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Abstract
RDF/S ontologies are often used in e-science to express domain knowledge regarding the

respective field of investigation (e.g., cultural informatics, bioinformatics etc). Such ontologies
need to change often to reflect the latest scientific understanding on the domain at hand, and
are usually associated with constraints expressed using various declarative formalisms to express
domain-specific requirements, such as cardinality or acyclicity constraints. Addressing the evol-
ution of ontologies in the presence of ontological constraints imposes extra difficulties, because
it forces us to respect the associated constraints during evolution. While these issues were ad-
dressed in previous work, this is the first work to examine how ASP techniques can be applied
to model and implement the evolution process. ASP was chosen for its advantages in terms of
a principled, rather than ad hoc implementation, its modularity and flexibility, and for being
a state-of-the-art technique to tackle hard combinatorial problems. In particular, our approach
consists in providing a general translation of the problem into ASP, thereby reducing it to an
instance of an ASP program that can be solved by an ASP solver. Our experiments are prom-
ising, even for large ontologies, and also show that the scalability of the approach depends on
the morphology of the input.
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1 Introduction

Semantic Web [3], aims to extend the current web so as to allow information to be both
understandable by humans and processable by machines. Ontologies describe our under-
standing of the physical world in a machine-processable format and form the backbone of
the Semantic Web. They are usually represented using the RDF/S [13, 4] language; in a
nutshell, RDF/S permits the representation of different types of resources like individuals,
classes of individuals and properties between them, as well as basic taxonomic facts (such as
subsumption and instantiation relationships).

Several recent works [16, 14, 12, 5, 19] have acknowledged the need for introducing
constraints in ontologies. Given that RDF/S does not impose any constraints on data, any
application-specific constraints (e.g., functional properties) or semantics (e.g., acyclicity in
subsumptions) can only be captured using constraints on top of RDF/S data. In this paper,
we consider DED constraints [8], which form a subset of first-order logic and have been shown
to allow capturing many useful types of constraints; we will consider populated ontologies
represented using RDF/S, and use the term RDF/S knowledge base (KB) to denote possibly
interlinked and populated RDF/S ontologies with associated (DED) constraints.
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An important task towards the realization of the Semantic Web is the introduction of
techniques that allow the efficient and intuitive evolution of KBs in the presence of constraints.
Note that a valid evolution result should satisfy the constraints; this is often called the
Principle of Validity [1]. In addition, the Principle of Success [1] should be satisfied, which
states that the change requirements take priority over existing information, i.e., the change
must be applied in its entirety. The final important requirement is the Principle of Minimal
Change [1], which states that, during a change, the modifications applied upon the original
KB must be minimal. In other words, given many different evolution results that satisfy the
principles of success and validity, one should return the one that is “closer” to the original
KB, where “closeness” is an application-specific notion. The above non-trivial problem was
studied in [11], resulting in a general-purpose changing algorithm that satisfies the above
requirements. Unfortunately, the problem was proven to be exponential in nature, so the
presented general-purpose algorithmic solution to the problem (which involved a recursive
process) was inefficient.

ASP is a flexible and declarative approach to solve NP-hard problems. The solution
that was presented in [11] regarding the problem of ontology evolution in the presence of
constraints can easily be translated into a logic program with first-order variables; this is
the standard formalism that is used by ASP, which is then grounded into a variable free
representation by a so called grounder that is then solved by a highly efficient Boolean solver.
As it is closely related to the SAT paradigm, knowledge about different techniques for solving
SAT problems are incorporated into the ASP algorithms. Using first-order logic programs is
a smart way to represent the evolution problem while remaining highly flexible, especially
with respect to the set of constraints related to the ontology.

The objective of the present work is to recast the problem of ontology evolution with
constraints in terms of ASP rules, and use an efficient grounder and ASP solver to provide
a modular and flexible solution. In our work, we use gringo for the grounding and clasp
for the solving process as they are both state-of-the-art tools to tackle ASP problems [9].
Our work is based on the approach presented in [11], and uses similar ideas and notions.
The main contribution of this work is the demonstration that ASP can be used to solve the
inherently difficult problem of ontology evolution with constraints in a decent amount of
time, even for large real-world ontologies. ASP was chosen for its advantages in terms of a
principled, rather than ad hoc implementation, its modularity and flexibility, and for being a
state-of-the-art technique to tackle hard combinatorial problems.

In the next section we present the problem of ontology evolution in the presence of
constraints, and the solution proposed in [11]. In Section 3, we present ASP. Section 4 is
the main section, where our formulation of the problem in terms of an ASP program is
presented and explained. This approach is refined and optimized in Section 5. We present
our experiments in Section 6 and conclude in Section 7.

2 Problem Statement

2.1 RDF/S
The RDF/S [13, 4] language uses triples of the form (subject, predicate, object) to express
knowledge. RDF/S permits the specification of various entities (called resources), which may
be classes (i.e., collections of resources), properties (i.e., binary relations between resources),
and individuals (i.e., atomic entities). We use the symbol type(u) to denote the type of a
resource u (class, property, individual). RDF/S supports various predefined relations between
resources, like the domain and range of properties, subsumption relationships between classes
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18 Evolution of Ontologies using ASP

Table 1 Representation of RDF/S Triples Using Predicates

RDF/S triple Intuitive meaning Predicate
c rdf :type rdfs:Class c is a class cs(c)
x rdf :type rdfs:Resource x is an individual ci(x)
c1 rdfs:subClassOf c2 IsA between classes c_IsA(c1, c2)
x rdf :type c class instantiation c_Inst(x, c)

and between properties, and instantiation relationships between individuals and classes, or
between pairs of individuals and properties. RDF/S associates such relations with semantics,
e.g., subsumption is transitive.

RDF/S KBs are commonly represented as labeled graphs, whose nodes are resources and
edges are relations (see Fig. 1). In Fig. 1, a, b, and c are classes and x is an individual. Solid
arrows represent subsumption relationships between classes (e.g., b is a subclass of c), and
dashed arrows represent instantiation relationships (e.g., x is an instance of b). The bold
arrow represents the change we want to make, namely to make a a subclass of b.

2.2 Ontology Evolution Principles

a

c

b

x

Figure 1
A knowledge
base with
change (ap-
pearing as
bold arrow)

In the presence of constraints in the ontology, one should make sure that
the evolution result is valid, i.e., it does not violate any constraints. This
is called the Principle of Validity [1]. Manually enforcing this principle is
an error-prone and tedious process. The objective of this work is to assist
knowledge engineers in applying their changes in an automated manner, while
making sure that no invalidities are introduced in the KB during the evolu-
tion.

In addition to the Validity Principle, two other principles are usually con-
sidered. The first is the Principle of Success [1], stating that the required
changes take priority over existing information, i.e., the change must be applied
in its entirety. The second is the Principle of Minimal Change [1], which
requires that the modifications applied upon the original KB to accommodate
the change must be minimal. Thus, if there are several different results that
satisfy the principles of success and validity, one should return the one that
is “closer” to the original KB, i.e., causes the least important modifications.
Note that the importance of modifications (i.e., “closeness”) is an application-
specific notion; in this work, we model “closeness” using a relation; details on
this relation will be given later.

2.3 Formal Setting
To address the problem of ontology evolution, we use the general approach presented in [11].
An RDF/S KB K is modeled as a set of ground facts of the form p(~x) where p is a predicate
and ~x is a vector of constants. Constants represent resources in RDF/S parlance, and each
predicate represents one type of RDF/S relationship (e.g., domain, range, subsumption
etc). For example, the triple (a, rdfs:subClassOf , b), which denotes that a is a subclass of
b, is represented by the ground fact c_IsA(a, b). For the rest of the paper, predicates and
constants will start with a lower case letter, whereas variables will start with an upper case
letter. Table 1 shows some of the predicates we use and their intuitive meaning (see [11] for
a complete list).

We assume closed world, i.e., K 0 p(~x) whenever p(~x) /∈ K. A change C is a request to
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Table 2 Ontological Constraints

ID, Constraint Intuitive Meaning
R5: ∀U, V

c_IsA(U, V )→ cs(U) ∧ cs(V )
Class subsumption

R12: ∀U, V, W

c_IsA(U, V ) ∧ c_IsA(V, W )→
c_IsA(U, W )

Class IsA transitivity

R13: ∀U, V

c_IsA(U, V ) ∧ c_IsA(V, U)→ ⊥
Class IsA irreflexivity

Table 3 Facts from example in Fig. 1

K0

ci(x)
cs(a) cs(b) cs(c)

c_IsA(b, c) c_IsA(b, a) c_IsA(c, a)
c_Inst(x, b) c_Inst(x, c) c_Inst(x, a)

C c_IsA(a, b)

add/remove fact(s) to/from the KB, and it is modeled as a set of positive/negative ground
facts.

Ontological constraints are modeled using DED rules [8], which allow for formulating
various useful constraints, such as primary and foreign key constraints (used, e.g., in [12]),
acyclicity and transitivity constraints for properties (as in [16]), and cardinality constraints
(used in [14]). Here, we use the following simplified form of DEDs, which still includes the
above constraint types:

∀~U
∨

i=1,...,head
∃~Viqi(~U, ~Vi)←e(~U) ∧ p1(~U) ∧ · · · ∧ pbody(~U),

where e(~U) is a conjunction of (in)equality atoms. We denote by p the facts p1(~U), . . . , pbody(~U)
and by q the facts q1(~U, ~V1), . . . , qhead(~U, ~Vhead). Table 2 shows some of the constraints used
in this work; for a full list, refer to [11]. We say that a KB K satisfies a constraint r (or a
set of constraints R), iff K ` r (K ` R). Given a set of constraints R, K is valid iff K ` R.

Now consider the KB K0 and the change of Fig. 1, which can be formally expressed using
the ground facts of Table 3. To satisfy the principle of success, we should add c_IsA(a, b) to
K0, getting K1 = K0 ∪{c_IsA(a, b)}. The result (K1) is called the raw application of C upon
K0, and denoted by K1 = K0 + C. C is called a valid change w.r.t. K0 iff K0 + C is valid.
In our example, this is not the case, because K1 violates R13; thus, it does not constitute
an acceptable evolution result. The form of the violated rule implies that the only possible
solution to this problem is to remove c_IsA(b, a) from K1 (removing c_IsA(a, b) is not an
option, because its addition is dictated by the change – cf. the Principle of Success). This is
an extra modification, that is not part of the original change, but is, in a sense, enforced by
it; such extra modifications are called side-effects.

We note that the result, K2 = K0 ∪ {c_IsA(a, b)} \ {c_IsA(b, a)} is no good either,
because R12 is violated, so, we need to repeat the above process recursively for K2. Note that
R12 can be resolved in more than one ways, each of which should be evaluated independently;
this fact leads to a recursive tree of resolutions (and side-effects). Eventually, after possibly
several recursive steps, we will reach one or more valid KBs (leaves in the resolution tree);
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20 Evolution of Ontologies using ASP

these are possible results for the evolution, as they satisfy the principles of success and validity.
In our example, these are: K4.1 = K0∪{c_IsA(a, b), c_IsA(c, b)}\{c_IsA(b, a), c_IsA(b, c)}
and K4.2 = K0 ∪ {c_IsA(a, b), c_IsA(a, c)} \ {c_IsA(b, a), c_IsA(c, a)}.

It remains to determine the “preferable” KB, i.e., the one that is “closest” to K0.
To do so, we first determine the “distance” between KBs using difference sets, called
deltas, which contain the positive/negative ground facts that need to be added/removed
from one KB to get to the other (denoted by ∆(K,K′)). In our example, ∆(K0,K4.1) =
{c_IsA(a, b), c_IsA(c, b),¬c_IsA(b, a),¬c_IsA(b, c)}, ∆(K0,K4.2) = {c_IsA(a, b),
c_IsA(a, c),¬c_IsA(b, a),¬c_IsA(c, a)}. Then, we can determine “closeness” using an
ordering that ranks ∆(K0,K4.1), ∆(K0,K4.2); both deltas have the same size (and this occurs
often), so ranking cannot be based on cardinality, but should also consider more subtle
differences, like the severity of changes.

Here, we consider the ordering defined in [11], which is denoted by <K0 , where K0 the
original KB. To define <K0 , we first order the available predicates in terms of severity (<pred);
for example, the addition of a class (predicate cs) is more important than the addition of
a subsumption (predicate c_IsA), i.e., c_IsA <pred cs. Then, ∆1 is preferable than ∆2
(denoted by ∆1 <K0 ∆2) iff the most important predicate (per <pred) appears less times
in ∆1. In case of a tie, the next most important predicate is considered, and so on. If the
deltas contain an equal number of ground facts per predicate, the ordering considers the
constants involved: a constant is considered more important if it occupies a higher position
in its corresponding subsumption hierarchy in the original KB. In this respect, ∆(K0,K4.1)
causes less important changes upon K0 than ∆(K0,K4.2), because the former affects b, c

(c_IsA(c, b),¬c_IsA(b, c)) whereas the latter affects c, a (c_IsA(a, c),¬c_IsA(c, a)); this
means that K4.1 is a preferred result (over K4.2), as ∆(K0,K4.1) <K0 ∆(K0,K4.2). The
ordering between ground facts that allows this kind of comparison is denoted by <G. For a
more formal and detailed presentation of the ordering, we refer the reader to [11].

We denote the evolution operation by •. In our example, we get K0 • C = K4.1. Note that
K0 • C results from applying the change, C, and its most preferable side-effects upon K0.

3 Answer Set Programming (ASP)

In what follows, we rely on the input language of the ASP grounder gringo [9] (extending the
language of lparse [18]) and introduce only informally the basics of ASP. A comprehensive,
formal introduction to ASP can be found in [2].

We consider extended logic programs as introduced in [17]. A rule r is of the following
form:

h← b1, . . . , bm,∼bm+1, . . . ,∼bn.

By head(r) = h and body(r) = {b1, . . . , bm,∼bm+1, . . . ,∼bn}, we denote the head and the
body of r, respectively, where “∼” stands for default negation. The head H is an atom a

belonging to some alphabet A, the falsum ⊥, or a cardinality constraint L {`1, . . . , `k}U . In
the latter, `i = ai or `i = ∼ai is a literal for ai ∈ A and 1 ≤ i ≤ k; L and U are integers
providing a lower and an upper bound. Such a constraint is true if the number of its satisfied
literals is between L and M . Either or both of L and U can be omitted, in which case they
are identified with the (trivial) bounds 0 and∞, respectively. A rule r such that head(r) = ⊥
is an integrity constraint; one with a cardinality constraint as head is called a choice rule.
Each body component Bi is either an atom or a cardinality constraint for 1 ≤ i ≤ n. If
body(r) = ∅, r is called a fact, and we skip “←” when writing facts below. In addition to
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rules, a logic program can contain #minimize statements of the form

#minimize[`1 = w1@L1, . . . , `k = wk@Lk].

Besides literals `j and integer weights wj for 1 ≤ j ≤ k, a #minimize statement includes
integers Lj providing priority levels. A #minimize statement distinguishes optimal answer
sets of a program as the ones yielding the smallest weighted sum for the true literals among
`1, . . . , `k sharing the same (highest) level of priority L, while for L′ > L the sum equals that
of other answer sets. For a formal introduction, we refer the interested reader to [17], where
the definition of answer sets for logic programs containing extended constructs (cardinality
constraints and minimize statements) under “choice semantics” is defined.

Likewise, first-order representations, commonly used to encode problems in ASP, are only
informally introduced. In fact, gringo requires programs to be safe, that is, each variable
must occur in a positive body literal. Formally, we only rely on the function ground to
denote the set of all ground instances, ground(Π), of a program Π containing first-order
variables. Further language constructs of interest, include conditional literals, like “a :b”, the
range and pooling operator “..” and “;” as well as standard arithmetic operations. The “:”
connective expands to the list of all instances of its left-hand side such that corresponding
instances of literals on the right-hand side hold [18, 9]. While “..” allows for specifying
integer intervals, “;” allows for pooling alternative terms to be used as arguments within an
atom. For instance, p(1..3) as well as p(1; 2; 3) stand for the three facts p(1), p(2), and p(3).
Given this, q(X) :p(X) results in q(1), q(2), q(3). See [9] for detailed descriptions of the input
language of the grounder gringo.

4 Evolution using ASP

4.1 Potential Side-Effects
In order to determine the result of updating a KB, we need to determine the side-effects
that would resolve any possible validity problems caused by the change. The general idea is
simple: since the original KB is valid, a change causes a violation if it adds/removes a fact
that renders some constraint invalid. Let us denote by ∇ the set of potential side effects of a
change C. Given a set of facts C, we will write C+/C− to denote the positive/negative facts
of C respectively. First of all, we note that ∇ will contain all facts in C, except those already
implied by K, i.e., if p(~x) ∈ C+ and p(~x) /∈ K, then p(~x) ∈ ∇+, and if ¬p(~x) ∈ C− and
p(~x) ∈ K then ¬p(~x) ∈ ∇− (Condition I). The facts in the set ∇+ ∪ K are called available.
This initial set of effects may cause a constraint violation. Note that a constraint r is violated
during a change iff the right-hand-side (rhs) of r becomes true and the left-hand-side (lhs) is
made false. Thus, if a potential addition ∇+ makes the rhs of r true, and lhs is false, then we
have to add some fact from the lhs of the implication to the potential positive side-effects (to
make lhs true) (Condition II), or remove some fact from rhs (to make it false) (Condition III).
If a removal in ∇− makes the lhs of r false, and all other facts in rhs are available (so rhs is
true), we have to remove some fact from rhs (to make it false) (Condition IV). To do that,
we first define a select function si(X) = X \ {Xi} on a set X of atoms, to remove exactly
one element of a set. So we can then refer to the element Xi and the rest of the set si(X)
separately. Abusing notation, we write pred(p, ~U) for pred(p1, ~U), . . . , pred(pn, ~U), for any
predicate name pred where p is the set of atoms p1(~U), . . . , pbody(~U).

Formally, a set ∇ is a set of potential side-effects for a KB K and a change C, if the
following conditions are all true:
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22 Evolution of Ontologies using ASP

Table 4 Instance from example in Fig. 1

kb(ci, (x)).
kb(cs, (a)). kb(cs, (b)). kb(cs, (c)).

kb(c_IsA, (b, c)). kb(c_IsA, (b, a)). kb(c_IsA, (c, a)).
kb(c_Inst, (x, b)). kb(c_Inst, (x, c)). kb(c_Inst, (x, a)).

changeAdd(c_IsA, (a, b)).

I x ∈ ∇ if x ∈ C+ and x /∈ K or x ∈ C− and ¬x ∈ K,
II ∀~Vh qh(~U, ~Vh) ∈ ∇+ if sl(p(~U)) ⊆ ∇+ ∪ K and pl(~U) ∈ ∇+ and qh(~U, ~Vh) /∈ K
III ¬pj(~U) ∈ ∇− if sj(sl(p(~U))) ⊆ ∇+ ∪ K and pl(~U) ∈ ∇+ and pj(~U) ∈ K and for all ~Vh

either ¬qh(~U, ~Vh) ∈ ∇− or qh(~U, ~Vh) /∈ K
IV ¬pl(~U) ∈ ∇− if sl(p(~U)) ⊆ ∇+ ∪ K and pl(~U) ∈ K and ∀~Vh ¬qh(~U, ~Vh) ∈ ∇−,

for each constraint r defined in Section 2.3 and for all variable substitutions for ~U wrt E(~U)
and for all 1 ≤ l, j ≤ body, l 6= j, 1 ≤ h ≤ head.

Our goal is to find a ⊂-minimal set of potential side-effects ∇. We do this using the
grounder gringo, which ground-instantiates a logic program with variables. We create a logic
program where the single solution is the subset minimal set of potential side-effects ∇.

To build a logic program, we first have to define the inputs to the problem, called instance.
An instance I(K,C) of a KB K and a change C is defined as a set of facts

I(K, C) = {kb(p, ~x) | p(~x) ∈ K}
∪ {changeAdd(p, ~x) | p(~x) ∈ C+}
∪ {changeDel(p, ~x) | p(~x) ∈ C−}.

In the above instance, predicate kb contains the facts in the KB, whereas predicates
changeAdd, changeDel contain the facts that the change dictates to add/delete respectively.
Note that this representation forms a twist from the standard representation, since a ground
fact p(~x) ∈ K is represented as kb(p, ~x) (same for the change). The representation of the KB
K in Fig. 1 and its demanded change C can be found in Table 4.

Furthermore we have to collect all resources available in the KB (1) or newly introduced
by the change (2). So the predicate dom associates a resource to its type,

dom(type(Xi), Xi)← kb(T, ~X). (1)

dom(type(Xi), Xi)← changeAdd(T, ~X). (2)

for all Xi ∈ ~X. The following two rules ((3) and (4)) correspond to Condition I above,
stating that the effects of C should be in ∇ (unless already in K). The predicates pAdd and
pDelete are used to represent potential side effects (additions and deletions respectively), i.e.,
facts in the sets ∇+,∇−.

pDelete(T, ~X)← changeDel(T, ~X), kb(T, ~X). (3)

pAdd(T, ~X)← changeAdd(T, ~X),∼kb(T, ~X). (4)

To find those facts that are added due to subsequent violations, we define, for the set ∇+∪K,
the predicate avail in (5) and (6). For negative potential side-effects ∇− we use a predicate
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Table 5 Potential side-effects of example in Fig. 1

c_IsA(a, b) c_IsA(c, c) c_IsA(c, b)
c_IsA(b, b) c_IsA(a, a) c_IsA(a, c)
¬c_IsA(b, a) ¬c_IsA(b, c) ¬c_IsA(c, a)

nAvail (7).

avail(T, ~X)← kb(T, ~X). (5)

avail(T, ~X)← pAdd(T, ~X). (6)

nAvail(T, ~X)← pDelete(T, ~X). (7)

At a next step, we need to include the ontological constraints R into our ASP program,
by creating the corresponding ASP rules. Unlike standard ontological constraints which
determine whether there is an invalidity, the ASP rules are used to determine how to handle
an invalidity. So now consider a constraint r ∈ R as defined in Section 2.3. For r, we define
a set of rules ((8)) that produce the set of potential side-effects according to Condition II.

pAdd(qh, (~U, ~Vh))← e(~U), avail(sl(p), ~U), pAdd(pl, ~U),

∼kb(qh, (~U, ~Vh)), dom(type(~Vh), ~Vh). (8)

for all 1 ≤ l ≤ body and 1 ≤ h ≤ head. Similarly, to capture Condition III, we need two sets
of rules ((9) and (10)), since we do not want to do this only for negative side-effects nAvail
on the lhs of the rule, but also for facts that are not in the KB K,

pDelete(pj , ~u)← e(~U), avail(sj(sl(p)), ~U), pAdd(pl, ~U), kb(pj , ~U),

nAvail(qh, (~U, ~Vh)) : dom(type(~Vh), ~Vh). (9)

pDelete(pj , ~U)← e(~U), avail(sj(sl(p)), ~U), pAdd(pl, ~U), kb(pj , ~U),

∼kb(qh, (~U, ~Vh)) : dom(type(~Vh), ~Vh). (10)

for all 1 ≤ l, j ≤ body, l 6= j, 1 ≤ h ≤ head. The last Condition IV can be expressed by the
following rule set (11)

pDelete(pl, ~U)← e(~U), avail(sl(p), ~U), kb(pl, ~U),

pDelete(qh, ~U, ~Vh) : dom(type(~Vh), ~Vh). (11)

for all 1 ≤ l ≤ body and 1 ≤ h ≤ head.
I Proposition 1. Given a KB K and a change C, and let A be the unique answer set of
the stratified logic program ground(I(K, C) ∪ {(1) . . . (11)}), then ∇ = {p(~x) | pAdd(p, ~x) ∈
A} ∪ {¬p(~x) | pDelete(p, ~x) ∈ A} is a subset minimal set of potential side-effects of the KB
K and the change C.
For our example in Fig. 1, this results in the set of potential side-effects in Table 5. Note
that the potential side-effects contain all possible side-effects, including side-effects that will
eventually not appear in any valid change.

4.2 Solving the Problem
Note that the set of potential side-effects computed above contains all options for evolving
the KB. However, some of the potential changes in pAdd, pDelete are unnecessary; in our
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running example, the preferred solution was {c_IsA(a, b),¬c_IsA(b, a),¬c_IsA(b, c)} (see
Section 2), whereas Table 5 contains many more facts.

To compute the actual side-effects (which is a subset of the side-effects in pAdd, pDelete),
we use a generate and test approach. In particular, we use the predicate add(p, ~x) and
delete(p′, ~x′) to denote the set of side-effects p(~x) ∈ ∆(K,K′) (respectively ¬p′(~x′) ∈ ∆(K,K′))
and use choice rules to guess side-effects from pAdd, pDelete to add, delete respectively (see
(12), (13) below).

{add(T, ~X) : pAdd(T, ~X)}. (12)

{delete(T, ~X) : pDelete(T, ~X)}. (13)

Our changed KB is expressed using predicate kb′ and is created in (14) and (15) consisting
of every entry from the original KB that was not deleted and every entry that was added.

kb′(T, ~X)← kb(T, ~X),∼delete(T, ~X). (14)

kb′(T, ~X)← add(T, ~X). (15)

Moreover, we have to ensure that required positive (negative) changes C are (not) in the new
KB respectively (Principle of Success) ((16) and (17)).

← changeAdd(T, ~X),∼kb′(T, ~X). (16)

← changeDel(T, ~X), kb′(T, ~X). (17)

To ensure the Principle of Validity we construct all constraints from the DEDs R, using
the following transformation for each r ∈ R:

← kb′(p, ~U),∼1{kb′(qi, (~U, ~Vi) : dom(type(~Vi), ~Vi))}, e(~U). (18)

for all 1 ≤ i ≤ head. Rule (18) ensures that if the rhs of a constraint is true wrt to the new
KB and the lhs if false, then the selected set of side-effects is no valid solution.

I Proposition 2. Given a KB K, a change C and a set of potential side-effects ∇, we
define a set of facts ∇′ = {pAdd(p, ~x) | p(~x) ∈ ∇} ∪ {pDelete(p, ~x) | ¬p(~x) ∈ ∇}. Let
A be the answer set of the logic program ground(I(K, C) ∪ ∇′ ∪ {(12) . . . (18)}), then
∆(K,K′) = {p(~x) | add(p, ~x) ∈ A} ∪ {¬p(~x) | delete(p, ~x) ∈ A} is a valid change of KB K.

4.3 Finding the Optimal Solution

The solutions contained in add, delete are all valid solutions, per the above proposition, but
only one of them is optimal, per the Principle of Minimal Change. So, the solutions must
be checked wrt to the ordering <K. We generate minimize statements for the criteria <pred

and <G (see Section 3). Several minimize constraints can be combined and the order of the
minimize statements is respected. As gringo allows hierarchical optimization statements, we
can easily express the whole ordering <K in a set of optimize statements O.

I Proposition 3. Given a KB K, a change C and a set of potential side-effects ∇, we define a
set of facts ∇′ = {pAdd(p, ~x) | p(~x) ∈ ∇}∪{pDelete(p, ~x) | ¬p(~x) ∈ ∇}. Let A be the answer
set of the logic program ground(I(K, C) ∪ ∇′ ∪ {(12) . . . (18)}), which is minimal wrt the
optimize statements O then ∆(K,K′) = {p(~x) | add(p, ~x) ∈ A} ∪ {¬p(~x) | delete(p, ~x) ∈ A}
is the unique valid minimal change of KB K.
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5 Refinements

In this section, we refine the above direct translation, in order to increase the efficiency of our
logic program. Our first optimization attempts to reduce the size of the potential side-effects
∇, whereas the second takes advantage of deterministic consequences of certain side-effects
to speed-up the process.

5.1 Incrementally Computing Side-Effects
As the set of potential side-effects directly corresponds to the search space for the problem
(see (12), (13) in Section 4), we could improve performance if a partial set of potential
side-effects that contains the minimal solution was found, instead of the full set. According
to the ordering of the solutions <pred, a set of side-effects that does not contain any fact with
a level greater than k is “better” than a solution that does. Thus, we split the computation
of the possible side-effects into different parts, one for each level of <pred optimization. We
start the computation of possible side-effects with k = 1, only adding facts of level 1 to repair
our KB. If with this subset of possible side-effects no solution to the problem can be found,
we increase k by one and continue the computation, reusing the already computed part of
the potential side-effects. For grounding, this means we only want to have the possibility
to find potential side-effects p(~x) of a level less than or equal to k. The corresponding ASP
rules can be found in the extended version of this paper [15] and are denoted by I.

We define the operator T (K, C, k), as T (K, C, 0) = ground(I(K, C)) and T (K, C, k) where
k > 0 is the set of facts of the unique answer set of the logic program ground(T (K, C, k −
1) ∪ {I}). T (K, C, n) produces a subset of the potential side-effects only using repairs up to
level n. Given our example in Fig. 1, T (K, C, 7) gives us the first two rows of Table 5.

5.2 Exploiting Deterministic Side-Effects
A second way to improve performance is to consider deterministic side-effects of the original
changes. As an example of a deterministic side-effect, suppose that the original change
includes the deletion of a class a (corresponding to the side-effect ¬cs(a)). Then, per rule R5
(cf. Table 2), all class subsumptions that involve a must be deleted as well (corresponding to
the side-effect ¬c_IsA). Therefore, the latter side-effect(s) are a necessary (deterministic)
consequence of the former, so they can be added to the set of side-effects right from the
beginning (at level 1). For the detailed logic program we refer to [15]. In this way we extend
our change by deterministic consequences, to possibly reduce the number of incremental steps.
For our example in Fig. 1 this results in the additionally required changeDel(c_IsA, (b, a)).

6 Experiments

We experimented with two real-world ontologies of different size and structure, namely GO [7]
and CIDOC [6] (∼458.000/∼1.500 facts). GO’s emphasis is on classes, whereas CIDOC
contains many properties. To generate the changes, we took each ontology K, randomly
selected 6 facts I ⊆ K, and deleted I from K, resulting in a valid KB K′. We then created our
“pool of changes”, IC , which contains 6 randomly selected facts from K′ (deletions) and the 6
facts from I (additions). The change C was a random selection of n facts from IC (1 ≤ n ≤ 6).
Our experiment measured the time required to apply C upon K′. The above process was
repeated 100 times for each n (1 ≤ n ≤ 6). The benchmark was run on a machine with
4 × 4 CPUs, 3.4Ghz each and was restricted to 4 GB of RAM. Our implementation uses
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Table 6 (a) GO benchmark (b) CIDOC benchmark

n times level timeouts n times level timeouts
1 123.3 2.37 0 1 2.2 10.70 0
2 243.7 4.72 0 2 3.3 16.28 20
3 454.6 8.50 0 3 3.4 16.15 30
4 619.0 11.94 0 4 7.0 16.96 51
5 711.1 13.44 2 5 3.5 16.19 66
6 756.1 14.27 6 6 7.3 18.00 76

gringo3.0.4 and clasp2.0.0RC1. A timeout of 3600 seconds was imposed on each run. Table 6
contains the results of our experiments in GO and CIDOC respectively. Each row in the
table contains the experiments for one value of n (size of C) and shows the average CPU
time (in seconds) of all runs that did not reach the timeout (column “times”), the average
level of incremental grounding where the solution was found (“level”) and the number of
timeouts (“timeouts”).

The results of our experiments are encouraging. GO, despite its large size and the
intractable nature of the evolution problem, can evolve in a decent amount of time, and
has very few timeouts. On the other hand, CIDOC has lots of timeouts, but very fast
execution when no timeout occurs. This indicates that the deviation of execution times,
even for KBs/changes of the same size, is very large for CIDOC, i.e., the performance is
largely affected by the morphology of the input. This behaviour is much less apparent in GO,
and is caused by the existence of many properties in CIDOC. Any violated property-related
constraint greatly increases the number of potential side-effects. Thus, for updates causing
many property-related violations, the execution time increases, often causing timeouts. Given
that GO contains no properties, the execution times are more smooth. Another observation
is that there is a strong correlation between the level, the average time reported and the size
of the change.

7 Summary and Outlook

We studied the problem of ontology evolution in the presence of ontological constraints.
Based on the setting and solution proposed in [11], we recast the problem and reduced it to
an ASP program that can be solved by an optimized ASP reasoner. Given that the problem
is inherently exponential in nature [11], the reported times (Table 6) for the evolution of two
real-world ontologies (GO/CIDOC) are decent. To the best of our knowledge, there is no
comparable approach, because the approach presented in [11] did not report any experiments,
and other similar approaches either do not consider the full set of options (therefore returning
a suboptimal evolution result), or require user feedback. An interesting side-product of our
approach is that we can repair ontologies by simply applying the empty change upon them;
we plan to explore this idea as a future work. We will also consider additional optimizations
using incremental ASP solvers such as iclingo [10].
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