
Bayesian Annotation Networks for
Complex Sequence Analysis

Henning Christiansen, Christian Theil Have, Ole Torp Lassen and
Matthieu Petit

Research group PLIS: Programming, Logic and Intelligent Systems
Department of Communication, Business and Information Technologies
Roskilde University, P.O.Box 260, DK-4000 Roskilde, Denmark
E-mail: {henning,cth,otl,petit}@ruc.dk

Abstract
Probabilistic models that associate annotations to sequential data are widely used in computa-
tional biology and a range of other applications. Models integrating with logic programs provide,
furthermore, for sophistication and generality, at the cost of potentially very high computational
complexity. A methodology is proposed for modularization of such models into sub-models, each
representing a particular interpretation of the input data to be analysed. Their composition
forms, in a natural way, a Bayesian network, and we show how standard methods for prediction
and training can be adapted for such composite models in an iterative way, obtaining reasonable
complexity results. Our methodology can be implemented using the probabilistic-logic PRISM
system, developed by Sato et al, in a way that allows for practical applications.

1998 ACM Subject Classification I.2.6 Learning

Keywords and phrases Probabilistic Logic Bayesian Sequence Analysis

Digital Object Identifier 10.4230/LIPIcs.ICLP.2011.220

1 Introduction

Analysis of DNA is an important example of a complex sequence annotation task which has
motivated our approach. The sheer size of data instances and the degree of ambiguity in such
tasks pose great challenges for efficient probabilistic analysis. Furthermore, most systems
for DNA-analysis used in practice are implemented in low-level programming languages,
optimized and tweaked for very specific procedures, thus leading to systems with an unclear
semantics and lack of flexibility for the modeling part. A possible shift to using probabilistic-
logic systems and languages provides obvious benefits in terms of clear semantics and
flexibility, but also introduces potential problems concerning complexity and scalability. We
present here a modular approach, in which complex probabilistic-logic models are defined in
terms of separate sub-models, each representing a particular interpretation (or “signal”) of
the input data to be analyzed. The dependencies among the results of analyses performed
by these sub-models are described in terms of edges in a Bayesian network. This allows for
an implementation based on incremental application of standard methods for prediction and
training, one sub-model at a time, thus possibly leading to acceptable complexity. We refer
to such modularized models for sequence analysis as Bayesian Annotation Networks. We
demonstrate an implementation based on PRISM [16], which is a probabilistic extension of
Prolog.

© Henning Christiansen, Christian Theil Have, Ole Torp Lassen and Matthieu Petit;
licensed under Creative Commons License NC-ND

Technical Communications of the 27th International Conference on Logic Programming (ICLP’11).
Editors: John P. Gallagher, Michael Gelfond; pp. 220–230

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62916333?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.ICLP.2011.220
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Henning Christiansen, Christian Theil Have, Ole Torp Lassen and Matthieu Petit 221

2 Probabilistic Annotation Models

Probabilistic-logic models for sequence annotations will be presented in two steps, first the
logical part, and then probabilities are added. Notice also, that we abstract away the details
of any actual modeling language and the format of probability parameters.

I Definition 1. An annotation program, or just a program, is a logic program prog, that
defines a set of atoms, each of the form:

prog(s, a, parents),

where
- s is called the sequence, and represents the data sequence to be annotated by the program.
- a is called an output annotation, and
- parents represents zero or more conditioning annotations.
The name “parents” anticipates the introduction of Bayesian Annotations Networks in
section 3 below. They represent annotations produced by other sub-models, serving as
conditions for the analysis associated with prog.

I Definition 2. A probabilistic annotation model

m = 〈prog, θ〉

consists of a probabilistic annotation program prog and a parameter θ. The parameter
is element of some data domain which is not specified further, but which gives rise to a
well-defined conditional probability distribution for atoms prog(s, a, parents) as follows:

P (a | s, parents, θ)

The intuition is that θ that associates probabilities to the detailed choices made within prog
to produce the output annotation a, given a specific sequence s and parent annotations.
Notice that our framework captures also analyses that are not necessarily written in a
probabilistic-logic language. Notice that our framework captures also analyses that are not
necessarily written in a probabilistic-logic language.

I Definition 3. A deterministic annotation model is a program

prog(s, a, parents)

where, for specific sequence s0 and parents0, there exists exactly one output annotation a0,
i.e.,

P (a0 | s0, parents0, θ) = 1,
where θ, in this case, refers to an (empty) parameter which is ignored.

The empty parameter is included for uniformity of notation only. A deterministic annotation
model with empty parents may represent an analysis provided by an external tool that, e.g.,
searches for similarities in a database of related sequence data.

3 Organizing Annotation Models as a Bayesian Network

Our overall idea for prediction is to evaluate one model at a time, fix its output annotation
to a single “best” one which, then, is used as parent for subsequent analyses. This is very
similar to the way forward analysis takes place in Bayesian networks, which we thus take as
our central paradigm for putting sub-models together to a whole. A Bayesian Network (BN)
is defined as a directed acyclic graph as follows [15].

ICLP 2011

222 Bayesian Annotation Networks for Complex Sequence Analysis

Its nodes are random variables.
An edge from node A to node B indicates that B is directly dependent on A, and A is
called a parent of B; the notation parents(B) refers to the sequence of parent nodes of B.
Each node A has an associated conditional probability distribution, CPD, P (A | parents(A)).

For many applications of BNs, the CPDs are given in the form of tables, but since the
random variables in our case range over huge sets of alternative annotations, this is infeasible,
and we use probabilistic models instead.

I Definition 4. A Bayesian annotation network (BAN) is a set of probabilistic annotation
models {Mi | i = 1, . . . , n}, with Mi = 〈mi(s, ai, parentsi), θi〉, numbered in such a way that
parentsi ⊆ {a1, . . . , ai−1}.
The model Mn is a designated top model, and it is assumed that the parent relationship
induces a path from any other Mi to Mn.

A BAN in itself is not a BN, but it induces a BN in the following way.
Nodes are labelled ai, i = 1, . . . , n and s.
Whenever aj ∈ parentsi, there is an edge from aj to ai, and there is an edge from s to
any ai.
The CPD associated with ai is given by the model Mi, i.e., P (ai | s, parentsi, θi).

For ease of terminology, we refer to a suitable set of annotation programs as a BAN, when
below, we talk about training a BAN, i.e., finding parameters such that it actually becomes
a BAN, as per the present definition. When presenting a BAN as a graph, we typically leave
out s and the n edges going out from it. When doing predictive inference below, the sequence
is always fixed, so we can leave it out, assuming instead a particular BN for each sequence.

4 Predictive inference

Predictive inference refers here to the process of identifying a best proposal for top output
annotation that characterizes a given sequence. The fundamental assumption when using
probabilistic models is that quality of a solution is intimately coupled to its probability,
in other words, we should be searching for a top output annotation with a relatively high
probability, ideally the one with highest probability.

Below, we give first a precise, declarative characterization of the best top output annota-
tion, and then an approximative calculation method which, under certain circumstances,
may reduce computational complexity drastically. Examples and detailed arguments for this
claim will be given later.

We assume a BAN {Mi | i = 1, . . . , n} with Mi = 〈mi(s, ai, parentsi), θi〉 and a fixed
sequence s0 to be analysed. We use Θ to refer to the set of all parameters in the BAN,
{θ1, . . . , θn}. Considering the BAN as an entire model, we can describe the best solution as
follows.

idealn(s0,Θ) =def argmax
an

P (an | s0,Θ)

where the term inside the argmax can be unfolded as follows.

P (an | s0,Θ) =
∑

〈a1,...,an−1〉

P (a1, . . . , an | s0,Θ) (1)

=
∑

〈a1,...,an−1〉

n∏
i=1

P (ai | s0, parentsi, θi) (2)

Henning Christiansen, Christian Theil Have, Ole Torp Lassen and Matthieu Petit 223

Standard methods for reasoning in Bayesian networks, see, e.g., [6], is of very little use here
due to the unmanageable size of the random variables’ outcome spaces, which in practice are
impossible to iterate over.

We are not aware of any reasonable way to reduce this formula, although we do not have
a formal proof that this is not possible. Instead, we propose an approximative, iterative
algorithm that fixes one particular best annotation ai = approxi(s0,Θ) for each sub-model
and applies it subsequently in the prediction of those aj with ai ∈ parents(aj).

approxi(s0,Θ) = argmax
ai

P (ai | s0, approxparentsi
(s0,Θ),Θ), i = 1, . . . , n (3)

where approxparentsi
(s,Θ), for some sequence s, stands for the sequence of parent annotations

approxj(s,Θ) for all aj ∈ parentsi.

Specifically, we take approxn(s0,Θ) as an approximated value for idealn(s0,Θ); the possible
conditions under which this may be considered a good approximation will be discussed among
our conclusions, section 8.

Notice, that there is no circularity in this definition and approxn(· · ·) can be calculated
in a single sweep calculating approx1(· · ·), approx2(· · ·), . . . in that order. The “argmax” in
(3) may be calculated by existing algorithms as we demonstrate below.

In practical applications of our methodology, we expect the number of sub-models in a
BAN to be a relatively small number (say, arbitrarily, < 10), but lengths of sequences and
their annotations are expected to be huge. Measured in sequence length, the complexity
of approximate prediction with the entire BAN coincides with the complexity for the most
complex sub-model.

5 Training the network

In order to obtain the probabilistic parameters Θ for a BAN, we rely on existing training
algorithms for supervised learning, e.g., as built into the PRISM system [7], [17]. Such
algorithms require a sufficiently large and representative collection of ground atoms for each
sub-model, each representing a sequence with its correct annotation, which in our motivating
application domain means annotations verified in the lab by the biologists.

To this end, we assume the availability of some state-of-the-art training algorithm
T supervised , described as a function mapping a particular program together with its training
data into a parameter. Notice that we are not interested here in the actual details of how
the training algorithm works.

For doing supervised training of any sub-model in a BAN, we need in principle ground data
that exemplifies the relation between sequence, parent annotations, and output annotation.
We define, thus, a conditional training data set for program mi as a set

CTDi = {mi(sj
i , a

j
i , parentsj

i) | j = 1, . . .}.

It is called “conditional” since it includes parent annotations parentsj
i for each output

annotation aj
i .

In practice, however, we cannot expect such conditional training sets always be available
as this assumes that the signals represented by the different sub-models has been analyzed
consistently for the same set of sequences. In other words, we can only assume that the
following sorts of training data are available in a more traditional format without explicit
parent annotations.

TDi = {〈sj
i , a

j
i 〉 | j = 1, . . .}

ICLP 2011

224 Bayesian Annotation Networks for Complex Sequence Analysis

However, if we train the different models one by one in the order M1, M2, . . ., we can use
the already trained models to supply parent annotations. We can thus specify an iterative
BAN training algorithm as follows.

θi = T supervised(mi, CTDi)

where

CTDi = {m(sj
i , a

j
i , approxparentsj

i
(sj

i , {θ1, . . . , θi−1})) | 〈sj
i , a

j
i 〉 ∈ TDi}

There is no circularity in these equations which may be evaluated in one sweep θ0, θ1,
This strategy can be adapted to handle cases where training data TDi are unavailable for

some non-top model Mi, i.e., i < n. Here we may use unsupervised training, or even set the
parameters manually, and still hope for good results. It is not essential that model Mi is a
faithful mirror of some physically measurable signal (call this M true

i): the necessary property
is whether Mi represents some annotation that can help the models Mj of which Mi is a
parent to discriminate the details of the sequence under consideration. To see this, notice
that such an Mj consistently applies annotations produced by Mi (rather than M true

i) for
its own training and prediction.

We postulate the following rule of thumb for checking the relevance of a specific model
Mi within a given BAN.

(*) – Whether a model Mi contributes an interesting signal to Mj can be checked by inspection
of the parameter to check whether different values for ai provide any significant variation
in the magnitude of P (aj | s0, a1, . . . , ai, . . . , aj−1).1

However, we expect that models designed according to biological expert knowledge, that
are trained using a sufficient set of authoritative data, and whose position in the hierarchy
is based on the same biological expert knowledge, will have the best chance to constitute
an interesting signal according to (*). In case of a biologically justified model, for which
sufficient amounts of data are available, it will be natural also to check it with standard
precision and recall methods.

We can summarize some of the practical consequences of these arguments as follows.
Mi may for reasons of performance, or to avoid over-training, be programmed in a rather
coarse way, which gives only a very rough approximation of Mi.
We may introduce an arbitrary sub-model in a BAN, be it based on only little or no
biological insights; it may be trained unsupervised or the parameter may be set by hand,
and we can apply (*) to check whether it is of any use.
We may introduce alternative models for the same biological signal, and use another
model as a voting mechanism to combine the different signals and check its contribution
according to (*).
Having a collection of candidate sub-models, we can experiment with different topologies
for dependencies, and validate it internally according to (*) as well as using precision and
recall tests for the top model.

We will discuss some these points below in relation to our experiments.

1 For a trained PRISM model, we may compare the different conditional msw probabilities produced by
the training of Mj .

Henning Christiansen, Christian Theil Have, Ole Torp Lassen and Matthieu Petit 225

6 Implementation in PRISM – the LoSt Framework

The methodology described so far is supported by an implementation built on top of the
PRISM system [16], which is a probabilistic extension to Prolog which provides a wide range
of learning and prediction algorithms.

In this section, we first explain our own system, called the LoSt-framework [9], which
is basically a collection of scripts that control the ordering of different runs of PRISM for
prediction and training plus a file management system that keeps track of the different
models, their parameters, the connections that tie them together to a BAN as well as all
data files involved (catalogues of sequences, training data, files of predicted annotations,
etc.). We also show a simplified, implemented example that illustrates different aspects of
our methodology.

6.1 Embedding BANs in PRISM
The PRISM system [16] realizes a probabilistic extension to Prolog and is equipped with a
comprehensive collection of facilities for prediction and training.

The PRISM language extends Prolog with so-called multi-valued switches: a call
msw(name, X) represents a probabilistic choice of a value to be assigned to X.2 The se-
mantics of a PRISM program is given as a probabilistic Herbrand model, determined by a
parameter which is a file of probability declarations for the individual switches. For this
semantics to be well-defined, any choice point in the program must be governed by an msw.

The program part of a sub-model m(s, a, parents) may be represented by a PRISM
program with a main predicate

m(s, a, parents)

where parents are a arguments corresponding to the number of parents of mi. A typical
sequence model is implemented as a recursive predicate which relates the s and a arguments
in a probabilistic fashion conditioned by given parent annotations and involving myriads of
msw calls.

PRISM contains algorithms for training based on suitable generalizations of EM learning
and Variational Bayesian learning [17] which can be used for both supervised and unsupervised
learning; the LoSt environment keeps track of training data and generated parameter files
for the individual sub-models.

Prediction using a PRISM program, representing a trained sub-model, can be performed
using one of PRISM’s generalized Viterbi algorithms. Specifically, we use a minor extension
to PRISM, described in [3], which makes it possible to analyse longer sequences in reasonable
time. The following call,

S= · · · , A1= · · · , A2= · · · , viterbiAnnot(m(S,A,A1,A2, · · ·)),

will instantiate A to the annotation that provides the highest probability of the goal
m(S,A,A1,A2, · · ·), thus implementing the argmax in equation (3) above.

The scripts in the LoSt environment implement the correct ordering of sub-model pro-
cessing as prescribed by our incremental prediction and training algorithms described in
sections 4 and 5 above, however, avoiding computations that have been made before and
whose results are available on files.

2 To be exact, a switch introduced by a declaration values(name, [· · · outcomes · · ·]) defines a family
of random variables, one for each execution of msw(name, · · ·) in a program run.

ICLP 2011

226 Bayesian Annotation Networks for Complex Sequence Analysis

6.2 Example: Gene-finding in DNA

We illustrate our methodology showing experiments with BANs that represent gene-finders
for DNA sequences. A piece of DNA is a sequence of letters {a, c, g, t}; it can be viewed as a
sequence of triplets, each called a codon. Codons are separated into specific start-codons,
stop-codons and other codons; a gene is a specific subsequence matching the codon structure
such that it must begin with a start codon and it will definitely end at the next stop-codon;
such a syntactic pattern is called an open reading frame (ORF). Our BAN models are
designed to annotate ORFs, where the annotation task is to find out whether an ORF
contains a gene and, if so, where in the sequence the gene starts.

We define sub-models for different signals — codon preference, gene length and conserva-
tion — which are are expected to have influence on whether a sequence is a gene or not. The
resulting annotation from such models is a sequence that for each position in the original
sequence contains a 1 if the position is predicted as part of a gene and a 0 if it is not.

All our probabilistic models are output HMMs with a gene-state and a non-gene state,
which can emit symbols of the annotations of the parent nodes. The transitions between the
states reflect the described ORF pattern.

The codon preference model m1 reflects preferential codon usage in the gene and non-gene
state. The states can each emit one of the 64 possible codons.

The gene length annotation is obtained by using a deterministic model m2 that annotates
each potential start codon with a symbol representing the distance to the upstream stop
codon.

Conservation describes a degree to which the codons of a DNA sequence are conserved
across species. To detect conservation, each ORF matched to a database of genome sequences
of distantly related organisms 3 using the tblastn tool, which produce a gapped alignment
of the matches. Only statistically significant matches (evalue < 10−34) and only one match
per organism are reported. The conservation model m3 emits identity positions of reported
matches to ORFs.

In the following we discuss and assess a number of BAN topologies built using these three
signals as basic building blocks. The considered models are m1, m3, m1 conditioned on
m2 – m1(m2), m1 conditioned on m3 – m1(m3), and m1 conditioned on both m2 and
m3 – m1(m2,m3).

We train and predict on the well-annotated Escherischia Coli genome and its curated
gene annotations from refseq (NC_000913). We have randomly divided the ORFs of the
genome into a training and a test set. Supervised training is done using only the former and
the method for supervised training algorithm described in section 5. We report prediction
accuracy results for both sets. Accuracy is measured as Sensitivity(SN) = T P

T P +F N and
Specificity(SP) = T P

T P +F P , with respect to annotation of start and stop codons. The results
are summarized in table 1.

It can be observed from table 1 that all our models have good generalization capabilities,
since the performance is very similar on both the training and test set.

The best model seems to be m1(m2), which achieve a significant increase in specificity
with only slightly degraded sensitivity, e.g. it predicts fewer genes but its predictions are
more reliable. By them selves, both m1 and m3 have reasonable stop specificity, but m3 has
consistent tendency to predict too long genes, leading to severely decreased start specificity.

3 The sequences are from refseq: NC_004547, NC_008800, NC_009436, NC_009792, NC_010067,
NC_010694 and NC_011283.

Henning Christiansen, Christian Theil Have, Ole Torp Lassen and Matthieu Petit 227

Table 1 Accuracy of predictions using different BAN topologies.

Training set (114429 ORFs, 2075 genes) Test set (114404 ORFs, 2065 genes)
BAN SNstart SPstart SNstop SPstop SNstart SPstart SNstop SPstop

m1 0.7701 0.2935 0.9711 0.3701 0.7564 0.2920 0.9719 0.3751
m3 0.0636 0.0322 0.8255 0.4183 0.0140 0.0072 0.8412 0.4298

m1(m2) 0.6723 0.5011 0.9345 0.6965 0.6489 0.4896 0.9433 0.7117
m1(m3) 0.4405 0.2243 0.8255 0.4204 0.4315 0.2216 0.8416 0.4323

m1(m2,m3) 0.4361 0.2228 0.8255 0.4217 0.4174 0.2149 0.8416 0.4333

Interestingly, conditioning m1 on the conservation additional signal m3 does not improve
prediction accuracy much. It does lead to slightly better stop specificity but it tends to
degrade the start specificity. Additionally, conditioning on the length signal as done in
m1(m2,m3) does not seem to help, even though the impact observed in m1(m2) was quite
significant. It seems that the m3 signal dominates decisions about which ORFs should be
predicted as coding. This effect is apparent from model parameters and it is possible to get
an intuition of the problem from inspection of the prediction accuracies.

The m3 model has a (stop) false negative rate of 1− SPstop = 1− 0.4183 ≈ 0.58. The
vast majority of ORFs ∼ 98% does not contain genes. The probability that an ORF contains
a gene but m3 classifies it as non-gene is thus relatively small, 1− 0.98× 0.58 ≈ 0.11. In the
conditional distribution defined by m1(m3) (given predictions of m3), it becomes virtually
impossible for the viterbi algorithm to classify an ORF as a gene if m3 has not, since the
probability of the gene hypothesis is scaled by ∼ 0.11 and the non-gene hypothesis by ∼ 0.89.

Part of the explanation is that maximizing the likelihood of observed data (as we do
in training) is not equivalent to maximizing prediction accuracy; it may have an adverse
effect when selecting predictions as most probable explanations as done by the viterbi
algorithm. An other part of the explanation is in our model assumptions; namely, m1(m3)
is an output HMM that has joint emissions of both codon and the signal from m3, and
these are dominated by m3 as explained above. Alternative HMM structures with different
constraints and independence tradeoffs might avoid the dominating effect of m3. We are
still investigating how this is best done.

7 Related work

Our method is closely related to Dynamic Bayesian Networks (DBNs) of [10]. By our
definition of a BAN, the detailed dependencies between individual models in the network are
left abstract, but a concrete instantiation of a BAN may indeed be a DBN. However, as the
nodes in a BAN may be arbitrary probabilistic models, for instance context-free grammars,
not all BAN instantiations can be represented as DBNs. Oppositely, we only define BANs
for discrete models but DBNs may include continuous-valued nodes.

In the realm of classification techniques, it is common to combine the results of different
classifiers of the same phenomena in ways such that the combined classifications outperform
the individual constituent classifiers. Such methods are generally known by the name
ensemble methods, which covers a wide range of different ways to the combine classifiers
[14]. Our method is related but quite different; this is not just because we consider sequence
annotation rather than classification, but also because constituent models of a BAN may
model very different phenomena.

In biological sequence analysis, the most successful genome annotation programs are

ICLP 2011

228 Bayesian Annotation Networks for Complex Sequence Analysis

combiners [4]; programs which combines different sources of annotation evidence using some
sort of weighting scheme. Evidence may come in diverse forms, including comparative
analysis sources [12], but are typically predictions (e.g. annotations) from other annotation
programs (e.g. gene finders). Brent [1] makes a distinction between combiners and joint
models, where joint models are described as models which consider the full joint probability
distributions evidence and combiners as probabilistic models of the the relative accuracy of
evidence sources they are combining. Using our approximate inference algorithm we have a
situation similar to combiners in that predictions of parents are combined by child nodes.

While many combiners use non-probabilistic combinations methods, several are explicitly
based on principles of (dynamic) Bayesian networks [11, 8]. A main difference is that our
framework allows multi-layered and branching topologies where the combiners are usually
just single layered probabilistic models.

Our approach also has analogies to annotation pipelines [13, 2] where a complex sequence
of analysis steps are performed in a possibly branching topology and perhaps synthesized (e.g.
by a combiner) in a final annotation as the last step. Opposed to combiners, such pipelines
usually allows complex topologies like our framework. However, such pipelines are usually
just practical and pragmatic ways of combining existing tools and incorporate probabilistic
modeling only to a very limited degree.

There are other declarative approaches to combining evidence in biological sequence
analysis. In GAZE [5], a configurable XML-based specification describes a particular
composition of evidence sources. However, GAZE integrates existing tools, where our PRISM
based approach allows for much more modelling flexibility and have clear and well-defined
semantics.

8 Conclusions

We have proposed a Bayesian framework, Bayesian Annotation Networks, which allows the
representation and composition of models for complex sequence analysis. In a modular way,
it supports experimentation with and evaluation of models and signals and it is a practically
useful tool for modeling and analyzing sequences. In particular, its applicability to biological
sequence analysis has been motivated. We have shown that reasonable complexity can be
achieved by the use of tractable, incremental algorithms for inference and training, which
can be implemented by successive calls to PRISM, and shown that these algorithms may
produce useful annotations.
In general, we have no good analytical or sampling-based principles for analyzing the quality
of the approximated annotations compared with the ideal ones. By assumption, the ideal
annotations provided by a BAN for a given sequence is too complex to be evaluated, so we
need to rely on standard validation techniques based on authoritative test data. However,
we will list a few observations which may be used as guidelines.
The crux in our approximate inference algorithm is, in each iteration step, to select a most
probable annotation approxi for each annotation node ai and take it as a representative for
the distribution of all possible ai values. In the detailed calculations, this means that we use
P (aj | s, · · · approxi · · ·), for some aj with ai ∈ parentsj , as a replacement of a weighted sum
over all possible ai values of P (aj | s, · · · ai · · ·).
In the trivial case, where all freedom of choice is implemented in the top node of the Bayesian
Network, the approximate algorithm coincides to the ideal. Beyond the trivial case, however,
it is difficult (impossible in general) to give sufficient conditions for which the approximate
inference method will yield good results.

Henning Christiansen, Christian Theil Have, Ole Torp Lassen and Matthieu Petit 229

The relation between the quality of an annotation and its probability is assumed implied by
the purpose of a probabilistic annotation model; e.g. it should assign high probability to good
annotations. In our definitions of BANs, we define a child model to be dependent on its parent
model. In a concrete BAN, however, individual models typically have more fine grained
interdependencies, e.g. enforce their inherent independence assumptions. If these assumptions
are not faithful to the actual data dependencies, a discordance between annotation quality
and probability may arise. Similarly, in the case of approximate inference, we are concerned
in particular with the degree of validity of the assumption about independence of parent
distributions given the most probable individual elements of those distributions.
Perhaps surprisingly, the annotation quality achieved by the approximate method may
be positively affected by correlation between assumed independent nodes of the network.
Redundant (correlated) signals does not generally result in better annotations, if the ideal
inference method is used. However, such overlapping signals may indeed compensate for the
information lost due to the (possibly) unjustified independence assumptions imposed by the
approximation method or inherent in constituent models. For instance, information contained
in the distribution of a particular parent node, but not reflected by the best annotation from
that distribution, may be reflected through the best annotation of some other (correlated)
parent.
In practice, we are satisfied with the approximation if the annotations are judged as good
using an external measure of quality (e.g. sensitivity/specificity) and we have used cross-
validation to build confidence about generality, as demonstrated in section 6.2. Obviously,
this may require a considerable amount of, possibly unavailable, labelled training data. A
second consequence, also observed in section 6.2, is that the measure optimized by the
training algorithm does not necessarily coincide with the external measure of quality. Model
constraints and independence assumptions play a key role affecting the correlation between
these measures.

References
1 Michael R Brent. Steady progress and recent breakthroughs in the accuracy of automated

genome annotation. Nature Reviews Genetics, 9(1):62–73, 2008.

2 Brandi L Cantarel, Ian Korf, Sofia M C Robb, Genis Parra, Eric Ross, Barry Moore, Carson
Holt, Alejandro Sánchez Alvarado, and Mark Yandell. MAKER: an easy-to-use annotation
pipeline designed for emerging model organism genomes. Genome Research, 18(1):188–196,
2008.

3 Henning Christiansen and John Gallagher. Non-discriminating Arguments and their Uses.
In Logic Programming, 25th International Conference, ICLP 2009, Lecture Notes in Com-
puter Science 5649, pages 55–69. Springer, 2009.

4 Roderic Guigó, Paul Flicek, Josep F Abril, Alexandre Reymond, Julien Lagarde, France De-
noeud, Stylianos Antonarakis, Michael Ashburner, Vladimir B Bajic, Ewan Birney, Robert
Castelo, Eduardo Eyras, Catherine Ucla, Thomas R Gingeras, Jennifer Harrow, Tim Hub-
bard, Suzanna E Lewis, and Martin G Reese. EGASP: the human ENCODE Genome
Annotation Assessment Project. Genome Biology, 7(Suppl 1):S2, 2006.

5 Kevin L Howe, Tom Chothia, and Richard Durbin. GAZE: A Generic Framework for
the Integration of Gene-Prediction Data by Dynamic Programming. Genome Research,
12(9):1418–1427, 2002.

6 Finn V. Jensen and Thomas D. Nielsen. Bayesian Networks and Decision Graphs. Springer,
2 edition, 2007.

ICLP 2011

230 Bayesian Annotation Networks for Complex Sequence Analysis

7 Yoshitaka Kameya and Taisuke Sato. Efficient em learning with tabulation for parameter-
ized logic programs. In John W. Lloyd, Verónica Dahl, Ulrich Furbach, Manfred Kerber,
Kung-Kiu Lau, Catuscia Palamidessi, Luís Moniz Pereira, Yehoshua Sagiv, and Peter J.
Stuckey, editors, Computational Logic, volume 1861 of Lecture Notes in Computer Science,
pages 269–284. Springer, 2000.

8 Qian Liu, Aaron J Mackey, David S Roos, and Fernando C N Pereira. Evigan: a hidden
variable model for integrating gene evidence for eukaryotic gene prediction. Bioinformatics,
24(5):597–605, 2008.

9 LoSt. The lost project, 2007. http://lost.ruc.dk.

10 K P Murphy. Dynamic bayesian networks. Probabilistic graphical models,
41(November):515–29, 2003.

11 Vladimir Pavlović, Ashutosh Garg, and Simon Kasif. A Bayesian framework for combining
gene predictions. Bioinformatics, 18(1):19–27, 2002.

12 Maria S. Poptsova and J. Peter Gogarten. Using comparative genome analysis to identify
problems in annotated microbial genomes. Microbiology, 156(7):1909–1917, 2010.

13 Simon C Potter, Laura Clarke, Val Curwen, Stephen Keenan, Emmanuel Mongin, Stephen
M J Searle, Arne Stabenau, Roy Storey, and Michele Clamp. The Ensembl Analysis
Pipeline. Genome Research, 14(5):934–941, 2004.

14 Lior Rokach. Ensemble-based classifiers. Artificial Intelligence Review, 33(1-2):1–39, 2009.

15 Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall
Series In Artificial Intelligence. Prentice Hall, 2003.

16 Taisuke Sato. Generative Modeling by PRISM. Proceedings of the International Conference
on Logic Programming, LNCS 5649:24–35, 2009.

17 Taisuke Sato, Yoshitaka Kameya, and Kenichi Kurihara. Variational Bayes via proposi-
tionalized probability computation in PRISM. Annals of Mathematics and Artificial Intel-
ligence, 54(1-3):135–158, 2009.

	Introduction
	Probabilistic Annotation Models
	Organizing Annotation Models as a Bayesian Network
	Predictive inference
	Training the network
	Implementation in PRISM – the LoSt Framework
	Embedding BANs in PRISM
	Example: Gene-finding in DNA

	Related work
	Conclusions

