
Minimizing the overheads of dependent
AND-parallelism
Peter Wang1 and Zoltan Somogyi2

1 Mission Critical Australia
novalazy@gmail.com

2 Department of Computer Science and Software Engineering
University of Melbourne, Australia and
National ICT Australia (NICTA)
zs@unimelb.edu.au

Abstract
Parallel implementations of programming languages need to control synchronization overheads.
Synchronization is essential for ensuring the correctness of parallel code, yet it adds overheads
that aren’t present in sequential programs. This is an important problem for parallel logic pro-
gramming systems, because almost every action in such programs requires accessing variables,
and the traditional approach of adding synchronization code to all such accesses is so prohibitively
expensive that a parallel version of the program may run more slowly on four processors than a
sequential version would run on one processor. We present a program transformation for imple-
menting dependent AND-parallelism in logic programming languages that uses mode information
to add synchronization code only to the variable accesses that actually need it.

1998 ACM Subject Classification D.3.3 Concurrent Programming Structures, D.3.4 Compilers

Keywords and phrases synchronization, program transformation

Digital Object Identifier 10.4230/LIPIcs.ICLP.2011.128

1 Introduction

The usual motivation for parallelism is higher performance. Parallelizing imperative programs
is notoriously errorprone, whereas in some declarative languages, introducing parallelism
into a program can be as easy as adding a directive asking for it. Unfortunately, parallel
implementations of declarative languages have a big enemy: overheads.

Parallel systems have overheads for the mechanisms used to manage the parallelism itself,
as well as the overheads present in the sequential system they are based on. To get speedups
over the best sequential systems, overheads must be kept to a minimum. Unfortunately, most
sequential implementations of logic programming languages have quite high overheads. The
best way to minimize overheads is to design a language that removes the need for them as
far as possible, which is best done by moving all possible decisions to compile time. The only
logic programming language designed with this objective is Mercury. Its implementation has
consequently long been the fastest among sequential implementations of logic programming
languages [8], though recently systems like YAP [3] have been catching up. This speed makes
Mercury a good starting point for a parallel logic programming implementation.

Most parts of most Mercury programs are deterministic, so Mercury needs AND-
parallelism, not OR-parallelism, and since most goals in predicate bodies depend on the goals
preceding them, it needs dependent AND-parallelism. If you want to use this parallelism to
achieve higher speeds than would be possible on one processor in any language (which may
be the “killer application” of declarative languages), then you need to be very aggressive in

© Peter Wang and Zoltan Somogyi;
licensed under Creative Commons License ND

Technical Communications of the 27th International Conference on Logic Programming (ICLP’11).
Editors: John P. Gallagher, Michael Gelfond; pp. 128–138

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62916338?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.ICLP.2011.128
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Peter Wang and Zoltan Somogyi 129

keeping down the overheads of the synchronization required to implement the dependencies
between parallel goals. Our paper presents a way to do this.

The structure of the paper is as follows. Section 2 briefly reviews the Mercury language.
Sections 3 and 4 present the main contributions of the paper, our synchronization and
specialization transformations respectively. Section 5 gives some performance results, while
section 6 concludes with comparisons to related work.

2 Background

The part of Mercury relevant to this paper can summarized by this abstract syntax:

pred P : p(x1, . . . , xn) ← G predicates
goal G : x = y | x = f(y1, . . . , yn) unifications

| p(x1, . . . , xn) | x0(x1, . . . , xn) first and higher order calls
| (G1, . . . , Gn) | (G1 & . . . & Gn) seq and par conjunctions
| (G1; . . . ; Gn) | switch x (. . . ; fi : Gi; . . .) disjunctions and switches
| (if Gc then Gt else Ge) | not G if-then-elses and negations
| some [x1, . . . , xn] G quantifications

The atomic constructs of Mercury are unifications, plain first-order calls, and higher-order
calls. The composite constructs include sequential disjunctions, if-then-elses, negations and
existential quantifications. These should all be self-explanatory. A parallel conjunction is
a conjunction in which all the conjuncts execute in parallel. They may be independent or
dependent; if dependent, the dependencies must be respected. (The mechanism for enforcing
the dependencies is the subject of this paper.) A switch is a disjunction in which each
disjunct unifies the same variable, whose value is known, with a different function symbol.

Mercury has a strong mode system. The mode system classifies each argument of each
predicate as either input or output; there are exceptions, but they are not relevant to this
paper. If input, the caller must pass a ground term for that argument. If output, the caller
must pass a distinct free variable, which the predicate will instantiate to a ground term.
A predicate may have more than one mode; we call each one a procedure. The Mercury
compiler generates different code for different procedures. The compiler is responsible for
reordering conjuncts in both sequential and parallel conjunctions as necessary to ensure that
for each variable shared between conjuncts, the goal that generates the value of the variable
(the producer) comes before all the goals that use this value (the consumers). This means
that for each variable in each procedure, the compiler knows exactly where in that procedure
that variable gets grounded.

The mode system both establishes and requires some invariants. The conjunction invariant
says that on any execution path consisting of conjoined goals, each variable that is consumed
by any one of the goals is produced by exactly one goal. The branched goal invariant says that
in disjunctions, switches and if-then-elses, each branch of execution must produce the exact
same set of variables that are visible from outside the branched goal, with one exception: a
branch of execution that cannot succeed may produce a subset of this set.

Each procedure and goal has a determinism, which puts limits on the number of its
possible solutions. Goals with determinism det succeed exactly once, semidet goals at most
once, multi goals at least once, while nondet goals may succeed any number of times. Each
procedure’s mode declaration declares the procedure’s determinism.

Before we started this work, Mercury already supported independent AND-parallelism
[2]. This meant that programmers who wanted to use parallelism could indicate which

ICLP 2011

130 Minimizing the overheads of dependent AND-parallelism

:- pred p(int, int, int).
:- mode p(in, in, out) is det.

% before transformation
p(A, B, C) :-

(
q(A, D), % produces D
r(D, E) % produces E

) & (
s(B, F), % produces F
t(D, F, G) % produces G

),
C = D + E + G. % produces C

% after transformation
p(A, B, C) :-

new_future(FutureD),
(

q(A, D), % produces D
signal_future(FutureD, D),
r(D, E) % produces E

) & (
s(B, F), % produces F
wait_future(FutureD, D’),
t(D’, F, G) % produces G

),
C = D + E + G. % produces C

Figure 1 Example of synchronizing a parallel conjunction

conjunctions should be executed in parallel by writing the parallel connective ’&’ instead
of the sequential connective ’,’ between the conjuncts. The compiler then checked that the
code satisfied the restrictions imposed on parallel conjunctions. The first restriction required
all conjuncts in parallel conjunctions to be det, and the second required them to be all
independent (no conjunct could produce any variable consumed by any other conjunct). The
reason for the first check is that while there are ways to run nondeterministic conjuncts in
parallel, the overheads of the algorithms required to assure correctness in such cases make it
almost impossible to achieve speedups, even on several cores, over the best possible sequential
version of the program at hand. We therefore keep the first restriction, even though our work
obviously removes the second.

3 Synchronization for dependent AND-parallelism

Our main objective is to minimize the cost of synchronization by incurring it only when it
is truly needed. In Mercury, this is relatively easy to do, due to the compiler’s complete
knowledge of the data flow in every predicate. (This was one of the design criteria for the
language, even though the original implementation was sequential.) Given two or more
conjuncts in a conjunction, the compiler knows not only which variables they have in common
(i.e. which variables they share), but for each shared variable, it also knows which conjunct
produces the variable and which conjuncts consume it.

The main parts of our implementation are the synchronization transformation (described
in this section) and the specialization transformation (in section 4) . They both operate on a
representation of the source code, which is based on the Mercury abstract syntax (section 2).

The synchronization transformation processes each parallel conjunction in the program
independently. For each parallel conjunction, it computes the set of variables that need
synchronization because they are produced by one conjunct and consumed by later conjuncts.
For each such variable, it creates a new variable that we call a future. It then modifies all
conjuncts to use these futures to synchronize all accesses to the shared variables.

We will introduce the synchronization transformation using the example in figure 1. The
body of p contains a parallel conjunction, whose first conjunct is the sequential conjunction
q(A, D), r(D, E) and whose second is the sequential conjunction s(B, F), t(D, F, G).
The comments indicate the modes of the calls.

Peter Wang and Zoltan Somogyi 131

add_sync_par_conj(Conjuncts, Purity) returns Goal:
let SharedVars be the set of variables that are

(a) produced by one conjunct and
(b) consumed by one or more later conjuncts

if SharedVars = ∅:
Goal := par_conj(Conjuncts)

else:
FutureMap := ∅
AllocGoals := []
for each Var in SharedVars:

create a new var FutureVar
FutureMap := FutureMap ∪ {Var → FutureVar}
AllocGoals := [new_future(FutureVar) | AllocGoals]

ParConjuncts := []
for each Conjunct in Conjuncts:

ParConjuncts := ParConjuncts ++
[add_sync_par_conjunct(Conjunct, SharedVars, FutureMap, yes)]

Goal := seq_conj(AllocGoals ++ [par_conj(ParConjuncts)])

Figure 2 Synchronizing a parallel conjunction

The basic idea of our work is that
the producer of a shared variable will signal the availability of a value for the shared
variable immediately after that value has been computed, and
all consumers of a shared variable will wait for the availability of a value for the shared
variable immediately before they use that value for the first time.

No consumer ever accesses the shared variable directly. Instead, each consumer waits on the
future, and creates its own copy (D’ in this case).

The data structures we use for this synchronization are the futures. (We got the name
from MultiLisp [4]; our futures resemble theirs.) A future consists of these four fields:

a boolean that says whether the future has been signalled yet;
the value of the variable, if it has been signalled;
a list of the contexts suspended waiting for this future, if it has not;
a mutex to allow only one engine to access the future at a time.

The implementations of the three operations on futures are quite straightforward.

new_future allocates a new future on the heap, and initializes its fields to the obvious
values: not yet signalled, no waiting contexts.
wait_future locks the mutex. If the future has been signalled, it picks up the its value
and unlocks the mutex. Otherwise, the thread suspends itself on the future, unlocking
the mutex. It will pick up the future’s value when it resumes.
signal_future locks the mutex, sets the value of the shared variable, records that the
value is now available, makes all the threads suspended on the future runnable, and
unlocks the mutex.

The synchronization transformation traverses the bodies of all procedures looking for parallel
conjunctions. When it finds one, it invokes the algorithm in figure 2. In our algorithmsall
variable names start with an upper case letter, names starting with lower case letters represent

ICLP 2011

132 Minimizing the overheads of dependent AND-parallelism

add_sync_par_conjunct(Goal, SharedVars, FutureMap, Rename) returns NewGoal:
ConsumedVars := SharedVars ∩ Goal’s consumed vars
ProducedVars := SharedVars ∩ Goal’s produced vars
if ConsumedVars and ProducedVars are both ∅:

NewGoal := Goal
else:

NewGoal := Goal
for each ConsumedVar in ConsumedVars:

NewGoal := insert_wait_into_goal(NewGoal, ConsumedVar, FutureMap)
for each ProducedVar in ProducedVars:

NewGoal := insert_signal_into_goal(NewGoal, ProducedVar, FutureMap)
if Rename:

map each var in ConsumedVars to a fresh clone var
apply this substitution to NewGoal

Figure 3 Synchronizing one parallel conjunct

the names of functions or data constructors, square parentheses represent lists as in Prolog
syntax, and ++ means list concatenation. The seq_conj and par_conj data constructors
create conjunctions of the named kinds out of a list of conjuncts.

If none of the conjuncts consumes a variable produced by one of the other conjuncts, then
the conjunction represents independent AND-parallelism, and requires no synchronization
(beyond the barrier at the end, which we will ignore from now on). Otherwise, the conjunction
is dependent and needs synchronization using futures. We create one future for each shared
variable; FutureMap maps each shared variable to the variable that holds its future. The
goals that create and initialize the futures (AllocGoals) will all run before execution enters
the parallel conjunction (ParConjuncts) in the transformed code.

Figure 3 shows the algorithm that transforms each parallel conjunct to ensure that the
conjunct waits for each shared variable it consumes before its first use, and that it signals the
availability of each shared variable it produces just after it is bound. First, the algorithm finds
out which shared variables it consumes and which it produces. If there are no variables in

insert_wait_into_goal(Goal, ConsumedVar, FutureMap)
returns <NewGoal, WaitAllPaths>:

if Goal does not consume ConsumedVar:
NewGoal := Goal
WaitAllPaths := false

else:
switch on the type of Goal:

the switch cases are shown in the following figures
each case sets NewGoal and WaitAllPaths

if not WaitAllPaths:
create a clone of ConsumedVar, call it CloneVar
apply the substitution {ConsumedVar → CloneVar} to NewGoal

Figure 4 Inserting waits into goals, top level

Peter Wang and Zoltan Somogyi 133

case unify, plain call, higher order call:
look up ConsumedVar in FutureMap; call the result FutureVar
WaitGoal := wait_future(FutureVar, ConsumedVar)
NewGoal := seq_conj([WaitGoal, Goal])
WaitAllPaths := true

case sequential conjunction:
let Goal be seq_conj([Conjunct_1, ..., Conjunct_n])
NewConjuncts := []
WaitAllPaths := false
for i = 1 to n:

if Conjunct_i consumes ConsumedVar:
<NewConjunct, ConjunctWaitAllPaths> :=

insert_wait_into_goal(Conjunct_i, ConsumedVar, FutureMap)
if ConjunctWaitAllPaths:

NewConjuncts := NewConjuncts ++ [NewConjunct] ++
[Conjunct_i+1, ... Conjunct_n]

WaitAllPaths := true
break out of the loop

else:
NewConjuncts := NewConjuncts ++ [NewConjunct]

else:
NewConjuncts := NewConjuncts ++ [Conjunct_i]

NewGoal := seq_conj(NewConjuncts)

Figure 5 Inserting waits into goals, part 1

either category, then this conjunct is independent of the others and needs no synchronization.
Otherwise, we loop over the consumed and produced variables, each iteration modifying the
conjunct by adding the code required to synchronize accesses to that variable.

The reason why add_sync_par_conj tells add_sync_par_conjunct to rename the vari-
ables consumed by each conjunct is to ensure that no variable is produced more than once on
any one execution path (the mode system’s conjunction invariant). The calls to wait_future
bind their second argument. Since each shared variable is bound once in its producing
conjunct, binding it again in one or more of its consuming conjuncts would violate this
invariant. This way, each consuming conjunct gets its own copy of the shared variable, and
the code after the parallel conjunction gets the original version from the producing conjunct.

Figures 4, 5, 6 and 7 each show part of the algorithm for inserting the call to wait_future
on ConsumedVar into a goal.

The insert_wait_into_goal function returns NewGoal, an updated version of Goal
in which every occurrence of ConsumedVar is preceded by code that picks up the value of
ConsumedVar by waiting on its future. It also says whether all execution paths that lead to
the success of NewGoal have such a wait operation on them. If they all do, then the code
following the original Goal will be able to access ConsumedVar without waiting, and thus
does not need to be transformed. If some or all do not, then the code after the original Goal
will need to wait for ConsumedVar, and thus does need to be transformed. However, we do
not want both Goal and the code following it to wait for and thus bind ConsumedVar, as
this would violate the conjunction invariant. That is why, if WaitAllPaths = false, we
replace all occurrences of ConsumedVar in NewGoal with a fresh variable. This renaming

ICLP 2011

134 Minimizing the overheads of dependent AND-parallelism

case parallel conjunction:
let Goal be par_conj([Conjunct_1, ..., Conjunct_n])
NewConjuncts := []
WaitAllPaths := false
for i = 1 to n:

if Conjunct_i is the first conjunct that consumes ConsumedVar:
<NewConjunct, WaitAllPaths> :=

insert_wait_into_goal(Conjunct_i, ConsumedVar, FutureMap)
NewConjuncts := NewConjuncts ++ [NewConjunct]

else if Conjunct_i consumes ConsumedVar:
<NewConjunct, _> :=

insert_wait_into_goal(Conjunct_i, ConsumedVar, FutureMap)
create a clone of ConsumedVar, call it CloneVar
apply the substitution {ConsumedVar → CloneVar} to NewConjunct
NewConjuncts := NewConjuncts ++ [NewConjunct]

else:
NewConjuncts := NewConjuncts ++ [Conjunct_i]

NewGoal := par_conj(NewConjuncts)

Figure 6 Inserting waits into goals, part 2

leaves the meaning of NewGoal unchanged. Therefore when insert_wait_into_goal returns
WaitAllPaths = false, NewGoal will not bind ConsumedVar; it won’t refer to it at all.

If the goal given to insert_wait_into_goal does not consume ConsumedVar, then the
given goal does not need modification. If it does consume ConsumedVar, then the kind of
modification it needs depends on what kind of goal it is, which is why the main body of
the insert_wait_into_goal is a switch on goal type. The base case handles atomic goals
(goals that do not contain other goals): unifications, calls, and higher order calls. For these
goals, we insert a call to wait_future before the goal to wait for and pick up the value of
the consumed variable. For unifications, this is the best we can do. For calls, we can wait for
ConsumedVar closer to the time when it is actually needed, but we will worry about that in
the next section.

insert_wait_into_goal processes the conjuncts of plain sequential conjunctions left to
right. When it finds a conjunct that consumes ConsumedVar, it calls itself recursively to
insert the call to wait_future into that conjunct. If all successful execution paths inside this
conjunct wait for ConsumedVar, then it is guaranteed to be available by the time execution
gets to the following conjuncts, so we can leave them unchanged. If only some execution
paths inside this conjunct wait for ConsumedVar, then NewConjunct will wait on a renamed
version of ConsumedVar, so ConsumedVar itself won’t be bound when execution gets to the
next conjunct. If none of the conjuncts that consume ConsumedVar wait for it on all paths,
then ConsumedVar itself won’t be bound by the conjunction itself, which is why we return
WaitAllPaths = false.

Parallel conjunctions differ from sequential conjunctions in that even if one conjunct waits
for ConsumedVar on all paths, the later conjuncts cannot assume that it will be available
when they need it. Each conjunct that consumes ConsumedVar thus needs to wait for it
independently. However, as above, having several conjuncts all ask their call to wait_future
to bind the same variable (ConsumedVar) would violate the invariant that no variable have
more than one producer in a conjunction. insert_wait_into_goal therefore renames the

Peter Wang and Zoltan Somogyi 135

case switch:
if the switch is on ConsumedVar:

look up ConsumedVar in FutureMap; call the result FutureVar
WaitGoal := wait_future(FutureVar, ConsumedVar)
NewGoal := seq_conj([WaitGoal, Goal])
WaitAllPaths := true

else:
NewCases := []
WaitAllPaths := true
for each Case in Goal:

if Case’s goal consumes ConsumedVar:
<NewCaseGoal, CaseWaitAllPaths> :=

insert_wait_into_goal(Case’s goal, ConsumedVar, FutureMap)
NewCase := replace Case’s goal with NewCaseGoal
NewCases := NewCases ++ [NewCase]
WaitAllPaths := WaitAllPaths and CaseWaitAllPaths

else:
NewCases := NewCases ++ [Case]
WaitAllPaths := false

NewGoal := replace Goal’s cases with NewCases

Figure 7 Inserting waits into goals, part 3

occurrences of ConsumedVar in all but one of the conjuncts; the last one may also be renamed
by add_sync_to_par_conjunct to avoid a similar collision with the binding made by a
producer conjunct.

Given a switch on ConsumedVar, we obviously need to wait for the value of ConsumedVar
before the switch. For switches on other variables, we insert the wait into the switch arms
that consume ConsumedVar.

To see how insert_wait_into_goal treats other kinds of goals, and for the code of
insert_signal_into_goal, see the long version of this paper on the Mercury web site.

4 The specialization transformation

The algorithms in the previous section try to push each wait_future operation as late as
they can and each signal_future operation as early as they can, in order to maximize
parallelism by maximizing the time during which the producer and the consumers of the
shared variable can all run in parallel. However, the amount of parallelism they can create is
limited by procedure boundaries. Overcoming this limitation is the task of the specialization
algorithm. The first step in this algorithm is the “making requests” step, which looks for
places in the code where creating specialized versions of procedures can increase parallelism:

We look for plain calls to procedures preceded by one or more calls to wait_future,
followed by one or more calls to signal_future, or both.
For each of these wait_future operations, we check whether the waited-for variable is
an input argument of the call and the callee does non-trivial work before it needs the
variable. PushedInputs is the set of variables for which the answer is “yes”.
For each of these signal_future operations, we check whether the signalled variable is
an output argument of the call and the callee does non-trivial work after it produces the

ICLP 2011

136 Minimizing the overheads of dependent AND-parallelism

variable. PushedOutputs is the set of variables for which the answer is “yes”.
If PushedInputs ∪ PushedOutputs is not empty, and we have access to the code of
the callee, we replace the call, all the wait_futures on PushedInputs and all the
signal_futures on PushedOutputs with a call to a specialized version of the called
procedure, one in which all the replaced waits and signals will be done in the callee. We
also request that this specialized version be created. This request identifies the variables
in PushedInputs and PushedOutputs by their position in the call’s argument list.

The specialized version of the callee will have each formal parameter corresponding to a
variable in PushedInputs or PushedOutputs replaced by a newly-created variable that will
hold its future.

The second step executes each request by creating the specialized version of the request’s
callee. To generate the body of the new procedure, it invokes add_sync_par_conjunct
from figure 3 with the callee’s original code as Goal. As SharedVars, it passes the formal
parameters corresponding to PushedInputs ∪ PushedOutputs, and FutureMap will map
each variable in SharedVars to the future that replaced it in the list of formal param-
eters. add_sync_par_conjunct will push the synchronization code for each variable in
SharedVars as deeply into the code of the callee as possible. Since the goal returned by
add_sync_par_conjunct will be the body of the specialized procedure and thus will not be
conjoined to anything, it is ok for this goal to bind the consumed variables, which is why we
pass “no” as the value of Rename.

We invoke the specialization algorithm after the algorithms of section 3 have inserted
synchronization operations into all the procedures in the module being compiled that contain
dependent parallel conjunctions. We invoke the “making requests” step on all of these
procedures, looking for opportunities for specialization, and modifying the code at each such
opportunity as if the specialized version of the callee already existed. In doing so, we collect
a queue of specialization requests, none of which have yet been acted upon. The rest of the
specialization algorithm is a fixpoint operation. While there are specialization requests that
have not yet been acted upon, the algorithm selects one such request, executes it (creating
the requested specialized procedure), and then invokes the “making requests” step of the
algorithm again on the newly created procedure to look for more specialization requests.
Some of these may have been already acted upon, some of them may already be in the queue,
and some may be new; we add the new ones to the queue. The algorithm must terminate
because the number of procedures and of possible specialization requests are both finite.

5 Performance evaluation

We have room to report on only one benchmark, but it should suffice to demonstrate the low
overheads of our system. This benchmark is a raytracer: its top level loops over the rows
of the picture, with each iteration computing the RGB values of the pixels in a chunk of
consecutive rows. We have two versions of this loop. The independent version (i1) computes
the pixels for these rows, (i2) recurses to compute the pixels for the remaining rows, then
(i3) add both sets of pixels to the list of pixels so far. The parallelized conjunction is (i1 &
i2), i3, and there is no data flow from i1 to i2. The dependent version (d1) computes the
pixels for these rows, (d2) adds these pixels to the list of pixels so far, and then (d3) recurses
to compute the pixels for the remaining rows, based on the updated list of the pixels so far.
The parallelized conjunction is (d1, d2) & d3, and there is data flow from d1 to d2 and
from d2 to d3. We tested both forms of the loop with varying chunk sizes, which divided the
rows into 1, 8, 16 and 32 chunks. The table shows speedups compared to the best sequential

Peter Wang and Zoltan Somogyi 137

version on our test machine, which was a Dell Optiplex 755 PC with a 2.4 GHz Intel Core 2
Quad Q6600 CPU. Each test was run ten times.

1i 8i 16i 32i 1d 8d 16d 32d
sequential 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.99
parallel, 1 CPU 0.91 1.08 1.08 1.10 0.90 1.02 1.03 1.04
parallel, 2 CPUs N/A 1.46 1.73 1.74 N/A 2.05 2.14 2.13
parallel, 3 CPUs N/A 2.16 2.19 2.21 N/A 2.36 2.73 2.72
parallel, 4 CPUs N/A 2.41 2.49 2.55 N/A 2.83 3.28 3.32

The parallel version of the system needs to use a real machine register to point to thread-
specific data, such as each engine’s abstract machine registers. On x86s, this leaves only
one real register for the Mercury abstract machine, which is why switching to the parallel
version of the system can yield a 10% slowdown on one CPU. However, inevitable differences
between program versions (such as in the placement of code and data) happen to allow
similar speedups as well.

The independent versions on the left do not need any of the algorithms in this paper.
The dependent versions on the right do, and thus incur extra synchronization costs. However,
these costs must be very small, since they are massively outweighed by the better cache
utilization resulting from appending each chunk’s pixels to the pixels so far immediately
after computing those pixels. (In all versions, the append is done in constant time using a
cord, not a list, and all versions do the same appends and compute the same cord.)

Different rows take different times to render. Dividing the input into more chunks evens
out such fluctuations. The data shows this to be worthwhile (up to a point) even though it
also increases synchronization overhead. Overall, the speedup of 3.32 over the sequential
version and 3.32/1.04 = 3.19 over the 1-CPU parallel version shows that we have succeeded
in keeping synchronization costs to a very low level.

6 Conclusion

We don’t have space for a detailed comparison with all existing parallel logic programming
systems [9], so we list only the main differences between our work and previous systems.

Unlike Concurrent Prolog, Parlog, GHC and their descendants, our system incurs synchro-
nization overhead on accesses only to a very small proportion of variables; the fraction
can be as low as tens out of billions.
Our system cannot deadlock: every shared variable has a producer, which (unless it
throws an exception) cannot exit without binding the variable.
Our system does not require programmers to divide clauses into guard and body, much
less into ask guard, tell guard and body.
Unlike e.g. Janus [6], our system allows a variable to have more than one consumer.
Unlike most other systems that allow multiple consumers, ours requires synchronization
for consumers only up to the first one that waits for the variable on all paths.
Unlike the DASWAM and similar parallel Prolog systems [7], our system does not allow
the producer of a variable to be decided at runtime, so it does not have to keep track of
which goal is the leftmost goal referring to a variable.
Unlike CIAO’s <& operator [1], our futures are significantly simpler to implement, and
support finer grained parallelism.
Unlike Moded FGHC [10], our system supports separate compilation.

ICLP 2011

138 Minimizing the overheads of dependent AND-parallelism

One important further advantage of our system is that it completely eliminates the need
for a system for controlling the order of parallel code’s interactions with the outside world,
such as the one in [5]. This is because Mercury uses dummy variables called I/O states to
represent states of the outside world, and models operations that interact with the outside
world as predicates that consume and destroy the current I/O state and produce a new one.
If two or more goals in a conjunction update I/O states, the algorithm in section 3 will
ensure that the parallel version of the conjunction executes the same actions in the same
order as the sequential version.

The system we have described is part of recent versions of Mercury, which are available
for free download from the Mercury project’s web page.

We would like to thank Tom Conway for implementing independent AND-parallelism.

References
1 Daniel Cabeza and Manuel V. Hermenegildo. Implementing distributed concurrent con-

straint execution in the CIAO system. In Proceedings of the AGP’96 Joint Conference on
Declarative Programming, pages 67–78, 1996.

2 Thomas C. Conway. Towards parallel Mercury. PhD thesis, University of Melbourne, 2002.
3 Anderson Faustino da Silva and Vítor Santos Costa. The design of the YAP compiler: an

optimizing compiler for logic programming languages. J. UCS, 12(7):764–787, 2006.
4 Robert H Halstead. Implementation of Multilisp: Lisp on a multiprocessor. In Proceedings

of the 1984 ACM Symposium on List and Functional Programming, pages 9–17, Austin,
Texas, 1984.

5 K. Muthukumar and M. Hermenegildo. Complete and efficient methods for supporting side
effects in independent/restricted and-parallelism. In Proceedings of ICLP 6, pages 80–101,
Lisbon, Portugal, June 1989.

6 Vijay Saraswat. Janus: a step towards distributed constraint programming. In Proceedings
of the Second North American Conference on Logic Programming, pages 431–446, Austin,
Texas, October 1990.

7 Kish Shen. Overview of DASWAM: exploitation of dependent AND-parallelism. Journal
of Logic Programming, 29(1-3):245–293, 1996.

8 Zoltan Somogyi, Fergus Henderson, and Thomas Conway. The execution algorithm of
Mercury, an efficient purely declarative logic programming language. Journal of Logic
Programming, 26(1-3):17–64, October-December 1996.

9 Evan Tick. The deevolution of concurrent logic programming languages. Journal of Logic
Programming, 23(2):89–123, May 1995.

10 Kazunori Ueda and Masao Morita. Moded flat GHC and its message-oriented implementa-
tion technique. New Generation Computing, 13(1):3–43, 1994.

	Introduction
	Background
	Synchronization for dependent AND-parallelism
	The specialization transformation
	Performance evaluation
	Conclusion

