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Abstract
This paper introduces an extension of Answer Set Programming (ASP) called Hybrid ASP which
will allow the user to reason about dynamical systems that exhibit both discrete and continuous
aspects. The unique feature of Hybrid ASP is that it allows the use of ASP type rules as
controls for when to apply algorithms to advance the system to the next position. That is, if
the prerequisites of a rule are satisfied and the constraints of the rule are not violated, then the
algorithm associated with the rule is invoked.
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1 Introduction

The purpose of this paper is to introduce an extension of Answer Set Programming (ASP)
which we call Hybrid ASP. The goal of Hybrid ASP is to allow the user to reason about
dynamical systems that exhibit both discrete and continuous aspects. The unique feature of
Hybrid ASP is that Hybrid ASP rules can be thought of as general input-output devices.
In particular, Hybrid ASP programs allow the user to include ASP type rules that act as
controls for when to apply a given algorithm to advance the system to the next position.

Modern computational models and simulations such as the model of dog’s heart described
in [6], the model of tsunami propagation described in [3], and the model of internal tides
within Monterey Bay and the surrounding area described in [5] rely on existing PDE solvers
and ODE solvers to determine the values of parameters. Such simulations proceed by invoking
appropriate algorithms to advance a system to the next state, which is often distanced by
a short time interval into the future from the current state. In this way, a simulation of
continuously changing parameters is achieved, although the simulation itself is a discrete
system. The parameter passing mechanisms and the logic for making decisions regarding
what algorithms to invoke and when are part of the ad-hoc control algorithm. Thus the laws
of a system are implicit in the ad-hoc control software.

On the other hand, action languages [2] which are also used to model dynamical systems
allow the users to describe the laws of a system explicitly. Initially action languages did not
allow simulation of the continuously changing parameters. This severely limited applicability
of such languages. Recently, Chintabathina introduced an action language H [1] where he
proposed an elegant approach to modeling continuously changing parameters. That is, a
program in H describes a state transition diagram of a system where each state models a
time interval where the parameter dynamics is a known function of time. However, the
implementation of H discussed in [1] cannot use PDE solvers nor ODE solvers. This means
that parameters governed by physical processes such as the distribution of heat or air
flow, that cannot be described explicitly as functions of time and realistic simulations of
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which often require sophisticated numerical methods, cannot be modeled using the current
implementations of H.

Hybrid ASP is an extension of ASP that allows users to combine the strength of the
ad-hoc approaches, i.e. the use of numerical methods to faithfully simulate physical processes,
and the expressive power of ASP that provides the ability to elegantly model laws of a system.
Hybrid ASP provides mechanisms to express the laws of the modeled system via hybrid ASP
rules which can control execution of algorithms relevant for simulation.

In action languages like H, the goal is to compile an H program into a variant ASP
program that can be processed with current variant ASP solvers. Our long term goal is to
develop extensions of ASP solvers that can process Hybrid ASP programs. This would allow
us to develop Hybrid ASP type extensions of action languages like H that could be compiled
to Hybrid ASP programs which, in turn, would be processed by Hybrid ASP solvers.

Figure 1 A cross section of the regions to be traversed by Secret Agent 00111.

In this paper, we shall present the basic definitions of Hybrid ASP programs and define
an analogue of stable models for such programs. To help motivate our definitions, we shall
consider the following toy example. Imagine that Secret Agent 00111 (the agent, for short)
needs to move through a domain consisting of 3 areas: Area I, Area II, and Area III. The
domain’s vertical cross section is shown on the diagram ??. Area I is a mountain, Area II is
a lake, and Area III is a desert. Secret Agent 00111 needs to descend down the mountain in
his car until he reaches the lake at which point the car can be reconfigured so that it can be
used as a boat that can navigate across the lake. We shall assume that the lake has a water
current moving with a constant speed of 5m/s which makes an angle 4π

3 clockwise from
the positive direction of the x-axis. If Secret Agent 00111 is pursued by evil agents on his
trip down the mountain, he will accelerate the car at 4m/s2 in addition to the acceleration
due to gravity. If he is not pursued by evil agents, then he will simply coast down the hill.
Furthermore, if the agent is pursued by the evil agents then he will attempt to travel through
the lake as fast as possible, always steering at a 90 degrees angle to the opposite shore. If
the agent is not pursued by the evil agents then he would like to exit the lake at a point
with a y-coordinate being close to the y-coordinate of the point of his entrance into the lake.
To accomplish this, Secret Agent 00111 will be able to steer the boat in directions which
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make various angles to the x-axis. Finally upon entering the desert Secret Agent 00111 can
again begin to accelerate at 4m/s2.

The outline of this paper is as follows. In section 2 we shall introduce Hybrid ASP
programs. In section 3 we shall show how H-ASP programs can be used to model a dynamical
system for our secret agent problem. In section 4 we shall provide conclusions and directions
for further research.

2 Hybrid ASP

The main feature of H-ASP is to view rules as general input-output devices. Informally, this
means that given a set of parameter values and a set of facts associated with it, a rule may
or may not produce one or more new parameter values and an associated fact. This ensures
that H-ASP is suitable for defining control mechanisms for discrete time simulations that
require the use of PDE solvers or ODE solvers or both.

A H-ASP program P will have an underlying parameter space S. For instance, in our
secret agent example, imagine that we allow Secret Agent 00111 to make decisions every ∆
seconds. Then one can think of describing the Secret Agent 00111’s position and situation at
time k∆ by a sequence of parameters x(k∆) = (x0(k∆), x1(k∆), x2(k∆), . . . , xm(k∆)) that
specify both continuous parameters such as time, position, velocity, and acceleration as well
as discrete parameters such as is the car configured as a car or as a boat. In more complicated
simulations, the programmer may not know the value ∆ ahead of time as the exact value of
∆ may be determined by the needs of the parameter passing algorithms. Nevertheless, we
shall always assume that any parameter passing algorithm advances time in some discrete
time steps which may vary depending on the values of the input parameters. Thus in a
H-ASP program, one can always think of the parameter x0 as specifying time and the range
of x0 is either {k∆ : k = 0, . . . , n} for some fixed n and ∆ > 0 or {k∆ : k ∈ N} where N is
the set of natural numbers {0, 1, 2, . . . , }. In particular, for a finite H-ASP program, there
will be no loss of generality in assuming that the range of x0 is {k∆ : k = 0, . . . , n} for some
fixed n and ∆ > 0. In such a situation, we shall always write an element of S in the form
x = (k∆, x1(k∆), . . . , xm(k∆)) for some k. However, in our general definitions, we shall just
assume that elements of the parameter space S are of the form p = (t, x1, . . . , xm) where t is
time and we shall let t(p) denote t and xi(p) denote xi for i = 1, . . . ,m. We refer to the
elements of S as generalized positions. A H-ASP program will also have an underlying set of
atoms At. Then the underlying universe of the program will be At× S.

If M ⊆ At × S, then we let M̂ = {x ∈ S : (∃a ∈ At)((a,p) ∈ M)}. We will say
that M satisfies (a,p) ∈ At × S, written M |= (a,p), if (a,p) ∈ M . For any element
(t, x1, . . . , xm) ∈ S, we let WM (t, x1, . . . , xm) = {a ∈ At : (a, (t, x1, . . . , xm)) ∈ M} and we
shall refer to WM (t, x1, . . . , xm) as the world of M at the generalized position (t, x1, . . . , xm).
We let T (S) = {t : ∃p ∈ S(t = t(p)}. We say that M is a single trajectory model if for
each t ∈ T (S), there is exactly one generalized position of the form (t, x1, . . . , xm) in M̂ . If
M is a single trajectory model, then we let (t, x1(t), . . . , xm(t)) be the unique element of the
form (t, x1, . . . , xm) in M̂ and we can write M as a disjoint union

M =
⊔

t∈T (S)

WM (t, x1(t), . . . , xm(t))× {(t, x1(t), . . . , xm(t))}.

We will say that M is multiple trajectory model if for each t ∈ T (S), there is at least
one generalized position of the form (t, x1, . . . , xm) in M̂ and for some t ∈ T (S), there are
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at least two generalized positions of the form (t, x1, . . . , xm) in M̂ . Single trajectory stable
models are desirable when the objective of a computation is to obtain a trajectory satisfying
certain constraints. For example, in the planning problem, the objective is to find a sequence
of actions that achieves a predefined goal given an axiomatized initial situation [8]. Thus
solving planning problem provides a motivation for considering single trajectory models.
Multiple trajectory models are natural to consider when the objective of a computation is a
set of conclusions that depend on all the possible trajectories. For instance such a model
would be useful in reasoning about a best strategy for an agent acting within a dynamical
system where the consequences of actions are non-deterministic. Thus multiple trajectory
models are natural to consider in the context of dynamic programming problems (see [10] for
an introduction to dynamic programming).

If we drop the requirement that there is a generalized position (t, x1, . . . , xm) ∈ M̂ for
each t ∈ T (S) in the definition of single trajectory or multiple trajectory models, we get
what we call partial single trajectory and partial multiple trajectory models. For example, if
T (S) = {k∆ : k = 0, . . . , n}, then we may want to allow our parameter passing algorithms
the flexibility of advancing time by multiple steps of ∆ so that it may be the case that
our set of rules will derive no information about what happens a certain time k∆ in which
case WM (k∆, x1(k∆), . . . , xm(k∆)) will be empty for all generalized positions of the form
(k∆, x1(k∆), . . . , xm(k∆). Thus it is quite natural to consider partial single trajectory and
partial multiple trajectory models.

Given M ⊆ At× S and B = a1, . . . , an,¬b1, ...,¬bm, and p ∈ S, we say that M satisfies
B at the generalized position p, written M |= (Bi,p), if (ai,p) ∈ M for i = 1, . . . , n, and
(bj ,p) 6∈ M for j = 1, . . . ,m. For B as above define B− = ¬b1, ...,¬bm. Note that if Bi is
empty. then we assume that M |= (Bi,p) automatically holds.

There are two types of rules in H-ASP programs.

Advancing Rules are of the form

B1;B2; . . . ;Br : A,O
a

(1)

where A is an algorithm, each Bi is of the form a
(i)
1 ,. . .,a(i)

ni ,¬b
(i)
1 ,...,¬b(i)mi where a(i)

1 ,....a(i)
ni ,

b
(i)
1 ,...,b(i)mi , and a are atoms, and O ⊆ Sr is such that if (p1, . . . ,pr) ∈ O, then t(p1) <
. . . < t(pr), A (p1, . . . ,pr) ⊆ S, and for all q ∈ A (p1, . . . ,pr), t(q) > t(pr). Here and in
the next rule, we allow ni or mi to be equal to 0 for any given i. Moreover, if ni = mi = 0,
then Bi is empty and we automatically assume that Bi is satisfied by any M ⊆ At × S.
We shall refer to O as the constraint set of the rule and the algorithm A as the advancing
algorithm of the rule. The idea is that if (p1, . . . ,pr) ∈ O and for each i, Bi is satisfied at the
general position pi, then the algorithm A can be applied to (p1, . . . ,pr) to produce a set of
generalized positions O′ such that if q ∈ O′, then t(q) > t(pr) and (a,q) holds. Advancing
rules formalize reasoning steps in which new sets of parameter values are derived.

For instance consider the movement of an object through the 3 dimensional space R3

with a constant velocity v = (v1, v2, v3) where the parameter space S is defined so that
T (S) = {k∆ : k ∈ N}. Then we can use the following rule to model object’s movement: :A,S

T ,
where A ((t, x1, x2, x3)) = {(t+ ∆, x1 + v1 ·∆, x2 + v2 ·∆, x3 + v3 ·∆)}. Here T is a place
holder atom for “true”. That is, since an advancing rule requires a conclusion, "T" is used to
fulfill the requirement and has no significance otherwise.
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Stationary rules are of the form

B1;B2; . . . ;Br : H,O
a

(2)

where each Bi is of the form a
(i)
1 ,...,a(i)

ni ,¬b
(i)
1 ,...,¬b(i)mi where a(i)

1 ,....a(i)
ni , b

(i)
1 ,...,b(i)mi and a are

atoms, O ⊆ Sr is such that if (p1, . . . ,pr) ∈ O, then t(p1) < · · · < t(pr), and H is a Boolean
algorithm such that for all (p1, . . . ,pr) ∈ O, H(p1, . . . ,pr) is defined. We shall refer to O
as the constraint set of the rule and the algorithm H as the Boolean algorithm of the rule.

The idea is that if (p1, . . . ,pr) ∈ O and for each i, Bi is satisfied at the generalized
position pi, and H((p1, . . . ,pr)) is true, then (a,pr) holds. Stationary rules formalize
reasoning steps where new facts are derived about a particular set of parameters that has
already been derived. As an example consider the following. Suppose that we are considering
a program where T (S) = {k∆ : k = 0, . . . , n}, where we want to derive a single trajectory
stable model, and where once an atom A holds at (k∆, x1(k∆), . . . , xm(k∆), then A must
hold at all generalized positions of the form ((k + 2j)∆, x1((k + 2j)∆), . . . , xm((k + 2j)∆)
where j ≥ 1. To enforce this condition we can use the following stationary rule: A; :H, O

A

where for all O = {(p1,p2) : t (p1) < t (p2)} and for all (p1,p2) ∈ O, H ((p1,p2)) holds iff
and only if t(p2)−t(p1)

∆ is a positive even number.
A H-ASP program is a collection of rules of the form (1) and (2). Note that H-ASP

programs have the following features.

1. H-ASP advancing rules allows to pass parameters over variable length time steps.
Moreover, advancing algorithms are quite general so that the output of an advancing
algorithm can depend on only some of the parameters in any given generalized position.

2. Reasoning about future events can proceed with only partial information available about
past events and present events.

3. Rules in H-ASP can refer to a finite number of sets of parameter values in the past. This
means that to make a conclusion about a set of parameter values for a time t, a rule can
use information about the sets of parameter values for times t1 < t2 < ... < tk < t.

4. H-ASP allows users to perform reasoning when the computations made by the algorithms
are imprecise. That is, the advancing algorithm in an advancing rule is set valued. This
allows us to consider advancing algorithms that use random bits or advancing algorithms
that give approximate solutions.

5. H-ASP provides an indirect mechanism by which algorithms can specify values for only
some of the parameters. This is accomplished when some of the parameters of generalized
positions in an output set of an advancing algorithm are limited to few values, whereas
other parameters are allowed to take all the possible values. This will be illustrated
by the following example. Suppose that the parameter space S consists of triples of
values (t, x, y), where x ranges over set X, and y ranges over set Y . Our program P

consists of two rules, : A,S
set (x) ,

: B,S
set (y) , where set (x) and set (y) are atoms. Suppose

further that an algorithm A can only specify the value for x which is 2 at time t′. Then
the output of algorithm should be {(t′, 2, y) : y ∈ Y }. If algorithm B specifies the
value of y which is 1 at time t′ then the output of B should be {(t′, x, 1) : x ∈ X}.
Intuitively we would want to select only p = (t′, 2, 1) as a valid generalized position, since
only in p among the generalized positions produced by A and by B both x and y are
correctly specified. However besides p the algorithms will produce many other generalized
positions. To restrict the valid generalized positions to p, we could add the following
two rules, ¬set (x) : TRUE, S

set (x) ,
¬set (y) : TRUE, S

set (y) , where TRUE is a Boolean algorithm
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that returns 1 on any input. These rules will restrict any stable model to contain only p
as a generalized position with time equal to t′.

Next we define an analogue of stable models for H-ASP programs. To do this, we first
must define H-ASP Horn programs and a one-step provability operator for H-ASP Horn
programs.

A H-ASP Horn program is a H-ASP program that does not contain any negated atoms in
At. A consistent H-ASP Horn program P is a H-ASP Horn program such that if whenever
two pairs of an advancing algorithm and a constraint set, (A,O) and (A′, O′), appear in P
and O,O′ ⊆ Sr, then A �O∩O′= A′ �O∩O′ . Intuitively, consistent H-ASP Horn programs will
be used to derive single trajectory stable models while H-ASP Horn programs without the
consistency constraint will be used to derive multiple trajectory stable models.

Let P be a H-ASP Horn program and I ∈ S be an initial condition. Then the one-step
provability operator TP,I is defined so that givenM ⊆ At×S, TP,I(M) consists ofM together
with the set of all (a, J) ∈ At× S such that

1. there exists a stationary rule C = B1;B2;...;Br:H,O
a and (p1, . . . ,pr) ∈ O ∩

(
M̂ ∪ {I}

)r
such that (a, J) = (a,pr) and M |= (Bi,pi) for i = 1, . . . , r and H(p1, . . . ,pr) = 1.

2. there exists an advancing rule C = B1;B2;...;Br:A,O
a and (p1, . . . ,pr) ∈ O ∩

(
M̂ ∪ {I}

)r
such that J ∈ A(p1, . . . ,pr) and M |= (Bi,pi) for i = 1, . . . , r.

There is a nice subclass of H-ASP programs which are particularly well behaved that
we call Basic H-ASP (BH-ASP) programs. In a BH-ASP program, we assume that the
underlying parameter space S has the property that T (S) is of the form {k∆ : k = 0, . . . , n}
or {k∆ : k ∈ N} for some fixed ∆ > 0. Moreover, we do not allow the rules to refer to
multiple times in the past and we assume all advancing algorithms define functions that
just give us information about the next time step. That is, a BH-ASP program consists of
collections of the following two types of rules.

Basic Stationary rules are of the form
a1, ..., as,¬b1, ...,¬bt : O

a
(3)

where a, a1, ..., as, b1, ..., bt ∈ At, O is a set of generalized positions in the parameter space S.
The idea is that if for a generalized position p ∈ O, (ai,p) holds for i = 1, ..., s and (bj ,p)
does not hold for j = 1, ..., t, then (a,p) holds. Thus stationary rules are typical general
logic programming rules relative to a fixed world WM (p).

Basic Advancing rules are of the form
a1, ..., as,¬b1, ...,¬bt : A,O

a
(4)

where a, a1, ..., as, b1, ..., bt ∈ At, O is a set of generalized positions in the parameter space S,
and A is an algorithm such that for any generalized position p ∈ O, A(p) is defined and is
an element of S. Here as in H-ASP advancing rules, A can be any sort of algorithm that
might require solving a differential or integral equation, solving a set of linear equations or
linear programming equations, running a program or automaton, etc. However, we assume
that if p = (k∆, x1, . . . , xm) ∈ O, then A(p) is of the form ((k + 1)∆, y1, . . . , ym) for some
y1, . . . , ym.

In that case, we can prove the following result for consistent BH-ASP programs by
induction.
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I Theorem 1. Let I = (0, x1(0), . . . , xm(0)) be an initial condition.

1. Let P be a consistent BH-ASP Horn program over the parameter space S and set of
atoms At. Then the least model of P is a partial single trajectory model of the form⊔
k∈V

WM (k∆, x1(∆), . . . , xm(k∆))× {(k∆, x1(∆), . . . , xm(k∆))} where either V = N or

V is some initial segment of N.
2. Let P be a BH-ASP Horn program over parameter space S and set of atoms At. Then if

(a, (k∆, x1, . . . , xm)) is in the least model of P , then for all 1 ≤ j ≤ k, there must be an
element of the form (aj , (j∆, xj1, . . . , xjm)) in the least model of P .

Part 2 of the theorem has a simple interpretation - if the least model contains an element
for time k∆ then it also contains an element for every (discrete) time preceding k∆.

We define the stable model semantics for general H-ASP programs as follows. Suppose
that we are given a H-ASP program P over a set of atoms At and a parameter space S,
a set M ⊆ At × S, and an initial condition I ∈ S such that t(I) = 0. Then we form the
Gelfond-Lifschitz reduct of P over M and I, PM,I as follows.

1. Eliminate from P all advancing rules C = B1;...,Br:A,O
a such that for all (p1, . . . ,pr) ∈

O ∩
(
M̂ ∪ {I}

)r
, there is an i such that M 6|= (B−i ,pi) or A (p1, . . . ,pr) ∩ M̂ = ∅ .

2. If the advancing rule C = B1;...,Br:A,O
a is not eliminated by (1), then replace it by

B+
1 ;...,B+

r :A+,O+

a where for each i, B+
i is the result of removing all the negated atoms

from Bi, O+ is equal to the set of all (p1, . . . ,pr) in O ∩
(
M̂ ∪ {I}

)r
such that M |=

(B−i ,pi) for i = 1, . . . , r and A(p1, . . . ,pr) ∩ M̂ 6= ∅, and A+(p1, . . . ,pr) is defined to be
A(p1, . . . ,pr) ∩ M̂ .

3. Eliminate from P all stationary rules C = B1;...,Br:H,O
a such that for all (p1, . . . ,pr) ∈

O ∩
(
M̂ ∪ {I}

)r
, either there is an i such that M 6|= (B−i ,pi) or H(p1, . . . ,pr) = 0.

4. If the stationary rule C = B1;...,Br:H,O
a is not eliminated by (3), then replace it by

B+
1 ;...,B+

r :H|O+ ,O
+

a where for each i, B+
i is the result of removing all the negated atoms from

Bi, O+ is equal to the set of all (p1, . . . ,pr) in O ∩
(
M̂ ∪ {I}

)r
such that M |= (B−i ,pi)

for i = 1, . . . , r and H(p1, . . . ,pr) = 1.

We then say that M is a general stable model of P with initial condition I if TPM,I (∅) ↑
ω = M.

3 The Example

We will now present the use of these definitions in the Secret Agent 00111 example. In order
to keep things simple, our presentation will be restricted to the agent’s movement in the Area
I of the domain. We will also use the generalized positions (t, d, y, v, s) where d denotes the
displacement, i.e. the distance traveled from the top of the mountain, v is the agent’s velocity
in the direction of displacement, y is the agent’s y-coordinate, and s = 1 if a shot is heard at
time t and s = 0 if a shot is not heard at time t. It should be noted that the parameter y
will not be used below, however parameter y would be important for modeling the agent’s
movement in the lake. Since in the lake the agent can choose the steering direction, the
y-coordinate will vary according to the steering.
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A central consideration in determining the proper constraint sets associated with H-ASP
rules is the problem of modeling the interaction between regions. In the case of our example,
this means modeling accurately the agent’s movements as the agent crosses the boundary
between regions. In our example, the issue arises as the agent moves from region 1 of Area I
into region 2 of Area I.

Recall that the agent will simply coast down the mountain unless pursued by the evil
agents. If the agent is pursued, he will apply additional acceleration of 4m/s2 in the direction
of the movement. The agent is considered to be pursued during a time interval of ∆ seconds
if a shot is heard in the beginning of the interval, or if two shots were heard before the start
of the interval and the shots were separated by ∆ seconds.

For the rest of the presentation we will set ∆ = 1. To keep the numbers simple, we shall
round the acceleration due to gravity to 10m/s. We have carefully picked the slopes so that
we have (3,4,5) right triangle in region 1 and a (7,24,25) right triangle in region 2 so that the
acceleration due to gravity in region 1 in the direction of displacement will be 3

510 = 6m/s2

and the acceleration due to gravity in the direction of displacement will be 7
2510 = 14

5 m/s
2

in region 2 of Area I. We shall only model the agents behavior at times t = 0, 1, 2, 3, 4, 5
and we shall assume that the agent cannot exit Area I within 5 seconds so that we will not
concern ourselves with the boundary between Area I and Area II.

The set of atoms is At = {PURSUED, A, T} where PURSUED will indicate that the
agent is being pursued, A will indicate that two shots separated by 1 second were heard in
the past, and T is a place holder atom.

Given a generalized position p = (t, d, y, v, s) and an acceleration a let B (p, a) = b

be such that if the agent is at distance d as measured from the top of the mountain in
region 1 on the path along the mountain’s slope and has initial velocity v and he accelerates
continuously with the acceleration a in the direction of his movement, then at time t+ b he
will reach the boundary of region 1 of Area I which is a generalized position with d = 50m.
That is, we want 50 = a

2 b
2 + vb+ x so that B ((t, x, y, v, s) , a) = −v+

√
v2−2a(x−50)
a . Thus

O1 = {(t, x, y, v, s) : 0 ≤ d < 50 and B ((t, x, y, v, s) , 6) ≥ 1} is the set of generalized
positions in region 1 where the agent coasting down hill will not reach the boundary
between region 1 and region 2 in < 1 second and O2 = {(t, x, y, v, s) : 0 ≤ d < 50 and
B ((t, x, y, v, s) , 6) < 1} is the set of generalized positions in region 1 where the agent
coasting down hill will reach the boundary between region 1 and region 2 in < 1 second.
Similarly, O3 = {(t, x, y, v, s) : 0 ≤ d < 50 and B ((t, x, y, v, s) , 10) ≥ 1} is the set of
generalized positions in region 1 where the agent accelerating at 4m/s2 in addition to
gravity will not reach the boundary between region 1 and region 2 in < 1 second and
O4 = {(t, x, y, v, s) : 0 ≤ d < 50 and B ((t, x, y, v, s) , 10) < 1} is the set of generalized
positions in region 1 where the agent accelerating at 4m/s2 in addition to gravity will reach
the boundary between region 1 and region 2 in < 1 second. Finally let O5 be the set of all
the generalized positions in region 2.

We will have two types of advancing algorithms. That is, if we are using a constant
acceleration a in a region, then by the usual formulas for displacement d(t) = a

2 t
2+v(0)t+d(0)

and velocity v(t) = at+ v(0) at time t, one can see that our advancing algorithm should be

Aa(t, d, y, v, s) = {(t+ 1, a2 + v + d, y, a+ v, s) : s ∈ {0, 1}}.

If at p = (t, d, y, v, s), we know that we will cross from region 1 to region 2 so that we reach
the boundary d = 50 of region 1 with a velocity of aB(p, a) + v and then in region 2, our
acceleration is a′, one can see that our advancing algorithm should be

Ca,a′(t, d, y, v, s) = {(t+ 1, d′, y, v′, s) : s ∈ {0, 1}}.
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where d′ = a′

2 (1− B(p, a))2 + (aB(p, a) + v)(1− B(p, a)) + 50 and v′ = a′(1− B(p, a)) +
aB(p, a) + v.

We then have the following rules for when our agent is not being pursued by evil agents.

¬PURSUED : A6, O1

T

¬PURSUED : C6, 14
5
, O2

T

¬PURSUED : A 14
5
, O5

T

We have the following rules for when our agent is begin pursued by evil agents.

PURSUED : A10, O3

T

PURSUED : C10, 34
5
, O4

T

PURSUED : A 34
5
, O5

T
.

The atom A is to be derived at time t if a shot was heard at time t −∆t and at time
t. Also atom A is to be derived at time t if A was already derived at time t−∆t. This is
formalized by the following two stationary rules:

: H,G
A

A; : TRUE2, G

A

where G = {(p1,p2) ∈ S2 : 1 + t(p1) = t(p2)}, TRUE2 (p1,p2) = 1, and and H (p1,p2) =
χ(s (p2)− s (p1) = 1). Here for any statement Q, we let χ(Q) = 1 if Q is true and χ(Q) = 0
if Q is false.

Finally the atom PURSUED is to be derived at time t if a shot is heard at time t or if
atom A is derived at time t. Hence, we have the following two stationary rules

: U, S
PURSUED

A : TRUE1, S

PURSUED

where U (p) = χ(s (p) = 1) and for all p ∈ S, TRUE1 (p) = 1.
Let P be the program consisting of the rules described above. We will now consider a

particular single trajectory stable model M of P . According to this stable model there is a
shot heard at time t = 0 then at time t = 2 and then at time t = 3. We will only consider
the elements of the stable model up to and including the time t = 5.

Suppose that at time t = 0 the agent has displacement 5m and initial velocity 2m/s.
That is I = (0, 5, 0, 2, 1). Then the following table describes a stable model M of P .

t d (m) y (m) v (m/s) s WM (t, d, y, v, s)
0 5 0 2 1 T, PURSUED
1 5 + 2 + 5 = 12 0 10 + 2 = 12 0 T
2 3 + 12 + 12 = 27 0 6 + 12 = 18 1 T, PURSUED
3 5 + 18 + 27 = 50 0 10 + 18 = 28 1 T, A, PURSUED
4 17

5 + 28 + 50 = 407
5 0 34

5 + 28 = 174
5 0 T, A, PURSUED

5 17
5 + 174

5 + 407
6 = 598

5 0 34
5 + 174

5 = 208
5 0 T, A, PURSUED

M induces the following Gelfond-Lifschitz reduct

:A+
6 , {(1,12,0,12,0)}

T

PURSUED:A+
10,{(0,5,0,2,1),(2,27,0,18,1)}

T
PURSUED:A+

34
5

,{(3,50,0,28,1),(4, 407
5 ,0, 174

5 ,0),(5, 598
5 ,0, 208

5 ,0)}
T

:H|
G+ ,G+

A
A; :TRUE2 |Y ,Y

A

:U|
S+ ,S+

PURSUED

A:TRUE1 |
M̂

, M̂

PURSUED

where G+ = {((2, 27, 0, 18, 1), (3, 50, 0, 28, 1))}, S+ = {(0, 5, 0, 2, 1), (2, 27, 0, 18, 1), (3, 50, 0, 28, 1)},
Y = {((0, 5, 0, 2, 1), (1, 12, 0, 12, 0)), ((1, 12, 0, 12, 0), (2, 27, 0, 18, 1)), ((2, 27, 0, 18, 1), (3, 50, 0, 28, 1)),
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((3, 50, 0, 28, 1), (4, 407
5 , 0, 174

5 , 0)), ((4, 407
5 , 0, 174

5 , 0), (5, 598
5 , 0, 208

5 , 0))}, and
M̂ = {(0, 5, 0, 2, 1), (1, 12, 0, 12, 0), (2, 27, 0, 18, 1), (3, 50, 0, 28, 1), (4, 407

5 , 0, 174
5 , 0), (5, 598

5 , 0, 208
5 , 0)}.

The fact that M is stable model can be easily verified by computing the least model of
the Gelfond-Lifschitz reduct of P with respect to M and I.

Remark: We should note that the restriction on O in both extended stationary rules
and extended advancing rules that t(p1) < · · · < t(pr) can in fact be dropped by slightly
modifying our definitions of the one step provability operator and stable models. This
could in principle allow one to use rules that refer to both past and future times or to
multiple generalized positions that occur at the same time. We put in the restriction
t(p1) < · · · < t(pr) mainly for ease of presentation and the fact that we did not have space
to develop applications of these more extended rules.

4 Conclusion

In this paper, we introduced Hybrid ASP (H-ASP) - an ASP type system to reason about
dynamical systems which exhibit both continuous and discrete aspects. The key feature of
the system is that it includes advancing rules that incorporate an algorithm to allow for
parameter passing from one time step to the next and stationary rules which incorporate
an auxiliary algorithm to allow non-logical checking that govern the applicability of the
rule. We then defined an analogue of the stable model semantics for H-ASP by defining
an appropriate analogues of the one-step provability operator for Horn programs and the
Gelfond-Lifschitz reduct of normal logic programs.

We envision that an actual implementation of a H-ASP solver will require that the system
makes calls to other modules. That is, the algorithms that are part of advancing rules or
extended stationary rules are allowed to be any sort of algorithms which require solving
a differential or integral equation, solving a set of linear equations or linear programming
equations, running a program or automaton, etc. Thus a H-ASP-solver should naturally allow
calls to specialized software outside the system to run such algorithms. We have implemented
preliminary version of our system where the algorithm required solving PDEs associated
with the Heat equation (for a discussion of the Heat equation see [4] and [9]). This type of
application goes well beyond the simple toy model that we used to illustrate our ideas in this
paper and will be the subject of future papers.

We view the extension of the answer set programming paradigm, H-ASP, that we
introduced in this paper as a first step for further work that will lead to both theoretical tools
used for the modeling and analysis of dynamic systems and for computer applications that
simulate dynamical systems. There is considerable work to be done in developing a theory of
such programs which is similar to the theory that has been developed for ASP programs.
For example, a careful analysis of the complexity of the stable models of H-ASP programs
as a function of the complexity of the advancing and Boolean algorithms in the program
needs to be done. One can ask under what circumstances are there analogues of the forward
chaining algorithm of [7] for H-ASP programs. One can consider more extended sets of rules
that allow for partial parameter passing or allow different rules to instantiate disjoint sets of
parameters for the next time step. These issues will be pursued in later papers. Nevertheless,
we believe that the point of view of thinking of rules as general input-output devices has the
potential for many new applications of ASP techniques.
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