
Smart test data generators via logic programming∗

Lukas Bulwahn

Fakultät für Informatik
Technische Universität München
bulwahn@in.tum.de

Abstract
We present a novel counterexample generator for the interactive theorem prover Isabelle based on
a compiler that synthesizes test data generators for functional programming languages (e.g. Stand-
ard ML, OCaml) from specifications in Isabelle. In contrast to naive type-based test data gen-
erators, the smart generators take the preconditions into account and only generate tests that
fulfill the preconditions. The smart generators are constructed by a compiler that reformulates
the preconditions as logic programs and analyzes them by an enriched mode inference. From
this inference, the compiler can construct the desired generators in the functional programming
language. These test data generators are applied to find errors in specifications, as we show in a
case study of a hotel key card system.

1998 ACM Subject Classification D.2.5 Testing and Debugging

Keywords and phrases specification-based testing, functional programming

Digital Object Identifier 10.4230/LIPIcs.ICLP.2011.139

1 Introduction

Writing programs and specifications is an error-prone business and testing is common practice
to find bugs and to validate software. Being aware that testing cannot prove the absence
of bugs, formal methods are applied for safety- and security-critical systems. To ensure
the correctness of programs, critical properties are guaranteed by a formal proof. Proof
assistants are used to develop a proof with trustworthy sound logical inferences. Once one
has completed the formal proof, the absence of bugs is certified. But in the process of proving,
bugs could still be revealed and tracking down such bugs by failed proof attempts is a tedious
task for the user. When reaching for the “holy grail”, the formal proof, testing is still fruitful
on the way to save time detecting bugs in programs and specifications. Modern interactive
theorem provers therefore do not only provide means to prove properties, but also to disprove
properties by counterexample generators.

Without specifications, it is common practice to write manual test suites to check
properties. However, having a formal specification at hand, we can automatically generate test
data and check if the program fulfills its specification. Such an automatic specification-based
testing technique for functional Haskell programs was introduced by the tool QuickCheck [8].
The interactive theorem prover Isabelle [27] provides a counterexample generator [2] based
on random testing, similar to QuickCheck. It works fine on specifications that have weak
preconditions and properties stated in a form to be directly executable in the functional
language. If the properties to be tested only hold under very specific preconditions, test data
with a random distribution seldom fulfill the preconditions, and most execution time for
testing is spent generating useless test values and rejecting them.

∗ This work was partially supported by DFG doctorate program 1480 (PUMA).

© Lukas Bulwahn;
licensed under Creative Commons License ND

Technical Communications of the 27th International Conference on Logic Programming (ICLP’11).
Editors: John P. Gallagher, Michael Gelfond; pp. 139–150

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62916346?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.ICLP.2011.139
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

140 Smart test data generators via logic programming

Our new approach aims to only generate test data that fulfill the preconditions. The test
data generator for a given precondition is produced by a compiler1 that analyzes precondition
and synthesizes a purely functional program that serves as generator. For this purpose,
the compiler reformulates the preconditions as logic programs. In this process, we adopt
various techniques from logic programming. Formulas in predicate logic with quantifiers and
recursive functions are translated to logic programs. The compiler then analyzes the logic
program by an enriched mode inference. From this inference, the compiler can construct the
desired generators. This way, a much smaller number of test cases suffices to find errors in
specifications.

We introduce the Isabelle system and illustrate how Isabelle’s users interactively explore
proofs (Section 2). We present a concrete case study for the counterexample generator
(Section 3). In the main part, we then describe key ideas of this counterexample generator,
the preprocessing, enriched mode inference and compilation (Sections 4 to 7). In the end, we
discuss related work (Section 8) and conclude.

2 Interactive Theorem Prover Isabelle

The Isabelle system is a generic framework for interactive theorem proving. Isabelle’s
logic is a higher-order logic with Hindley-Milner polymorphism. It provides the usual
boolean operations, functional programming constructs, e.g., let, if and case expressions,
and mechanisms to define recursive datatypes, recursive functions, and inductive predicates
by Horn clauses. The code generation facility creates programs in functional programming
languages, e.g., ML, Haskell or OCaml, from their specifications in the theorem prover.

Users of interactive theorem prover intend to construct a machine-checked proof in
cooperation with the theorem prover. After stating a proposition, the system invokes
automated proof methods and counterexample generators. If the user’s proposition is proved
automatically, its validity is certified by the system. If a counterexample is found, the user
must refine the proposition. If neither happens, the user continues to explore the proof by
stating further propositions. In a horizontal exploration, the user believes its truth, but does
not prove it formally. Instead, he sketches further lemmas and proof steps based on the
skipped proposition.

If the counterexample generators were not be in place, the horizontal exploration would
have a major pitfall: With no counterexample generator, the statement is unchecked, but
the user continues to develop the proof upon this wrong assertion. Realizing the flaw at a
later stage requires much effort restructuring the proof. Counterexample generators are vital
to spare the user this frustration and time-consuming work of unsuccessful proof attempts.

3 Case Study: Hotel Key Card System

Most hotels employ some kind of digital key card system. We describe a hotel key card
system where every room is secured by a digital lock. Every guest of the hotel receives a
card at the reception. The locks at the rooms can read the cards from the guest, and open
the door if it is the card of the owner. The key card system is decentralized, i.e., the locks
cannot communicate with each other or the reception. Nevertheless, only guests that check

1 Throughout the presentation, we use the term compilation with a very specific meaning: to designate
our translation of Horn specifications in Isabelle into programs written in a functional programming
language.

Lukas Bulwahn 141

in for a room should be allowed to enter, and previous guests should not have further access
to the room once they checked out.

Safety is achieved by the following system: Upon check-in, a new guest gets a card at
the reception which carries two keys, the old key of the previous guest of the room and his
own new key. The locks only store their current key, i.e., the key of the latest guest the
lock has been aware of. When a new guest enters the room, the lock checks if the old card
key matches its current key, and if so discards the old key and stores the new key as its
new current key. Once the lock has been recoded, it allows access only to the card with the
current key until the next guest enters the room. This recoding ensures that the previous
guest cannot enter the room after the new guest has been in his room.

Nipkow [17] gives a formalization of this hotel key card system in Isabelle which itself
was inspired by a model from Jackson [13]. The safety property of the hotel key card system
is: Once the owner of the room, i.e., the guest who was the last to check in, entered his
room, no previous guest can enter the room (even if they have kept or copied their cards).
Unfortunately, this property does not hold. But fortunately, the counterexample generator
finds the tricky man-in-the-middle attack.

In Isabelle, the hotel key card system is formalized as follows: We consider three events,
a guest g checking in for a room r where he gets a card with keys (k, k′) from the reception,
a guest g entering a room r with a card with keys (k, k′), or a guest g leaving a room r.
We denote these events as Checkin g r (k, k′), Enter g r (k, k′), and Exit g r. A trace,
represented as a list of events, describes the temporal order of events taking place. Without
going into details here, the set of possible and valid traces in a hotel and safety is given by
the following functional description in Isabelle:

hotel [] = True
hotel (e · evs) = (hotel evs ∧ (case e of

Checkin g r (k, k′)⇒ k = currentkey evs r ∧ k′ /∈ issued evs |
Enter g r (k, k′)⇒ (k, k′) ∈ cards evs g ∧ (roomkey evs r ∈ {k, k′}) |
Exit g r ⇒ g ∈ isin evs r))

safe evs r =
∃evs1 evs2 evs3 g c c

′. evs = evs3 @ (Enter g r c · evs2 @ Checkin g r c′ · evs1) ∧
noCheckin (evs3 @ Enter g r c · evs2) ∧ isin (evs2 @ Checkin g r c′ · evs1) = ∅

where noCheckin evs r = ¬(∃g c. Checkin g r c ∈ evs) and @ denotes appending two lists.

The safety property is formally hotel evs ∧ safe evs r ∧ g ∈ isin evs r =⇒ owner evs r = g.
When checking the validity of this property, the existing counterexample generator for
Isabelle [2], based on the ideas of QuickCheck, faces two problems:

Firstly, naive black-box testing would generate traces where most traces do not fulfill the
necessary conditions to be a valid hotel key card trace, i.e., hotel evs evaluates to false for
most traces evs. The common approach is to write a manual generator for the predicate
hotel. But the functional description already contains all necessary information on how to
construct values that fulfill the predicate hotel, which is not exploited by black-box testing.

Secondly, a predicate, such as safe cannot be (naively) executed because it contains
unbounded existential quantifiers (over an infinite type) for evs1, evs2, evs3. However,
having a closer look at the description of safe, we see that the values for evs1, evs2 and evs3
are actually restricted to be parts of the trace evs, which could be computed given evs.

The system we describe tackles the two problems, generating test data that fulfills the
precondition, and detecting for which quantifier the values are bound within the computation,
using an enriched mode analysis. For the hotel key card example, the new approach allows
us to find the man-in-the-middle attack within a few seconds, whereas the black-box testing
does not find the counterexample even after ten minutes of testing.

ICLP 2011

142 Smart test data generators via logic programming

4 Overview of the tool

In this section, we present the overall structure of our counterexample generator, and motivate
the key features and design decisions. The detached presentation of individual components
is then discussed in the following three sections.

Design decisions. The Isabelle system is implemented in ML and runs in the interactive
shell of the ML compiler. ML source code generated from Isabelle specifications can be
passed to the underlying ML compiler, and executed in the same process.

As Isabelle runs on top of the ML compiler, it is a natural choice to test specifications in
the underlying programming language ML as it adds no further system requirements and
dependencies. ML as a strict functional language does not support natively the common
execution mechanisms from logic programming, such as non-determinism and logic variables
in terms. If we want to use these mechanisms, we must embed them in the functional language.
But the execution in an embedding is considerably slower than native execution. We aim to
find a balance between deep embedding and fast execution.

We only allow values to be ground during the execution, which is the native setting for
purely functional languages. In other words, we do not allow logic variables in terms or
partially instantiated terms. Allowing such terms would require that even purely functional
specifications be embedded deeply as well, causing a tremendous overhead for purely func-
tional execution. Restricting ourselves to ground terms has the advantage that functional
specifications can be translated directly into the target functional programming language.
The test data generators only construct proper ground values in the functional programming
language. Only parts of the specification, i.e., predicates occurring in preconditions, are
compiled to test data generators with an embedding of nondeterministic execution whereas
the testing of the conclusion can be done via the fast direct execution mechanism of the
functional language. E.g., consider the safety property of the hotel key card system, the set of
values for evs, r, and g for the preconditions, hotel evs, safe evs and isin evs r, are computed
with the deep embedding, the conclusion, owner evs r = g, is executed as functional program
directly.

The decision above burdens the compilation with a static analysis – the mode analysis
– to determine a possible dataflow of ground values in the description of the precondition.
However, the advantage of smarter test data generators is worth this burden. The test
data generators commonly return a set of values – we implement this behavior using lazy
sequences in ML.

In summary, our system compiles predicate preconditions to smart test data generators
using ground terms, a dataflow analysis and nondeterministic execution. The conclusion is
tested via direct functional execution.

Architecture. The counterexample generator performs the these steps: As the original
specification can be defined using various definitional mechanisms, the specification is
preprocessed by a few simple syntactic transformations (Section 5) to Horn clauses. The core
component, which was previously described in [1], consists of the mode analysis (Section 6)
and the code generator (Section 7). This core component only works on a syntactic subset of
the Isabelle language, namely Horn clauses of the following form:

Q1 u1 =⇒ · · · =⇒ Qn un =⇒ P t

In a premise Qi ui, Qi must be a predicate defined by Horn clauses and the terms ui must
be constructor terms, i.e., only contain variables or datatype constructors. Furthermore, we
allow negation of atoms, assuming the Horn clauses to be stratified. If a premise obeys these

Lukas Bulwahn 143

restrictions, the core compiler infers modes and compiles functional programs for the inferred
modes. If a premise has a different form, e.g., the terms contain function symbols, or a
predicate is not defined by Horn clauses, the core compiler will treat them as side conditions.
For side conditions, the mode analysis does not infer modes, but requires all arguments as
inputs. Enriching the mode analysis, we mark unconstrained values to be generated. Once
we have inferred modes for the Horn clauses, these are turned into test data generators in
ML using lazy sequences and type-based generators.

5 Preprocessing

In this section, we sketch how specifications in predicate logic and functions are preprocessed
to Horn clauses. A definition in predicate logic is transformed to a system of Horn clauses,
based on the fact that a formula of the form P x = ∃y. Q1 u1 ∧ · · · ∧Qn un can be soundly
underapproximated by a Horn clause Q1 u1 =⇒ · · · =⇒ Qn un =⇒ P x. Predicate logic
formulas in different form are transformed in the form above by a few logical rewrite rules in
predicate logic. We rewrite universal quantifiers to negation and existential quantifiers, put the
formula in negation normal form, and distribute existential quantifiers over disjunctions. In the
process of creating Horn clauses, it is necessary to introduce new predicates for sub formulas,
as our Horn clauses do not allow disjunctions within the premises and nested expressions
under negations. Furthermore, we take special care of if, case and let-constructions.

I Example 1. The predicate hotel is processed to a system of Horn clauses with predicates
hotel, hotelaux and hotelaux2; the latter two are introduced during the preprocessing:

hotel []
hotel evs =⇒ hotelaux e evs =⇒ hotel (e · evs)
k = currentkey evs r =⇒ k′ /∈ issued evs =⇒ hotelaux (Checkin g r (k, k′)) evs
(k, k′) ∈ cards evs g =⇒ hotelaux2 evs r k k

′ =⇒ hotelaux (Enter g r (k, k′)) evs
g ∈ isin evs r =⇒ hotelaux (Exit g r) evs
roomkey evs r k =⇒ hotelaux2 evs r k k

′

roomkey evs r k′ =⇒ hotelaux2 evs r k k
′

To enable inversion of functions, we preprocess n-ary functions to (n + 1)-ary predicates
defined by Horn clauses, which enables the core compilation to inspect the definition of the
function and leads to better synthesized test data generators. This is achieved by flattening
a nested functional expression to a flat relational expression, i.e., a conjunction of premises
in a Horn clause.

I Example 2. Consider the formula evs = evs3 @ (Enter g r c · evs2 @ Checkin g r c′ · evs1)
used in the predicate safe. This formula is flattened to two premises,

appendP evs2 (Checkin g r c′ · evs1) r1 and appendP evs3 (Enter g r c · r1) evs,

and appendP is defined by two Horn clauses derived from its functional definition:

appendP [] ys ys and appendP xs ys zs =⇒ appendP (x · xs) ys (x · zs)

This well-known technique is similarly described by Naish [16] and Rouveirol [21]. We also
support flattening of higher-order functions, which allows inversion of higher-order functions
if the function argument is invertible.

ICLP 2011

144 Smart test data generators via logic programming

6 Mode analysis

In order to execute a predicate P , its arguments are classified as input or output, made
explicit by means of modes. Modes can be inferred using a static analysis on the Horn clauses.
Our mode analysis is based on [15]. There are more sophisticated mode analysis approaches,
e.g., by Smaus et al. [23] using abstract domains and Overton et al. [18] by translating to a
boolean constraint system. For our purpose, we can apply the simple mode analysis, because
if the analysis does not discover a dataflow due to its imprecision, the overall process still
leads to an test data generator.

Modes. For a predicate P with k arguments, we call mode a particular dataflow assignment
by a which follows the type of the predicate and annotates all arguments as input (i) or
output (o), e.g., for appendP , o ⇒ o ⇒ i ⇒ bool denotes the mode where the first two
arguments are output, the last argument is input.
A mode assignment for a given clause Q1 u1 =⇒ · · · =⇒ Qn un =⇒ P t is a list of modes
M,M1, . . .Mn for the predicates P,Q1, . . . , Qn. Let FV (t) denote the set of free variables
in a term t. Given a vector of arguments t and a mode M , the projection expression t〈M〉
denotes the list of all arguments in t (in the order of their occurrence) which are input in M .

Mode consistency. Given a clause Q1 u1 =⇒ · · · =⇒ Qn un =⇒ P t a corresponding mode
assignmentM,M1, . . .Mn is consistent if the chain of sets of variables v0 ⊆ · · · ⊆ vn defined by
(1) v0 = FV (t〈M〉) and (2) vj = vj−1∪FV (uj) obey the conditions (3) FV (uj〈Mj〉) ⊆ vj−1
and (4) FV (t) ⊆ vn. Mode consistency guarantees the possibility of a sequential evaluation
of premises in a given order, where vj represents the known variables after the evaluation of
the j-th premise. Without loss of generality, we can examine clauses under mode inference
modulo reordering of premises. For side conditions R, condition 3 has to be replaced by
FV (R) ⊆ vj−1, i.e., all variables in R must be known when evaluating it. This definition
yields a check whether a given clause is consistent with a particular mode assignment.

Generator mode analysis. To generate values that satisfy a predicate, we extend the
mode analysis in a genuine way: If the mode analysis cannot detect a consistent mode
assignment, i.e., the values of some variables are not constrained after the evaluation of the
premises, we allow the use of generators, i.e., the values for these variables are constructed by
an unconstrained enumeration. In other words, we combine two ways to enumerate values,
either driven by the computation of a predicate or by generation based on its type.

I Example 3. Given a unary predicate R with possible modes i⇒ bool and o⇒ bool and
the Horn clause R x =⇒ P x y, classical mode analysis fails to find a consistent mode
assignment for P with mode o⇒ o⇒ bool. To generate values for x and y fulfilling P , we
combine computations and generation of values as follows: the values for variable x are built
using R with o⇒ bool; values for y are built by a generator.

This extension gives rise to a number of possible modes, because we actually drop the
conditions 3 and 4 for the mode analysis. Instead, we use a heuristic to find a considerably
good dataflow by locally selecting the optimal premise Qj and mode Mj with respect to the
following criteria:
1. minimize number of missing values, i.e., have |FV (uj〈Mj〉)− vj−1| is minimal;
2. use functional predicates with their functional mode;
3. use predicates and modes that do not require generators themselves;
4. minimize number of output positions;
5. prefer recursive premises.

Lukas Bulwahn 145

Next, we motivate and illustrate these five criteria. In general, we would like to avoid genera-
tion of values and computations that could fail, and to restrain ourselves from enumerating
any values that could possibly be computed. Hence, the first priority is to use modes where
the number of missing values is minimal. This way, we partly recover conditions 3 and 4
from the mode analysis.

I Example 3 (continued). For mode M1 for R x, one has two alternatives: generating
values for x and then testing R with mode i⇒ bool, or only generating values for x using R
with o⇒ bool. The first choice generates values and rejects them by testing; the latter only
generates fulfilling values and is preferable. The analysis favors o⇒ bool to i⇒ bool due to
criterion 1: for v0 = {}, u1 = x and M1 = i ⇒ bool, FV (u1〈M1〉) − v0 = {x}; whereas for
M1 = o⇒ bool, FV (u1〈M1〉)− v0 = {}. |FV (u1〈M1〉)− v0| is minimal for M1 = o⇒ bool.

I Example 4. Consider a clause R x y =⇒ F x y =⇒ P x y where R is a one-to-many relation
and F is functional, i.e., a one-to-one relation. R and F both allow modes i⇒ o⇒ bool and
i ⇒ i ⇒ bool. For M = i ⇒ o ⇒ bool, R x y and F x y can be evaluated in either order.
Our criterion 2 induces preference for computing y with the functional computation F x y

and checking R x y, i.e., the one value for y can either fulfill R x y or not.

Criterion 3 induces avoiding the generation of values in the predicate to be invoked. Further-
more, we minimize output positions, e.g., we prefer checking a predicate (no output position)
before computing some solution (one output position) as we illustrate by the following
example:

I Example 5. In a clause R x y =⇒ Q x =⇒ P x y with mode i ⇒ o ⇒ bool for R and
P , and i⇒ bool for Q, we prefer Q x before R x y, since computing values for y would be
useless if Q x fails. This ordering is enforced by criterion 4.

Finally, we prefer recursive premises - this leads to a bottom-up generation of values.
Generating larger values for predicates from smaller values for the predicate is commonly
preferable because it takes advantage of the structure of the preconditions.

I Example 6. In a clause P xs =⇒ C xs =⇒ P (x · xs), P xs is favored for generation of
xs and C xs for checking. Generating values for P , we apply the generator for P recursively
and check the condition C xs afterwards.

This “aggressive” mode analysis results in moded Horn clauses with annotations for generators
of values. In summary, it does not only discover an existing dataflow, but helps creating a
dataflow by filling the gaps with value generators.

7 Generator compilation

In this section, we discuss the translation of the compiler from moded Horn clauses to
functional programs. First, we present the building blocks of the compiler, the execution
mechanism and the generators. Then, we sketch the compilation scheme and show its
application in the hotel key card example.

Monads for non-deterministic computations. We use lazy sequences to enumerate the
(potentially infinite) set of values fulfilling the involved predicates – in other words, the lazy
sequences will hold the enumerated solutions. As customary [25], they are implemented using
the ML datatype ’a lazy. On lazy sequences, we define plus monad operations describing
non-deterministic computations. Depending on our enumeration scheme, we employ three

ICLP 2011

146 Smart test data generators via logic programming

different plus monads: one for unbounded computations, and two others for depth-limited
computations within positive and negative contexts, respectively.

A plus monad supports four operations: empty, single, plus and bind. They provide
executable versions of basic set operations: empty = ∅, single x = {x}, plus A B = A∪B and
bind A f =

⋃
x∈A f x. Using lazy sequences results in a Prolog-like execution strategy, with a

depth-first search. This strategy is fine for user-initiated evaluations, but for counterexample
generation, automatically generated values cause infinite computations escaped from the
control of the user. To avoid being stuck in such a computation, we also employ a plus monad
with a different carrier that limits the computation by a depth-limit. Evaluating predicates
with a depth-limited computation, we must take special care of negation. We implement
different behaviors for queries in different contexts: for positive contexts, we compute an
underapproximation; for negative contexts, an overapproximation.

For positive contexts, we implement a plus monad with the type int → ’a lazy as carrier.
The bind+ operation checks the depth-limit and if reached, returns empty, which yields a
sound underapproximation; otherwise it passes a decreased depth-limit to its argument. It is
defined by bind+ xq f = (λi. if i = 0 then empty else bind (xq (i− 1)) (λa. f a i)).

In negative contexts, we must distinguish more explicitly failure (no solution found)
from reaching the depth limit. To signal reaching the depth-limit, we include an explicit
element to model an unknown value (as a third truth value), and continue the computation
with this value. This makes the monad carrier type be int → ’a option lazy where the
option value None stands for unknown. If one computation reaches the depth-limit and
another computation fails, then the overall computation fails, in other words failure absorbs
the unknown value (which is consistent with a three-valued logic interpretation). This is
witnessed by the behavior of the bind− operator: bind− single-none (λx. empty−) = empty−
where single-none is the singleton sequence with the unknown value.

Because negative and positive occurrences of predicates are intermixed, in actual enu-
meration we have to combine the positive and negative monads – the bridge between them
is performed by executable not-operations that handle the unknown value depending on
the context. For instance, when applied to a solution enumeration of a negated premise,
unknown is mapped to false (computation failure); this reflects the intuition that if we were
not able to prove a negated premise ¬Q x within a given depth-limit for x, then all we can
soundly assume is that Q x may hold; hence the computation cannot proceed further.

The compilation scheme builds abstractly on the monad structure interface and hence is
employed for all three monads. For the rest of the presentation, we write plus and bind infix
as t and >>=.

Type-based generators. If values cannot be computed, we enumerate them up to a given
depth. To generate values of a specific type, we make use of type classes in Isabelle. More
specifically we require which the involved types τ come equipped with an operation gen τ ,
the generator for type τ that enumerates all values as lazy sequence. For recursively-defined
datatypes τ with n constructors C1 τ

1
1 . . . τ

m1
1 | . . . | Cn τ1

n . . . τ
mn
n we construct generators

that enumerate values exhaustively up to depth d by the following scheme:

gen τ d =
if d = 0 then empty else

(gen τ1
1 (d− 1)>>= (λx1. gen τ2

1 (d− 1)>>= . . . >>= (λxm1−1.

gen τm1
1 (d− 1)>>= (λxm1 . single (C1 x

1 . . . xm1))) . . .)) t . . . t
(gen τ1

n (d− 1)>>= (λx1. gen τ2
n (d− 1)>>= . . . >>= (λxmn−1.

gen τmn
n (d− 1)>>= (λxmn . single (Cn x1 . . . xmn))) . . .))

Lukas Bulwahn 147

Compilation of moded clauses. The central idea underlying the compilation of a predicate
P is to generate a function PM for each mode M of P that, given a list of input arguments,
enumerates all tuples of output arguments. The functional equation for PM is the union of
the output values generated by the characterizing clauses. Employing the data flow from
the mode inference, the expressions for the clauses are essentially constructed as chains
of type-based generators and function calls for premises, connected through bind and case
expressions. All functions PM are executable in ML, because they only employ the monad
operations and pattern matching. The function PM for the mode M with all arguments as
output serves as test data generator for predicate P .

I Example 7. The ML function hotelo with mode o ⇒ bool is the test data generator for
the predicate hotel:

val hotelo = (single ()>>= (λ(). single []))
t (single ()>>= (λ(). hotelo >>= (λevs. hotelaux

oi evs >>= (λe. single (e · evs)))))
fun hotelaux

oi evs = (single evs >>= (λevs. currentkeyP
ioo evs >>= (λ(r, k1). genkey

>>=(λk2. not (issuedii evs k2)>>= (λ(). genguest >>= (λg. single (Checkin g r (k1, k2))))))))
t (single evs >>= (λevs. cardsioo evs

>>=(λ(g, (k1, k2)). hotelaux2
ioii evs k1 k2 >>= (λr. single (Enter g r (k1, k2))))))

t (single evs >>= (λevs. isinioo evs >>= (λ(r, g). single (Exit g r))))
fun hotelaux2

ioii evs k1 k2 =
(single (evs, (k1, k2))>>= (λ(evs, (k1,_)). roomkeyP

ioi evs k1 >>= (λr. single r)))
t (single (evs, (k1, k2))>>= (λ(evs, (_, k2)). roomkeyP

ioi evs k2 >>= (λr. single r)))

The generator hotelo constructs hotel traces in a bottom-up fashion. hotelaux
oi adds a new

event as prefix to (shorter) hotel traces. hotelaux
oi can either prefix a trace by Checkin,

Enter, or Exit events; the conditions for these events, i.e., restriction on the values of these
constructors, are fulfilled by either computing values using further generating functions or
are generated unrestrictedly based on their type. An instance of computation is the call
isinioo evs to construct Exit events; an instance of generation is genguest to select a guest
for Checkin events. Applying the counterexample generator to the safety property (cf. §3)
results in the following counterexample trace:

Enter g1 r0 (k1, k2) · Enter g1 r0 (k0, k1) · Checkin g0 r0 (k2, k3)
· Checkin g1 r0 (k1, k2) · Checkin g0 r0 (k0, k1)

This resembles the following situation in a hotel with one room r0: (1) Joe (Guest g0) checks
in and gets a card (k0, k1). (2) Eve (Guest g1) checks in and gets a card (k1, k2). (3) Joe
checks in again and gets a card (k2, k3). (4) At this point, Joe has two cards for the room:
He tries the newest card (k2, k3), but it does not open the door, so he gives it a try with the
card from his last stay (k0, k1) which unlocks the door. Feeling safe in his room, he puts
his wallet on the nightstand and goes to bed. (5) At night, Eve enters the room with card
(k1, k2) and takes Joe’s wallet. A subtle error in the key card system causes this jeopardy
and can be resolved if Joe would have followed a reasonable safety policy, i.e., to only use his
recent card. After understanding the counterexample and formulating this safety policy, one
can prove the safety of the key card system.

8 Related work

The idea of specification-based testing was pioneered by the Haskell tool QuickCheck and
has many descendants in interactive theorem provers, e.g., Agda/Alfa [9], ACL2 [10],
Isabelle [2] and PVS [19], and in a variety of programming languages. QuickCheck uses test

ICLP 2011

148 Smart test data generators via logic programming

data generators that create random values to test the propositions. Random testing can
handle propositions with strong preconditions only very poorly. To circumvent this, the
user must manually write a test data generator that only produces values that fulfill the
precondition. SmallCheck [22] tests the propositions exhaustively for small values. It also
handles propositions with strong preconditions poorly, but in practice handles preconditions
better than QuickCheck because it gives preference to small values, and they tend to fulfill
the commonly occurring preconditions more often. Lazy SmallCheck [22] uses partially-
instantiated values and a refinement algorithm to simulate narrowing in Haskell. This is
closely related to the work of Lindblad [14] and EasyCheck [7], based on the narrowing
strategy in the functional logic programming language Curry [12]. This approach can cut
the search space of possible values to check if partially instantiated values already violate
the precondition. The three approaches, QuickCheck (without manual test data generators),
SmallCheck and Lazy SmallCheck, have in common black-box testing, i.e., not considering
the description of the precondition - they generate (partial) values and test the precondition.

Previous work [1] focused on the verification of the transformation of Horn clauses to
functional programs, whereas the focus of this work is the extension and application of the
transformation for counterexample generation. Our approach is a glass-box testing approach,
i.e., it considers the description of the precondition and compiles a purely functional program
that generates values that fulfill the precondition. Closely related to our work is the glass-box
testing by Fischer and Kuchen [11] for functional logic programs, but they take advantage of
narrowing and non-determinism features of Curry.

Another approach to finding values that fulfill the preconditions is to use a CLP(FD)
constraint solver, as done by Carlier et al. [4]. Testing specifications using αProlog [6]
is described by Cheney and Momigliano [5]. A completely different approach to finding
counterexamples is translating the specification to propositional logic and invoking a SAT
solver, as practiced by the Isabelle tools Refute [26] and Nitpick [3].

9 Conclusion

We described a counterexample generator that improves upon existing solutions by translating
specifications into logic programs and which in turn are processed to functional programs,
applying an enriched mode analysis. This counterexample generator is included in the next
Isabelle release and can be invoked by Isabelle’s users to validate their specifications before
proving them correct.

Thus, we adopt mode analysis, a common technique from logic programming, and apply
it in the context of functional programming for synthesizing test data generators. We
employ the analysis in a compilation with an embedding of depth-limited non-deterministic
computations in the functional language. Using these generators for preconditions allows us
to find counterexamples in Isabelle specifications where type-based exhaustive and random
testing have failed.

In the future, we would like to investigate counterexample generation via testing in
(functional) logic programming languages, e.g., Curry, Mercury [24], αProlog [6] and XSB [20].

Acknowledgements

I would like to thank Andrei Popescua, Sascha Boehme, Tobias Nipkow, Alexander Krauss
and the anonymous referees for comments on earlier versions of this paper.

Lukas Bulwahn 149

References
1 Stefan Berghofer, Lukas Bulwahn, and Florian Haftmann. Turning inductive into equa-

tional specifications. In Stefan Berghofer, Tobias Nipkow, Christian Urban, and Makarius
Wenzel, editors, Proceedings of the 22th International Conference on Theorem Proving in
Higher Order Logics (TPHOLs 2009), volume 5674 of LNCS, pages 131–146. Springer, 2009.

2 Stefan Berghofer and Tobias Nipkow. Random Testing in Isabelle/HOL. In Proceedings of
the Software Engineering and Formal Methods, Second International Conference (SEFM
2004), pages 230–239. IEEE Computer Society, 2004.

3 Jasmin Christian Blanchette and Tobias Nipkow. Nitpick: A counterexample generator for
higher-order logic based on a relational model finder. In M. Kaufmann and L. Paulson,
editors, Interactive Theorem Proving (ITP 2010), volume 6172 of LNCS, pages 131–146.
Springer, 2010.

4 Matthieu Carlier, Catherine Dubois, and Arnaud Gotlieb. Constraint Reasoning in Fo-
calTest. In 5th International Conference on Software and Data Technologies (ICSOFT
2010), 2010.

5 James Cheney and Alberto Momigliano. Mechanized metatheory model-checking. In PPDP
’07: Proceedings of the 9th ACM SIGPLAN international conference on Principles and
practice of declarative programming, pages 75–86. ACM, 2007.

6 James Cheney and Christian Urban. Alpha-Prolog: A Logic Programming Language with
Names, Binding and Alpha-Equivalence. In Proceedings of the International Conference on
Logic Programming (ICLP 2004), volume 3132 of LNCS, pages 269–283, 2004.

7 Jan Christiansen and Sebastian Fischer. EasyCheck – Test Data for Free. In Proceedings
of the 9th International Symposium on Functional and Logic Programming (FLOPS 2008),
volume 4989 of LNCS, pages 322–336. Springer, 2008.

8 Koen Claessen and John Hughes. QuickCheck: A lightweight tool for random testing of
Haskell programs. In Proceedings of International Conference on Functional Programming
(ICFP), pages 268 – 279. ACM SIGPLAN, 2000.

9 Peter Dybjer, Qiao Haiyan, and Makoto Takeyama. Combining testing and proving in
dependent type theory. In Theorem Proving in Higher Order Logics, pages 188–203, 2003.

10 Carl Eastlund. Doublecheck your theorems. In Eighth International Workshop On The
ACL2 Theorem Prover and Its Applications, 2009.

11 Sebastian Fischer and Herbert Kuchen. Systematic generation of glass-box test cases for
functional logic programs. In Proceedings of the 9th ACM SIGPLAN international confer-
ence on Principles and practice of declarative programming, PPDP ’07, pages 63–74. ACM,
2007.

12 M. Hanus. Multi-paradigm declarative languages. In Proceedings of the International Con-
ference on Logic Programming (ICLP 2007), volume 4670 of LNCS, pages 45–75. Springer,
2007.

13 Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. The MIT Press,
2006.

14 Fredrik Lindblad. Property directed generation of first-order test data. In The Eigth
Symposium on Trends in Functional Programming, 2007.

15 C. S. Mellish. The automatic generation of mode declarations for Prolog programs. Tech-
nical Report 163, Department of Artificial Intelligence, 1981.

16 Lee Naish. Adding equations to NU-Prolog. In Proceedings of the 3rd Int. Symposium
on Programming Language Implementation and Logic Programming, LNCS, pages 15–26.
Springer, 1991.

17 Tobias Nipkow. Verifying a Hotel Key Card System. In K. Barkaoui, A. Cavalcanti, and
A. Cerone, editors, Theoretical Aspects of Computing (ICTAC 2006), volume 4281 of LNCS.
Springer, 2006. Invited paper.

ICLP 2011

150 Smart test data generators via logic programming

18 David Overton, Zoltan Somogyi, and Peter J. Stuckey. Constraint-based mode analysis of
mercury. In Proceedings of the 4th ACM SIGPLAN international conference on Principles
and practice of declarative programming, PPDP ’02, pages 109–120. ACM, 2002.

19 Sam Owre. Random testing in PVS. In Workshop on Automated Formal Methods, 2006.
20 Prasad Rao, Konstantinos Sagonas, Terrance Swift, David Warren, and Juliana Freire. XSB:

A system for efficiently computing well-founded semantics. In Jürgen Dix, Ulrich Furbach,
and Anil Nerode, editors, Logic Programming And Nonmonotonic Reasoning, volume 1265
of LNCS, pages 430–440. Springer, 1997.

21 Céline Rouveirol. Flattening and Saturation: Two Representation Changes for Generaliza-
tion. Mach. Learn., 14(2):219–232, 1994.

22 Colin Runciman, Matthew Naylor, and Fredrik Lindblad. Smallcheck and lazy smallcheck:
automatic exhaustive testing for small values. In Haskell ’08: Proceedings of the first ACM
SIGPLAN symposium on Haskell, pages 37–48. ACM, 2008.

23 Jan-Georg Smaus, Patricia M. Hill, and Andy King. Mode analysis domains for typed logic
programs. In Selected papers from the 9th International Workshop on Logic Programming
Synthesis and Transformation, pages 82–101, London, UK, 2000. Springer.

24 Zoltan Somogyi, Fergus Henderson, and Thomas Conway. The execution algorithm of
Mercury, an efficient purely declarative logic programming language. The Journal of Logic
Programming, 29(1-3):17–64, December 1996.

25 Philip Wadler. How to replace failure by a list of successes. In Proceedings of a conference
on Functional programming languages and computer architecture, pages 113–128. Springer,
1985.

26 Tjark Weber. Bounded model generation for Isabelle/HOL. In Wolfgang Ahrendt, Peter
Baumgartner, Hans de Nivelle, Silvio Ranise, and Cesare Tinelli, editors, Selected Papers
from the Workshops on Disproving and the Second International Workshop on Pragmatics
of Decision Procedures (PDPAR 2004), volume 125(3) of Electronic Notes in Theoretical
Computer Science, pages 103–116. Elsevier, 2005.

27 Makarius Wenzel, Lawrence C. Paulson, and Tobias Nipkow. The Isabelle Framework. In
Ait Mohamed, Munoz, and Tahar, editors, Proceedings of the 21st International Conference
on Theorem Proving in Higher Order Logics (TPHOLs 2008), volume 5170 of LNCS, pages
33–38. Springer, 2008.

	Introduction
	Interactive Theorem Prover Isabelle
	Case Study: Hotel Key Card System
	Overview of the tool
	Preprocessing
	Mode analysis
	Generator compilation
	Related work
	Conclusion

