramified Analysis (see for example, Mints et al. [9])

I Definition 14 (Representation of Ordinals and Typed Update Procedures of Ordinal ωk).
We will represent ordinal numbers of the form ωk, with k ∈ ω, by exploiting the order
isomorphism between ωk and Nk lexicographically ordered. So, for k ∈ ω, k > 0, we set

[ω0] := ν, [ωk] := Nk

where ν is the empty string and

[ω0 → (N→ N)] := N→ N

F. Aschieri 31

and, if k ∈ ω

[ωk+1 → (N→ N)] := N→ [ωk → (N→ N)]

where N is the type representing N in typed lambda calculus. Define moreover

[(ωk × N× N) ∪ {∅}] := [ωk]× N× N

Unfortunately, ∅ does not have a code. So we have to use an injective coding |_| of the set
(ωk×N×N)∪{∅} into the set of closed normal terms of type [(ωk×N×N)∪{∅}]. To fix ideas,
we define |(β, n,m)| = 〈β′, n+1,m+1〉, with β′ : Nk the code of β, and |∅| = 〈〈0, . . . , 0〉, 0, 0〉.
A typed update procedure of ordinal ωk is a term of Spector’s system B of type:

[ωk → (N→ N)]→ [(ωk × N× N) ∪ {∅}]

satisfying point (2) of definition 3, where for simplicity function quantification is assumed
to range over functions definable in system B. Equality as it appears in the definition is
supposed to be extensional.

5 Bar Recursion Proof of the Zero Theorem for Typed Update
Procedures of Ordinal ωk

In this section we give a constructive proof of the Zero theorem for typed update procedures
of ordinal less than ωk. In particular we show that finite zeros can be computed with bar
recursion of type 1. We start with the base case.

I Theorem 15 (Zero Theorem for Update Procedures of Ordinal 1=ω0). Let U be a typed
update procedure of ordinal 1. Then U has a finite zero σ. Moreover, σ can be calculated as
the normal form of a bar recursive term Zero(U) (defined uniformly on the parameter U) of
system T plus bar recursion of type 0.

The result follows by Oliva [11]. We give below another proof, which is a simplification of
Oliva’s one, made possible by the slightly stronger condition we have imposed on the notion
of update procedure.
The informal idea of the construction - but with some missing justifications - is the following.
We reason over the well-founded tree of finite sequences of numbers s such that U(ŝ) = |(n,m)|
and n ≥ |s|. We want to construct a function σ : N→ N which is a zero of U . Suppose that
we have constructed a “good" initial approximation σ(0) ∗ · · · ∗ σ(i) of σ; we want to prove
that it can be extended to a long enough approximation of σ. Our first step is to continue
with σ(0) ∗ · · · ∗ σ(i) ∗ 0. If this is a good guess, by well-founded induction hypothesis, we
can extend σ(0) ∗ · · · ∗ σ(i) ∗ 0 to a complete approximation σ(0) ∗ · · · ∗ σ(n) of σ, with n > i.
Since we are not sure that our previous guess was lucky, we compute U(σ(0) ∗ · · · ∗ σ(n)). If
for all m

U(σ(0) ∗ · · · ∗ σ(n)) 6= |(i+ 1,m)|

then our approximation for σ(i+ 1) is adequate, and we claim that σ(0) ∗ · · · ∗ σ(n) is the
approximation of σ we were seeking. Otherwise

U(σ(0) ∗ · · · ∗ σ(n)) = |(i+ 1,m)|

for some m: U tells us that our guess for the value of σ(i+1) is wrong. But now we know that
σ(0) ∗ · · · ∗ σ(i) ∗m is a good initial approximation of σ and we have made progress. Again
by well-founded induction hypothesis, we conclude that we can extend σ(0) ∗ · · · ∗ σ(i) ∗m
to a good approximation of σ.

CSL’11

32 Transfinite Update Procedures for Predicative Systems of Analysis

Proof. of Theorem 15. We formalize and complete the previous informal argument. In the
following s will be a variable for finite sequences of numbers. Using bar recursion of type 0,
we can define a term which builds directly the finite zero we are looking for and is such that:

BR(s) =

ŝ if U ŝ = |(n,m)| and n < |s|
ŝ if U ŝ = |∅|
BR(s ∗m) if U(BR(s ∗ 0)) = |(|s|,m)|
BR(s ∗ 0) if U(BR(s ∗ 0)) 6= |(|s|,m)| for all m

(we assume that BR(s) checks in order every condition in its definition and executes the
action corresponding to the first statisfied condition). We let σ be the normal form of

Zero(U) := BR(〈〉)

where 〈〉 is the empty sequence. Let us prove that σ is a finite zero of U . Suppose Uσ = |(n,m)|:
by showing that this is impossible, we obtain that Uσ = |∅|. The normalization of BR(〈〉)
leads to the following chain of equations:

BR(〈〉) = BR(σ(0))
= BR(σ(0) ∗ σ(1))
. . .

. . .

= BR(σ(0) ∗ · · · ∗ σ(i))

= ̂σ(0) ∗ · · · ∗ σ(i)
= σ

with

n < |σ(0) ∗ · · · ∗ σ(i)| = i+ 1

In particular BR(〈〉) = BR(σ(0) ∗ · · · ∗ σ(n− 1)). Now, we have two cases:
1. U(BR(σ(0) ∗ · · · ∗ σ(n− 1) ∗ 0)) = |(n, l)|. Then

BR(〈〉) = BR(σ(0) ∗ · · · ∗ σ(n− 1) ∗ l)

and so σ(n) = l, which is impossible, by definition 3 of update procedure, point (2), for
Uσ = |(n,m)|.

2. for all l, U(BR(σ(0) ∗ · · · ∗ σ(n− 1) ∗ 0)) 6= |(n, l)|. Then by definition

BR(σ(0) ∗ · · · ∗ σ(n− 1)) = BR(σ(0) ∗ · · · ∗ σ(n− 1) ∗ 0)

Therefore

|(n,m)| = Uσ = U(BR(〈〉)) = U(BR(σ(0) ∗ · · · ∗ σ(n− 1) ∗ 0))

again impossible, by assumption of this case.
We have then proved that σ is the sought finite zero. J

We now prove that every typed update procedure of ordinal ω has a finite zero.

F. Aschieri 33

I Theorem 16 (Zero Theorem for Typed Update Procedures of Ordinal ω). Let U be a typed
update procedure of ordinal ω. Then U has a finite zero σ. Moreover, σ can be calculated as
the normal form of a bar recursive term Zeroω(U) (defined uniformly on the parameter U) of
system T plus bar recursion of type 1 := N→ N.

Proof. The finite function σ : [ω → (N→ N)] we are going to construct can be represented
as a finite function sequence σ(0) ∗ σ(1) ∗ · · · ∗ σ(n), for a large enough n. In the following s
is a variable ranging over finite sequences of natural number functions. Using bar recursion
of type 1, we can define in a most simple way a term which builds directly the finite zero we
are looking for. We present the construction gradually. To begin with, suppose we are able
to define - uniformly on s - terms BR(s) and gs : (N→ N) satisfying the following equation
for every s:

BR(s) =

ŝ if U ŝ = |(γ, n,m)| and γ < |s|
ŝ if U ŝ = |∅|
BR(s ∗ gs) otherwise, where ∀n,m U(BR(s ∗ gs)) 6= (|s|, n,m)

Let

σ := Zeroω(U) := BR(〈〉)

We prove that σ is a finite zero of U . We show this by proving that Uσ = (γ, n,m) is
impossible. As in the proof of theorem 15

BR(〈〉) = BR(σ(0) ∗ · · · ∗ σ(i)) = ̂σ(0) ∗ · · · ∗ σ(i)

with γ < i+ 1. Let

r := σ(0) ∗ · · · ∗ σ(γ − 1)

By some computation

Uσ = U(BR(〈〉))
= U(BR(σ(0) ∗ · · · ∗ σ(γ − 1)))
= U(BR(r))
= U(BR(r ∗ gr))

Since by construction for all n,m

U(BR(r ∗ gr)) 6= |(|r|, n,m)| = |(γ, n,m)|

we obtain that Uσ 6= (γ, n,m): impossible.
It remains to show that a gs such that appears in the definition of BR(s) exists. Indeed, it is
enough to set

gs := Zero(λfN→NU|s|(BR(s ∗ f)))

where, for i ∈ N, we have defined

Ui := λfN→(N→N). if U(f) = |(i, n,m)| then |(n,m)| else |∅|

We prove now that in fact U(BR(s ∗ gs)) 6= |(|s|, n,m)| for all n,m. First, observe again that
for every s

BR(s) = ̂s ∗ h1 ∗ · · · ∗ hn

CSL’11

34 Transfinite Update Procedures for Predicative Systems of Analysis

for some terms h1, . . . , hn of type N→ N. Now, fix any finite sequence s of type-N→ N terms.
We want to show that

Fs := λfN→NU|s|(BR(s ∗ f))

is an update procedure of ordinal 1. Suppose Fsg1 = |(n,m)|, g2(n) = m and Fsg2 = |(h, l)|.
Then, by definition of Fs, it must be that

U(BR(s ∗ g1)) = |(|s|, n,m)| and U(BR(s ∗ g2)) = |(|s|, h, l)|

Moreover,

BR(s ∗ g2)|s|(n) = g2(n) = m

Since U is an update procedure, h 6= n must hold; therefore Fs is an update procedure of
ordinal 1. But by definition of gs, Zero and theorem 15, this means that

|∅| = Fs(Zero(Fs)) = U|s|(BR(s ∗ gs))

By definition of U|s| it must be true that U(BR(s ∗ gs)) 6= |(|s|, n,m)| for all n,m. J
The previous argument can be generalized in order to prove the Zero theorem for typed

update procedures of ordinal ωk.

I Theorem 17 (Zero Theorem for Typed Update Procedures of Ordinal ωk, with k ∈ ω). Let
U be a typed update procedure of ordinal ωk. Then U has a finite zero σ. Moreover, σ can be
calculated as the normal form of a bar recursive term Zeroωk(U) (defined uniformly on the
parameter U) of system T plus bar recursion of some type A, where typelevel(A) = 1.

Proof. The idea is to break the zero we want to construct in ω blocks of length ωk−1 and
build each block by using Zeroωk . See the full version of this paper [1]. J

References
1 F. Aschieri, Learning in Predicative Analysis, chapter 6 of [2]
2 F. Aschieri, Learning, Realizability and Games in Classical Arithmetic, PhD Thesis, 2011

http://arxiv.org/abs/1012.4992
3 F. Aschieri, S. Berardi, Interactive Learning-Based Realizability for Heyting Arithmetic with

EM1, Logical Methods in Computer Science, 2010
4 J. Avigad, Update Procedures and 1-Consistency of Arithmetic, Mathematical Logic

Quarterly, vol. 48, 2002
5 U. Berger, Continuous Semantics for Strong Normalization, LNCS 3526, pag. 23-34, 2005
6 U. Kohlenbach, Applied Proof Theory, Springer-Verlag, Berlin, Heidelberg, 2008
7 E. M. Gold, Limiting Recursion, Journal of Symbolic Logic 30, pag. 28-48, 1965
8 G. Mints, S. Tupailo, W. Bucholz, Epsilon Substitution Method for Elementary Analysis,

Archive for Mathematical Logic, volume 35, 1996
9 G. Mints, S. Tupailo, Epsilon Substitution Method for the Ramified Language and ∆1

1-
Comprehension Rule, Logic and Foundations of Mathematics, 1999

10 P. Odifreddi, Classical Recursion Theory, Studies in Logic and Foundations of Mathematics,
Elsevier, 1989

11 P. Oliva, Understanding and Using Spector’s Bar Recursive Interpretation of Classical Ana-
lysis, Proceedings of CiE’2006, LNCS, vol. 3988, Springer, 2006

12 C. Spector, Provably Recursive Functionals of Analysis: a Consistency Proof of Analysis by
an Extension of Principles in Current Intuitionistic Mathematics, Dekker (ed.), Recursive
Function Theory: Proceedings of Symposia in Pure Mathematics, vol. 5. AMS, Providence,
1962

	Introduction
	Learning in Predicative Analysis
	Learning Based Realizability for Intuitionistic Arithmetic with EM 1
	Avigad's Finite Update Procedures for Peano Arithmetic
	Transfinite Update Procedures for Predicative Systems of Analysis

	Learning Processes Generated by Transfinite Update Procedures
	Spector's System B and Typed Update Procedures of Ordinal k
	Bar Recursion Proof of Zero Theorem for Typed Upd. Proc. of Ordinal k

