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Abstract
Today, Prolog is often used to solve well-defined, domain-specific problems that are part of
larger applications. In such cases, a tight integration of the Prolog program and the rest of
the application, which is commonly written in a different language, is necessary. One common
approach is to compile the Prolog code to (native) code in the target language. In this case, the
effort necessary to build, test and deploy the final application is reduced.

However, most of the approaches that achieve reasonable performance compile Prolog to
object-oriented code that relies on some kind of virtual machine (VM). These VMs are libraries
implemented in the target language and implement Prolog’s execution semantics. This adds
a significant layer to the object-oriented program and results in code that does not look and
feel native to developers of object-oriented programs. Further, if Prolog’s execution semantics
is implemented as a library the potential of modern runtime environments for object-oriented
programs, such as the Java Virtual Machine, to effectively optimize the program is more limited.
In this paper, we report on our approach to compile Prolog to high-level, idiomatic object-oriented
Java code. The generated Java code closely resembles code written by Java developers and is
effectively optimized by the Java Virtual Machine.
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1 Introduction

One application area, in which Prolog is often used today, is static source code analysis
[6, 7, 2, 11]. In this area, the tight integration of the Prolog program with the rest of
the application is crucial. Developers using modern IDEs expect to be able to download
corresponding source-code analysis plug-ins for their favorite IDE without requiring the
installation of further tools. To solve the integration problem and to make deployment a
non-issue, it is either possible to use an embedded Prolog interpreter that is written in
the language of the rest of the application or to compile the Prolog code to (native) code
in the target language. Unfortunately, the performance of Prolog interpreters is generally
not sufficient for decent source code analyses. On the other hand, approaches that compile
Prolog code to code in the target language usually offer reasonable performance. However,
most approaches rely on some kind of virtual machine or framework implemented in the
target language [1, 5]. This layer basically implements Prolog’s execution semantics and is
responsible for managing the overall control-flow and the memory. The result is, that the
target code generated for the Prolog code often does not look and feel native to developers
familiar with the target language.

In this paper, we report on our approach to compiling Prolog to high-level object-oriented
Java code which is effectively optimized by the Java Virtual Machine. Our primary goal is to
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functor () : StringAtom
arity() : int
arg(i : Int) : Term
expose() : Term 
unify(t : Term) : boolean
manifestState() : State
call() : Goal
intEval() : long

Term
«abstract»

getValue() : Term
setValue(t : term)
frontVariable() : Variable
expose() : Term

value : Term

Variable

Atomic

CompoundTermreincarnate()

State

next() : boolean
abort()
choiceCommitted() : boolean

Goal

choiceCommitted() : boolean

PrimitiveGoal

{ return false; }

register(PredicateIdentifier, PredicateFactory)
getFactory(PredicateIdentifier) : PredicateFactory

PredicateRegistry

createInstance(Term [] args) : Goal

PredicateFactory
* 

Figure 1 Core Classes and their Dependencies

generate code that is modular, easy to understand and easy to reuse/embed. I.e., we try to
generate code that has the least possible impact on the overall application design, but which
offers reasonable performance. To achieve this goal, we (A) rely on the functionality offered
by Java Virtual Machines for memory management and (B) do not use a framework based
approach which prescribes or manages the control-flow and memory used by the Prolog
based part of the application. Additionally, at the interface level, the transformed code
closely resembles code as written by Java developers to facilitate the integration between
the Prolog based code and the (rest of the) Java application. By generating idiomatic
code we also want to leverage the optimizations done by modern virtual machines. This
optimizations often only fully apply to idiomatic object-oriented programs [4].

This paper is structured as follows. In the next section, we discuss our approach and
its implementation — called SAE Prolog. After that, we discuss important related work
in Section 3. Section 4 presents the results of our evaluation. This paper ends by drawing
some final conclusions in Section 5.

2 Approach

2.1 Overview
The core idea of the chosen approach is to compile each Prolog predicate to one class
that implements the complete semantics of the predicate. The goal is that classes, which
implement predicates, have minimal dependencies. To this end, we defined one core interface
PrimitiveGoal which basically defines one core method: boolean next() (cf. Figure 1).
This interface is implemented by all classes that represent Prolog predicates and enables
clients of the class (callers of the predicate) to iterate over all solutions given a certain set
of arguments. I.e., the complete execution semantics of the predicate is implemented by the
method next. The calling contract of next is:
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86 Compiling Prolog to Idiomatic Java

1. Variable Rs = new Variable();
2. queens2 q = new queens2(atomic(8),Rs);
3. while (q.next()) System.out.println(Rs.toProlog());

Figure 2 Java code to get all solutions for the eight-queens problem.

If next returns true, a (another) solution exists. A result is returned by binding it to
the Prolog variable(s) passed to the class (predicate) when the instance was created.
If next returns false, all parameters (Prolog variables) passed to the class are exactly
as before the first call to next; i.e. variable bindings that were done while trying to prove
the goal are undone.

Besides an implementation of the next method, each of the classes that implements a pred-
icate has a constructor that defines one parameter for each argument of the corresponding
Prolog predicate. The sole purpose of the constructor is to store the parameter values in
corresponding fields to make them accessible later on.

For example, let’s assume that we have defined a Prolog predicate queens(N, Rs) :-
... to solve the n-queens problem. In this case a class called queens2 will be gener-
ated that defines a constructor (public queens2(Term N,Term Rs){...}) that takes two
parameters: One for the problem size N and one to return a solution/to check a given so-
lution (Rs). To get a solution for the eight-queens problem, it is now sufficient to create a
new instance of the queens2 class (Line 2 in Figure 2) and to pass in the problem size N
(atomic(8)) and a free variable (Rs - Lines 1 and 2) to which the (next) solution will be
bound, if a/another solution exist. After instantiation, we call next to get the first/next
solution. If next returns true (Line 3), the solution is bound to the given Prolog variable;
otherwise Rs is/remains a free variable.

The property that instances of Prolog variables have the initial state when a predicate
has failed is crucial, if we have multiple dependent goals and backtracking does occur. For
example, the query ?- X=a(Y),(X=a(1);X=a(2)).has two solutions: Y == 1 and Y == 2.
At runtime, when the ;/2 predicate is called/the next method is invoked, it first tries to
prove the left goal X=a(1) and if it succeeds, the predicate immediately returns true. If we
now ask for another solution, the left goal is again asked if there is another solution. Since
there are no further solutions, the ;/2 predicate immediately tries to prove the right goal
(X=a(2)). But, this requires that Y is (again) a free variable. If Y would still be bound to
the value 1, proving the right goal would fail. In general, in our approach we rely on the
contract that – after a goal has failed – all terms are exactly as if we would have never tried
to prove the (sub-)goal.

Given the proposed approach, it is crucial to be able to efficiently save the information
which variable shares with which other variable and which variable is instantiated or free.
To achieve this goal we use the State Pattern[8] to manifest the state of a (compound)
term (Term.manifestState():State in Figure 1). Calling manifestState returns a State
object that enables us to restore the term’s state later on by calling reincarnate. The
State object is basically a list of Prolog variables that do not reference other variables (at
the object-oriented level). If several Prolog variables share, we chain these variables such
that exactly one variable does not reference any other variable (called the front variable
in Figure 1). For example, let’s assume that the user first unifies the variable X with Y
and then unifies X with Z. In this case, the Variable object (cf. Figure 1) that represents
the Prolog variable X will reference the object that represents Y; i.e., the field value of the
object representing X will reference the object that represents Y and the value field of Y
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case X: init new variables;
goalStack.put( new <GOAL>(...) ); // fall through

case X+1: if (!goalStack.peek().next()) {
goalStack.scrapTopGoal();
< continue with the next goal after failure >; }

< continue with the next goal after success >;

Figure 3 Initializing and calling a non-deterministic goal.

will remain free. If the Prolog program then unifies X and Z, the value field of the object
representing Z will reference the object referencing Y. If the Prolog program later on unifies
Y and Z “nothing” happens. Whenever two variables are unified, we always first check if
their front variables are different. In this case the front variable of Z and Y is Y. Hence, we
know that these two variables already share and no further changes are necessary.

To support the cut operator, the interface Goal (cf. Figure 1) defines two further meth-
ods: abort() and choiceCommitted():boolean (cf. Figure 1). The latter method returns
true, if the goal is the cut operator (!/0) or if a subgoal of an or(;/2) or and(,/2) goal
returns true. If true is returned, we do commit to the current choices. If the immedi-
ate subsequent goal fails, no backtracking is done, but instead abort is called on all goals
preceding the cut. I.e., all terms passed to the previous goals are reset to their initial states.

In our approach, we support calling of terms/predicates using call(Goal) by means of a
factory [8]. For each predicate, we generate a second class that inherits from PredicateFactory
(cf. Figure 1) and which defines a single method to create an instance of the predicate given
the correct number of arguments. The factory object is registered with a central predicate
registry (PredicateRegistry) that associates a predicate’s identifier (Functor/Arity) with
the corresponding factory. If the Prolog program at runtime calls a dynamic predicate or
uses the call/1 predicate, we first lookup the predicate’s factory object and use it to create
an instance of the actual predicate. The lookup functionality to call a term is implemented
by the method call():Goal of class Term (cf. Figure 1).

2.2 Compiling Predicates to Java Code
In the previous section, we outlined the general approach and explained the public interface
that all classes share that implement a predicate. In this section, we discuss how we translate
a predicate that has multiple clauses to Java code.

The core idea is to represent a clause’s control-flow using a switch statement where each
goal that is not a conjunction or disjunction of goals is mapped to two case statements.
In the following, we refer to these goals as primitive goals. From the point of view of the
inter-goal control-flow the first case statement is responsible for handling the initial-call
of the goal and the second case statement handles the redo case in case of backtracking.
However, w.r.t. initializing and calling a goal the two case statements work closely together
and “internally” there is no necessary strict separation.

In case of the call of a non-deterministic predicate the generated code is outlined in
Figure 3. In this case, the first case statement first initializes new clause-local variables that
are used by the goal, then the goal itself is initialized and then the goal instance is put on
the clause-local goal stack. The second case statement then handles the initial call as well
as all further attempts to re-satisfy the goal, in case of backtracking. All goals – except of
unifications, arithmetic expressions or cuts – are compiled using this schema.

The cut operator is compiled as shown in Figure 4. The first case statement handles the
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case X: cutEvaluation = true;
< continue with the next goal after success >;

case X+1: goalStack.abortAndScrapAllGoals();
return false;

Figure 4 Result of the compilation of the cut operator.

case X: State s1=t1.manifestState(), s2 = t2.manifestState();
if(t1.unify(t2)) {

goalStack.put(UndoGoal.create(s1,s2));
< continue with the next goal after success >;

} else {
s1.reincarnate(); s2.reincarnate();
< continue with the next goal after failure >; }

case X+1: goalStack.abortAndScrapAllGoals();
< continue with the next goal after failure >;

Figure 5 Unification of two terms t1 and t2.

initial “call” of the cut operator. The information that a cut was called is stored and we
continue with the next goal. When a subsequent goal fails all previous goals on the goal
stack are aborted and we let the clause as a whole fail.

If two terms are unified (cf. Figure 5), we first manifest the state of the terms, before we
try to unify them. If they unify, we put a special undo-goal on the clause-local goal stack
to be able to later on restore the state of both terms in case of backtracking. If the terms
do not unify, we restore the initial state and continue with the next goal.

To be able to map a clause’s control-flow to case statements of a switch statement, we
first associate each primitive goal with a unique id in the range [0..“number of primitive
goals”]. The id of the case statement that handles the initial call is then “2 * Goal ID”
and the id of the second case statement is “2 * Goal Id + 1”. Additionally, we analyze
the control-flow of the clause to determine the order in which the primitive goals have to
be called at runtime. This analysis associates each primitive goal with the goal which needs
to be called next, if the current goal succeeds. Furthermore, it associates each primitive
goal with the list of those goals that may need to be executed next if the goal fails. This
list contains multiple entries if the clause’s body contains one or more disjunctions. For
example, in case of (b;c),d, the goal b or c may be the direct predecessor of d at runtime
and if d fails at runtime, we need to continue with the goal that preceded c. However, the
list of goals that need to be executed next if a goal fails, is not to be confused with the list
of goals that may precede a certain goal at runtime. E.g., in case of a,(b;c) the goal that
needs to be called next, if b fails, is c and not a, which will always directly precede b. In
case of c the goal that needs to be executed next if c fails, is a. Finally, the analysis marks
all goals that are not the unique predecessor of its successors as such.

Given the control-flow graph and the ids of the goals, we can then create the code
to manage the control-flow of a clause. We discuss our translation scheme, based on the
example: a,(b;c),d. The result of compiling a,(b;c),d is shown in Figure 6. In this case,
the goal that will be called next if a has succeeded is b, if a has failed the corresponding
list of next goals to execute is empty. In case of b, the next goal is d if b has succeeded and
c otherwise. If c has failed, the next goal is a and d otherwise. Hence, the goal d has two
predecessors which may have been called immediately before d: b and c and which may need
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1: private int caseToExecute = 0;
2: private int caseToExecuteIfGoalDFails;
3: boolean clause() {
4: eval_goals: do { switch (caseToExecute) {
5: case 0: goalStack.put(new a0()); // goal: a
6: case 1: if (!goalStack.peek().next()) {
7: goalStack.scrapTopGoal();
8: return false; }
9: case 2: goalStack.put(new b0()); // goal: b

10: case 3: if (!goalStack.peek().next()) {
11: goalStack.scrapTopGoal();
12: caseToExecute = 4;
13: continue eval_goals; }
14: caseToExecuteIfGoalDFails = 3;
15: caseToExecute = 6;
16: continue eval_goals;
17: case 4: goalStack.put(new c0()); // goal: c
18: case 5: if (!goalStack.peek().next()) {
19: goalStack.scrapTopGoal();
20: caseToExecute = 1;
21: continue eval_goals; }
22: caseToExecuteIfGoalDFails = 5;
23: case 6: goalStack.put(new d0()); // goal: d
24: case 7: if (!goalStack.peek().next()) {
25: goalStack.scrapTopGoal();
26: caseToExecute = caseToExecuteIfGoalDFails;
27: continue eval_goals; }
28: caseToExecute = 7;
29: return true;
30: } } while (true);
31: }

Figure 6 The result of compiling “a,(b;c),d” to Java code.

to be called, if d fails. If d succeeds no further goal will be called. We need one variable
to store the information which case statement needs to be executed next (caseToExecute
- Line 1 in Figure 6). Additionally, we create one variable for each goal that has multiple
predecessors (e.g., caseToExecuteIfGoalDFails Line 2) to store the information which goal
preceded it at runtime.

If a goal succeeds, the id of the case statement that needs to be executed next (caseToExe-
cute) is set to the id of the first case statement of the target goal (e.g., Line 15 in Figure 6).
After that, the evaluation is continued by jumping to the respective case statement (Line
16). If a goal succeeds that has no successor, we set caseToExecute to the goal’s second case
statement. If the clause is called again in case of backtracking, the redo case is executed.
After that, we return true (Lines 28 and 29). If the current goal is not the unique prede-
cessor of its successor (e.g., b and c in our example), we additionally save the information
which goal preceded its successor (line 14 and 22).

If a goal fails and there are no more alternatives we return false (line 8). If there is
exactly one alternative, we set caseToExecute to the id of the first case statement of the
target goal (Lines 13 and 22). After that, we continue the execution with the respective case
statement (Lines 12 and 20). If the goal that needs to be executed next cannot be statically
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Prolog Java
1: private int clauseToExecute = 0;
2: public boolean next() {
3: switch (clauseToExecute) {
4: goal :- a, case 0: if (this.clause0()) return true;
5: !. if (cutEvaluation) return false;
6: goalToExecute = 0; clauseToExecute = 1;
7: goal :- b. case 1: if (this.clause1()) return true;
8: goalToExecute = 0; clauseToExecute = 2;
9: goal :- c. case 2: return this.clause2();

10: } }

Figure 7 Code to select the current clause.

member(X, [X|_]).
member(X, [_|Ys]) :- member(X, Ys).

Figure 8 The predicate member/2.

determined, we set the id of caseToExecute to the id that was specified by the goal that
preceded the current goal (Line 26).

The approach that we have chosen to model the inter-clause control-flow is based on the
idea discussed, e.g., in [3]. The control-flow is encoded in the next method and uses a switch
statement to select the current clause. In Figure 7, the generated code is outlined. After
creation, the first clause is called until it fails (Line 4). When it fails and there may have
been a cut, we check whether it was effective. If so, the predicate as a whole fails (Line 5),
otherwise we continue by calling the next clause (Line 7).

2.2.1 Optimizing Tail-recursive Calls
To demonstrate the potential of this approach, we briefly discuss our last call optimization.
Currently, we optimize tail-recursive calls where we can statically decide that there are no
more choice points left, when the tail call is made. For example, in case of the predicate
member/2 shown in Figure 8, it is easy to decide that there are no more choice points left if
the tail-recursive call is made – “all goals” are deterministic.

The generated code is outlined in Figure 9: First, we save the state of the arguments
passed to the predicate (Lines 3 and 4). This is necessary to be able to reset the arguments’
state when the predicate eventually fails (Line 15). Second, we embed the next method’s
switch statement into an endless loop (Line 7–15) to be able to jump to a previous clause.
If the tail-recursive clause succeeds, we continue with the next iteration of the loop (Line
13) and again start with the first goal of the first clause (Line 12). Third, before the tail
call is made, we have to update the fields that store the predicates’ arguments (Line 20).

3 Related work

Our approach to compiling Prolog code to Java code uses a large number of ideas originally
explored in various Prolog implementations. For example, the idea to make the overall
architecture of applications — where only some part is implemented in Prolog — a core
design goal was, e.g., explored by tuProlog[10].
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1: public member2(final Term arg0, final Term arg1) {
2: // ... store the arguments for future use
3: initialArg0state = arg0.manifestState();
4: initialArg1state = arg1.manifestState();
5: }
6: public boolean next() {
7: eval_clauses: do { switch(clauseToExecute) {
8: ...
9: case 1: // tail recursive clause with last call optimization

10: if (clause1()) {
11: < reset clause local variables >;
12: goalToExecute = 0; clauseToExecute = 0;
13: continue eval_clauses; }
14: abort(); return false;
15: } } while (true);
16: }
17: private clause1() {
18: // forever, switch ...
19: case 2: // tail call with last call optimization
20: arg1 = < Ys >; // update arguments
21: goalStack.scrapAllGoals();
22: return true;
23: }

Figure 9 Code specific for for the predicate member/2.

The approach to compile each clause to its own method is also used by Prolog Café.
However, compared to SAE Prolog, Prolog Café uses a WAM-based compilation schema
with continuation passing style. The general idea of using a switch statement to branch
over the different clauses of a predicate was also described in [3]. However, to the best of
our knowledge, the idea to directly map the control-flow of a clause to a switch statement
where each goal is represented using two case statements was not explored previously. The
proposed approach enables us to treat a cut operator as a normal goal during the calculation
of the control-flow graph.

The idea to generate “idiomatic code” was also explored previously. In [9] an approach
is described to create idiomatic C code and [4] discuss the generation of idiomatic C# code.
However, the meaning of the term idiomatic differs. We consider the code that we generate as
idiomatic, because all classes that implement a predicate have a very lightweight interface.
Furthermore, we rely on the Java virtual machine for memory management and general
optimizations and do not implement our own abstraction layer. In the cited paper, the
term idiomatic is used to describe code which uses the primitive data-types and control-flow
constructs of the target language. But, to generate such idiomatic code the Prolog predicate
requires type and mode annotations and has to be (semi-)deterministic. In all other cases
a WAM-based translation scheme is used. Hence, the overall architecture is not idiomatic
w.r.t. our understanding of the term.

4 Evaluation

We have done a twofold preliminary evaluation of our approach. First, we compared SAE
Prolog to other Prolog implementations to assess its performance. Second, we evaluated it
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Table 1 Performance comparison. All times are given in seconds; the programs tak, qsort,
primes, queens-8 (findall), chat parser were each run several times.

Program JLog Prolog Café SWI-Prolog (-O) SAE Prolog
1.3.6 1.2.5 5.8.3, 64 bits 0.1.2

8-queens (findall) 141,85 6,30 6,15 5,09
22-queens 515,87 19,80 23,45 15,65
qsort faileda failed (OOM)b 4,20 4,74

4,60
primes 848,77 failed (OOM) 18,76 16,41

21,00
nrev failed (OOM) 0,29 0,17 0,85
tak failed (OOM) 21,88 16,36 14,69
chat parser 250,94 18,92 9,54 54,01

a The query did not return the expected result.
b After changing the test harness, we were able to run the unmodified program.

w.r.t. the desired property that it generates code that the Java virtual machine is able to
effectively optimize. All performance measurements were done on a 2,33 GHz Core 2 Duo,
with 3GB RAM and a Java HotSpot(TM) 64-Bit Server VM.

4.1 Performance Comparison
We compared our implementation with: JLog[http://jlogic.sourceforge.net], Prolog
Café[1] and SWI-Prolog[12]. JLog is a Java-based Prolog interpreter that has a straight-
forward implementation and a clean object-oriented architecture. Prolog Café specifically
targets performance and translates Prolog code to Java code by means of the WAM. SWI-
Prolog is a mature Prolog implementation that is implemented in C and uses the ZIP VM.

The results of our performance evaluation are summarized in Table 1. When we compare
the results of these Prolog implementations, we immediately see that JLog generally performs
the worst, which was expected given that it is a Prolog interpreter. Prolog Café and SWI-
Prolog are roughly on par. SAE Prolog is a bit faster for queens, tak and primes and is on par
with Prolog Café in case of qsort. In case of chat parser and nrev SAE Prolog is considerably
slower than Prolog Café and SWI-Prolog. Given the early state of the implementation of
SAE Prolog these results are encouraging. Implementing well-known techniques, such as
term-indexing, will lead to a significant speedup, as preliminary, manual tests have shown
and will help us to close this gap.

4.2 Optimizability of the Generated Code
To assess the optimizability of the generated code, we made a detailed analysis of two of
the benchmarks. First, we searched for the first solution to the twenty-queens problem.
Finding the first solution usually takes more than one second, but the amount of code (3
predicates) that is involved is very small. The second benchmark that we used is the chat
parser benchmark. In this case, the time to execute it once is also very small, but the number
of involved predicates is much higher (> 100). We run the base benchmark several times
without restarting the VM to make sure that the VM “fully optimized” the given program.
Additionally, we did repeat each experiment five times. The results are shown in the Figures
10 and 11.

http://jlogic.sourceforge.net
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Figure 10 Performance development of the twenty-queens (first solution) benchmark.
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Figure 11 Performance development of the chat parser benchmark.

As shown in the respective figures, the first iteration is always dramatically slower than
every succeeding iteration. The initial translation of the Java bytecode to machine code is
done as part of this iteration. However, it takes the Java Virtual Machine (JVM) several
more iterations (8 for twenty-queens, and 50 for chat parser) before no further performance
improvements are measurable. In case of the chat parser benchmark the effect of the step-
wise optimizations done by the JVM are immediately obvious. Many of the predicates
are not utilized very often and therefore several runs are required before the code is “fully
optimized”. If we take the second iteration as the base line, we can conclude that the JVM is
able to effectively optimize the generated code. The VM is able to improve the performance
by a factor of 2 to 3 when compared to the second iteration.

We have repeated this experiment using Prolog Café to gain a better understanding of
the optimizability of the code generated by our approach. In case of Prolog Café the VM
is also able to further improve the performance. But, the effect is smaller and it takes the
VM longer to reach a stable state.

5 Conclusion

In this paper, we have presented an approach to compiling Prolog code to idiomatic object-
oriented (Java) code that does not use a virtual machine or framework to implement Prolog’s
execution semantics. Instead each Prolog predicate is compiled to one class that looks and
feels natural to object-oriented developers. Our preliminary evaluation shows that Prolog
applications where efficient head unification is not a major concern already perform well and
are competitive. Furthermore, we have shown that a modern virtual machine, such as the
Java Virtual machine, is able to very effectively optimize the generated program.
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