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Abstract
This paper begins with recent work by Kuan, MacQueen, and Findler, which shows how standard
type systems, such as the simply typed lambda calculus, can be viewed as abstract reduction
systems operating on terms. The central idea is to think of the process of typing a term as
the computation of an abstract value for that term. The standard metatheoretic property of
type preservation can then be seen as a confluence problem involving the concrete and abstract
operational semantics, viewed as abstract reduction systems (ARSs).

In this paper, we build on the work of Kuan et al. by showing show how modern ARS
theory, in particular the theory of decreasing diagrams, can be used to establish type preservation
via confluence. We illustrate this idea through several examples of solving such problems using
decreasing diagrams. We also consider how automated tools for analysis of term-rewriting systems
can be applied in testing type preservation.1
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1 Introduction

The central idea of this paper is to view typing as an abstract operational semantics, and
then study its interaction with concrete operational semantics using the theory of abstract
reduction systems (ARSs). This idea was already proposed by Kuan, MacQueen, and Findler
in 2007 [10]. They did not, however, use modern tools of term-rewriting theory in their
study. Ellison et al. also explored a similar rewriting approach to type inference, but again
without applying term-rewriting theory for the metatheory [7] (also [9]). In contrast, we
seek to apply powerful tools from term-rewriting theory to prove standard metatheoretic
properties of type systems.

Like Kuan et al., we view typing as abstract reduction, and consider types to be abstract
forms of the values produced by reduction. For example, the concrete term, λx : int.x
reduces to the abstract value int ⇒ int. Reduction is defined on mixed terms, which
contain both (standard) concrete terms, and partially abstract ones. We show that the
combined relation consisting of both abstract and concrete reduction is confluent, for typed
terms. Kuan et al. also claim this result, but their proof sketch appeals to the standard
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1 An extended version of this paper, including proofs of Theorems 2.1 and 5.1, is available at http:
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metatheoretic property of Type Preservation. In contrast, we prove confluence directly using
decreasing diagrams, and show how this then implies the standard metatheoretic property of
Type Preservation.

The contribution of this paper is to show how type preservation, cast as a confluence
problem, can be solved using the tools of abstract reduction systems and term-rewriting.
This provides an alternative proof method for establishing type preservation for programming
languages. Having alternative methods is, of course, valuable in its own right, but we will see
that the rewriting approach is qualitatively simpler than the traditional one, and arguably
more intuitive. This may enable shorter and simpler proofs of type preservation for other
systems, as we consider further in the Conclusion.

We begin (Section 2) by developing the approach in detail for a straightforward example,
namely call-by-value Simply Typed Lambda Calculus (STLC). We consider next several
variations on this, including extending STLC with a fixed-point combinator (Section 3),
adding polymorphism (Section 4), and implementing type inference (Section 5). Kuan et al.
also considered type inference, but did not make the connection which we identify, that type
inference from the rewriting perspective corresponds to narrowing, rather than rewriting.
These first systems we consider can all can be analyzed using a very simple labeling for the
decreasing diagrams argument. We conclude with a trickier example, namely simply typed
combinators with uniform syntax (i.e., no syntactic distinction between terms and types) in
Section 6. We show how automated term-rewriting tools can be used to partially automate
the proof of type preservation.

2 A Rewriting View of Simple Typing

This section demonstrates the proposed new approach, for the example of STLC. While
our focus in this paper is Type Preservation, we also consider the standard Progress and
Type Safety properties. For Progress, it is instructive to include reduction rules for some
selected constants (a and f below), so that there are stuck terms that should be ruled out
by the type system. Otherwise, in pure STLC, every closed normal form is a value, namely a
λ-abstraction. We see how to view a type-computation (also called type-synthesis) system
for STLC as an abstract operational semantics, and type preservation as a form of confluence
for the combination of the abstract and the standard concrete operational semantics. We
first recapitulate the standard approach to the definitions.

We use several standard notations in this paper. For an abstract reduction relation
→, we define →= as its reflexive closure, →+ as its transitive closure, and →∗ as its
reflexive-transitive closure.

2.1 Syntax and Semantics
The syntax for terms, types, and contexts is the following, where f and a are specific
constants, and x ranges over a countably infinite set of variables:

types T ::= A | T1 ⇒ T2
standard terms t ::= f | a | x | t1 t2 | λx : T.t
contexts Γ ::= · | Γ, x : T

We assume standard additional conventions and notations, such as [t/x]t′ for the capture-
avoiding substitution of t for x in t′, and E[t] for grafting a term into a context. Figure 1
defines a standard type system for STLC, which can be viewed as deterministically computing
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Γ(x) = T

Γ ` x : T Γ ` f : A⇒ A Γ ` a : A

Γ ` t1 : T2 ⇒ T1 Γ ` t2 : T2
Γ ` t1 t2 : T1

Γ, x : T1 ` t : T2
Γ ` λx : T1. t : T1 ⇒ T2

Figure 1 Type-computation rules for simply typed lambda calculus with selected constants

E[(λx : T. t) v] → E[[v/x]t]

E[f a] → E[a]

values v ::= λx : T.t | a | f
evaluation contexts E ::= ∗ | (E t) | (v E)

Figure 2 A call-by-value small-step operational semantics

a type T as output, given a term t and a typing context Γ as inputs. A standard small-step
call-by-value (CBV) operational semantics is defined using the rules of Figure 2.

As mentioned above, we are including constants so that the Progress theorem is not
trivial. These constants are a and f , with the reduction rule Ec[fa]→c Ec[a]. Using these
constants we can also construct stuck terms, such as ff , which we demonstrate are ill-typed
in the proof of Progress. An example concrete reduction is (with redexes underlined):

(λx : (A→ A).x (x a)) f →c f (f a) →c f a →c a

2.2 Basic Metatheory
The main theorem relating the reduction relation → and typing is Type Preservation,
which states:

(Γ ` t : T ∧ t → t′) ⇒ Γ ` t′ : T

The standard proof method is to proceed by induction on the structure of the typing
derivation, with case analysis on the reduction derivation (cf. Chapters 8 and 9 of [12]).
A separate induction is required to prove a substitution lemma, needed critically for type
preservation for β-reduction steps:

Γ ` t : T ∧ Γ, x : T ` t′ : T ′ ⇒ Γ ` [t/x]t′ : T ′

One also typically proves Progress:

(· ` t : T ∧ t 6→) ⇒ ∃v. t = v

Here, the notation t 6→ means ∀t′. ¬(t → t′); i.e., t is a normal form. Normal forms which
are not values are called stuck terms. An example is f f . Combining Type Preservation and
Progress allows us to prove Type Safety [19]. This property states that the normal forms
of closed well-typed terms are values, not stuck terms, and in our setting can be stated:

(· ` t : T ∧ t →∗ t′ 6→) ⇒ ∃v. t′ = v

This is proved by induction on the length of the reduction sequence from t to t′.

RTA’11
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types T ::= A | T1 ⇒ T2
standard terms t ::= x | λx : T. t | t t′ | a | f
mixed terms m ::= x | λx : T.m | m m′ | a | f |

A | T ⇒ m

standard values v ::= λx : T.t | a | f
mixed values u ::= λx : T.m | T ⇒ m | A | a | f

Figure 3 Syntax for STLC using mixed terms

Ec[f a] →c Ec[a]
c(f-β)

Ec[(λx : T.m) u] →c Ec[[u/x]m]
c(β)

Ea[(T ⇒ m) T ] →a Ea[m]
a(β)

Ea[λx : T.m] →a Ea[T ⇒ [T/x]m]
a(λ)

Ea[f ] →a Ea[A⇒ A]
a(f)

Ea[a] →a Ea[A]
a(a)

mixed evaluation contexts Ec ::= ∗ | (Ec t) | (u Ec)
abstract evaluation contexts Ea ::= ∗ | (Ea m) | (m Ea) | λx : T.Ea | T ⇒ Ea

Figure 4 Abstract and concrete operational semantics for STLC

2.3 Typing as Abstract Operational Semantics
To view typing as an abstract form of reduction, we use mixed terms, defined in Figure 3.
Types like T1 ⇒ T2 will serve as abstractions of λ-abstractions. Figure 4 gives rules
for concrete (→c) and abstract (→a) reduction. We denote the union of these reduction
relations as →ca. The definition of abstract evaluation contexts makes abstract reduction
nondeterministic, as reduction is allowed anywhere inside a term. This is different from
the approach followed by Kuan et al., where abstract and concrete reduction are both
deterministic. Here is an example reduction using the abstract operational semantics:

λx : (A⇒ A). λy : A. (x (x y)) →a

λx : (A⇒ A). A ⇒ (x (x A)) →a

(A⇒ A) ⇒ A ⇒ ((A⇒ A) ((A⇒ A) A)) →a

(A⇒ A) ⇒ A ⇒ ((A⇒ A) A) →a

(A⇒ A) ⇒ A ⇒ A

The final result is a type T . Indeed, using the standard typing rules of Section 2.1, we
can prove that the starting term of this reduction has that type T , in the empty context.
Abstract reduction to a type plays the role of typing above.

If we look back at our standard typing rules (Figure 1), we can now see them as essentially
big-step abstract operational rules. Recall that big-step CBV operational semantics for
STLC is defined by:

t1 ⇓ λx : T.t′1 t2 ⇓ t′2 [t′2/x]t′1 ⇓ t′

t1 t2 ⇓ t′
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In our setting, this would be concrete big-step reduction, which we might denote ⇓c. The
abstract version of this rule, where we abstract λ-abstractions by arrow-types, is

t1 ⇓a T ⇒ T ′ t2 ⇓a T

t1 t2 ⇓a T ′

If we drop the typing context from the typing rule for applications (from Figure 1), we obtain
essentially the same rule.

The standard approach to proving type preservation relates a small-step concrete opera-
tional semantics with a big-step abstract operational semantics (i.e., the standard typing
relation). We find it both more elegant, and arguably more informative to relate abstract
and concrete small-step relations, as we will do in the next section.

I Theorem 2.1 (Relation with Standard Typing). For standard terms t, we have x1 :
T1, · · · , xn : Tn ` t : T iff [T1/x1, · · · , Tn/xn]t→∗a T .

See the companion technical report for the proof [14].

I Theorem 2.2 (Termination of Abstract Reduction). The relation →a is terminating.

Proof. Whenever m→a m
′, the following measure is strictly decreased from m to m′: the

number of occurrences of term constructs (listed in the definition of terms) which are not
also type constructs (listed in the definition of types) and which occur in the term. Term
constructs of STLC which are not also type constructs are constants, variables, λ-abstractions,
and applications. End proof.

2.4 Type Preservation as Confluence
The relation →ca is not confluent in general, as Kuan et al. note also in their setting. It is,
however, confluent if restricted to typable terms, which are mixed terms m such that m→∗a T
for some type T . We will make use here of the standard notion of confluence of an element
with respect to a binary relation →: m is confluent (with respect to →) iff for all m1 and
m2 such that m2 ←∗ m→∗ m1, there exists m̂ such that m1 →∗ m̂←∗ m2. In this section,
we prove the following result:

I Theorem 2.3 (Confluence of combined reduction). Every typable mixed term is confluent
with respect to the reduction relation →ca.

We obtain the following as an obvious corollary, noting that types T are in normal form (so
joinability of m′ and T becomes just reducibility of m′ to T ):

I Theorem 2.4 (Type Preservation). If m→∗a T and m→∗c m′, then m′ →∗a T .

We can phrase this result already in terms of multistep concrete reduction, while as described
above, the standard approach to type preservation is stated first for single-step reduction,
and then extended inductively to multistep reduction. Theorem 2.4 can also be phrased in
terms of standard typing, using Theorem 2.1.

We prove Theorem 2.3 by a simple application of decreasing diagrams [17]. Recall that the
main result of the theory of decreasing diagrams is that if every local peak can be completed
to a locally decreasing diagram with respect to a fixed well-founded partial ordering on
labeled steps in the diagram, then the ARS is confluent. A locally decreasing diagram has
peak s1 ←α t→β s2 and valley of the form

s1 →∗gα→=
β→∗(gα)∪(gβ) t̂←

∗
(gα)∪(gβ)←

=
α←∗gβ s2

RTA’11
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where gα denotes the set of labels strictly smaller in the fixed well-founded ordering than α,
and if A is a set of labels, then →A denotes the relation

⋃
α∈A →α.

For Theorem 2.3, we label every step m→c m
′ with c, and every step m→a m

′ with a,
using the label ordering a < c . We must prove that every local peak starting with a typable
term can be completed to a locally decreasing diagram. Since →c is deterministic (due to
the restrictions inherent in the definition of reduction contexts Ec), we must only consider
local peaks of the form m1 ←a m→a m2 (we will call these aa-peaks) and m1 ←a m→c m2
(ac-peaks). For the first, we have the following theorem:

I Theorem 2.5. The relation →a is confluent.

Proof. In fact, we can prove that→1 has the diamond property (i.e., (←a · →a) ⊆ (→a · ←a),
which is well-known to imply confluence). Suppose m →a m1 and m →a m2. No critical
overlap is possible between these steps, because none of the redexes in the a-rules of Figure 4
(such as (T ⇒ m) T in the a(β) rule) can critically overlap another such redex. If the
positions of the redexes in the terms are parallel, then (as usual) we can join m1 and m2
by applying to each the reduction required to obtain the other. Finally, we must consider
the case of non-critical overlap (where the position of one redex in m is a prefix of the other
position). We can also join m1 and m2 in this case by applying the reduction to mi which
was used in m→a m3−i, because abstract reduction cannot duplicate or delete an a-redex.
The only duplication of any subterm in the abstract reduction rules of Figure 4 is of the type
T in a(λ). The only deletion possible is of the type T in a(β). Since types cannot contain
redexes, there is no duplication or deletion of redexes. This means that if the position of the
first redex is a prefix of the second (say), then there is exactly one descendant (see Section
4.2 of [15]) of the second redex in m1, and this can be reduced in one step to join m1 with
the reduct of m2 obtained by reducing the first redex. So every aa-peak can be completed
with one joining step on each side of the diagram (and local decreasingness obviously holds).
This gives the diamond property and thus confluence for →a. J

We return now to the rest of the proof of Theorem 2.3, and consider the ac-peaks.
There are only two possibilities. First, we could have the a-redex at a position parallel to
the position of the c-redex. In this case, the diagram can be appropriately completed by
commuting the steps. Second we could have the a-redex inside a subterm of the c-redex.
There are four simple situations, and one somewhat more complex situation. The first two
simple situations are that the a-redex is inside m or inside mixed value u, respectively, where
the redex is (λx : T.m) u. In the first case, the peak is

Ec[(λx : T.m′) u] ←a Ec[(λx : T.m) u] →c Ec[[u/x]m]

The required valley is just:

Ec[(λx : T.m′) u] →c Ec[[u/x]m′] ←a Ec[[u/x]m]

The right joining step is justified because abstract reduction is closed under substitution.
The labels on the single joining sides are as required for local decreasingness. In the second
simple situation, the peak is:

Ec[(λx : T.m) u′] ←a Ec[(λx : T.m) u] →c Ec[[u/x]m]

The required valley is:

Ec[(λx : T.m) u′] →c Ec[[u′/x]m] ←∗a Ec[[u/x]m]
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Here, the labels on the right joining path are all less than the label on the right edge of the
peak, satisfying the requirement for local decreasingness. Note that the left joining step
would not be possible if we had phrased concrete reduction using just standard terms: we
need to apply the c(β) rule with mixed value u, which might not be a standard value. Also,
we require the following easily proved lemma (proof omitted), to conclude that contracting
the a-redex in u indeed results in a new value u′:

I Lemma 2.6. If u→∗a m then m is also a mixed value.

The second two simple situations involve f a. First:

Ea[(A⇒ A) a]←a Ea[f a]→c Ea[a]

The joining valley, which is again locally decreasing because its labels are less than c, is:

Ea[(A⇒ A) a]→a Ea[(A⇒ A) A]→a Ea[A]←a Ea[a]

Second:

Ea[f A]←a Ea[f a]→c Ea[a]

The joining valley is:

Ea[f A]→a Ea[(A⇒ A) A]→a Ea[A]←a Ea[a]

Finally, the more complicated case is shown in Figure 5. Since the term at the peak is
typable, we know that u →∗a T1. This is because abstract reduction cannot eliminate an
application from a term, except via a(β): no abstract reduction rule can erase a term. So we
know that u→∗a T1, or else the application displayed at the peak could not be eliminated by
abstract reduction.

Considering the diagram in Figure 5, we see that again, the labels in the joining steps are
all less than the label on the right edge of the peak. So the condition for local decreasingness
is satisfied. Note that the bottom-right joining step, from Ec[[u/x]m] to Ec[[T1/x]m] requires
nondeterminism of →a (and if x 6∈ Vars(m), is just an identity step). It would not hold if
abstract reduction were restricted to the abstract analog of call-by-value concrete reduction,
as done by Kuan et al. We have proved the following, which suffices by the theory of
decreasing diagrams to prove Confluence (Theorem 2.3):

I Lemma 2.7 (Local Decrease for Type Diagrams). Every local peak of →ac can be completed
to a locally decreasing diagram.

We can complete the basic metatheory for STLC by proving:

I Theorem 2.8 (Progress). If standard term t is closed, t →∗a T , and t 6→c, then t is a
concrete standard value.

Proof. The only possibility for a closed standard term that is a normal form of →c other
than a standard value is a stuck term Ec[d t], where t is a c-normal form and either d ≡ a, or
else d ≡ f and t 6≡ a. Let d t be the smallest such stuck term in Ec[d t]. The term Ec[d t] has
an a-normal form (by Theorem 2.2), which must contain a descendant of d t. This is because,
as already noted, our abstract reduction rules drop an expression only if it is a type (rule
a(β)). Also, abstract reduction cannot contract a descendant of f t itself, which we argue
by cases on the form of f t (call this term t̂). If t̂ ≡ a t, then for some m, t̂ a-normalizes to

RTA’11
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Ec[(λx : T1.m) u]

Ec[(T1 ⇒ [T1/x]m) u] Ec[[u/x]m]
a c

Ec[(T1 ⇒ [T1/x]m) T1]

Ec[[T1/x]m]

since u→∗a T1

a *

since u→∗a T1
a *

a

Figure 5 Crucial locally decreasing diagram for STLC

A m, which is still a descendant of t̂. If t̂ ≡ f f , then t̂ a-normalizes to (A⇒ A) (A⇒ A)
(also still a descendant). If t̂ ≡ f λx : T.t, then t̂ a-normalizes to (A ⇒ A) (A ⇒ m) for
some m. This shows that a descendant of d t must still be contained in the a-normal form of
t ≡ Ec[d t], contradicting t→∗a T . J

We then obtain the final result as a direct corollary of Theorems 2.4 and 2.8.

I Theorem 2.9 (Type Safety). If standard term t is closed, t→∗a T , and t→∗c t′ 6→c, then t′
is a concrete value.

The development in this section compares favorably with the standard one, which requires
an induction proof for type preservation, another for the additionally required substitution
lemma, and a final one for Type Safety. In contrast, here all that was required was to analyze
ac-peaks for local decreasingness (the aa-peaks being easily joinable in one step) in order to
establish Type Preservation. That analysis is both more local and more informative, as it
gives a more direct insight into how the (small-step) process of abstracting a term to its type
relates to the small-step operational semantics.

3 STLC with a Fixed-Point Combinator

We may easily extend the results of the previous section to include a fixed-point combinator
fix. This is a standard example, which enables now possibly diverging concrete reductions.
The approach using decreasing diagrams easily adapts to this new situation. Figure 6 shows
the additions to the syntax of STLC. The proof of Termination of Abstract Reduction
(Theorem 2.2) goes through exactly as stated above, since fix is a term construct but not
a type construct, and our new abstract reduction for fix-terms again reduces the number
of occurrences of term constructs which are not type constructs. For Local Decrease for
Type Diagrams (Lemma 2.7), there is still no critical overlap between a-steps, and no
possibility of erasing or duplicating a redex, so →a still has the diamond property. The
simple ac-peaks are easily completed, similarly to the simple ones for STLC. We must then
just consider this new ac-peak:

Ec[(T ⇒ T ) [T/f ]m)←a Ec[fix f : T.m]→a Ec[[fix f : T.m/f ]m]
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(standard) terms t ::= . . . | fix f : T. t
(mixed) terms m ::= . . . | fix f : T.m
abstract evaluation contexts Ea ::= . . . | fix f : T.Ea

Ec[fix f : T.m] →c Ec[[fix f : T.m/f ]m] Ea[fix f : T.m] →a Ea[(T ⇒ T ) [T/f ]m]

Figure 6 Extending STLC with a fixed-point combinator

types T ::= . . . | α | ∀α.T
standard terms t ::= . . . | Λα.t | t@T
mixed terms m t ::= . . . | Λα.m | m@T | ∀α.m
standard values v ::= . . . | Λα.t
mixed values u ::= . . . | Λα.m | ∀α.m

Figure 7 Polymorphism syntactic extensions

This can be completed as follows:

L. Ec[(T ⇒ T ) [T/f ]m]→∗a Ec[(T ⇒ T ) T ]→a Ec[T ]
R. Ec[[fix f : T.m/f ]m]→∗a Ec[[((T ⇒ T ) [T/f ]m)/f ]m]→∗a Ec[[T/f ]m]→∗a Ec[T ]

Here, several steps use [T/f ]m→∗a T , which holds because the term at the peak is typable.
This diagram is again locally decreasing. We conclude Confluence (Theorem 2.3) as above.
There are no possible additional stuck terms, so Progress (Theorem 2.8) is trivially extended,
allowing us to conclude Type Safety (Theorem 2.9).

4 Adding Polymorphism

In this section, we extend STLC with System-F style polymorphism. Figures 7 and 8 show
the additional syntax, evaluation contexts, and reduction rules. At the term level, we add
syntax for type abstraction (Λ), type application (t@t), and type variables α. At the type
level, we add universally quantified types ∀α. T . As is standard practice, concrete reduction
now includes a β-like rule for eliminating type applications of type abstractions. The abstract
reduction relation has a similar rule for type applications of universal types, and also a rule
for computing a universal type from a type abstraction.

The argument for Termination of Abstraction Reduction (Theorem 2.2) is extended
easily, since the two new →a rules, a(Λ) and a(βT ), again strictly decrease the number of
occurrences of terms which are not types. We can extend the proof of Local Decrease
for Type Diagrams (Lemma 2.7) by considering new →ac peaks. As before, these can be
separated into cc, aa, and ac cases. As with the STLC case, the →c relation is deterministic,
so there are no cc peaks. There are no critical overlaps between →a steps, and again no
possibility to erase or duplicate a redex. So we maintain the diamond property for aa-peaks.
A c-redex of the form (Λx. t)@T gives rise to a possible ac-peak, where a-reduction occurs
under the Λ:

Ec[(Λα.m′)@T ] ←a Ec[(Λα.m)@T ]→c Ec[[T/α]m]

RTA’11
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Ec[(Λα.m)@T ] →c Ec[[T/α]m]
c(βT )

Ea[(∀α.m)@T ] →a Ea[[T/α]m]
a(βT )

Ea[Λα.t] →a Ea[∀α.t]
a(Λ)

mixed evaluation contexts Ec ::= . . . | (Ec @ T ) | (u @ Ec)
abstract evaluation contexts Ea ::= . . . | (Ea m) | ((∀α.m)@ Ea)

Figure 8 Polymorphism operational semantics extensions

As with the STLC, a-reduction is closed under substitution, so this peak can be completed
as shown:

Ec[(Λα.m′)@T ] →c Ec[[T/α]m′]←a Ec[[T/α]m]

The grammar for the polymorphic language requires that all type-level applications contain
a proper type T in the argument position, so there does not exist a ac-peak analagous to the
STLC ac-peak where an a-step occurs in the argument subterm of a c-redex. There is only
one critical overlap, due to the a(Λ) and c(βT ) rules,

Ec[(∀α.m)@T ]←a Ec[(Λα.m)@T ]→c Ec[[T/α]m]

This can be completed with a single c-reduction:

Ec[(∀α.m)@T ]→c Ec[[T/α]m]←=
c Ec[[T/α]m]

This completes the proof for Local Decrease of Type Diagrams.
Finally, the proof of Progress for STLC is extended by considering a few new stuck

terms. These are terms of the form a@T and f@T , which reduce to non-type a-normal forms
A@T and (A⇒ A)@T , respectively, contradicting Progress’s assumption of typability. Also,
we could have a Λα.m or f Λα.m, but these reduce respectively to non-type a-normal forms
A ∀α.m′ and (A ⇒ A) ∀α.m′, for some m′. We again conclude Type Safety.

5 Type Inference for STLC

We can modify STLC reduction rules to allow us to infer, rather than check, the type of
STLC terms where type annotations are omitted for λ-bound variables. Inferring simple
types is a central operation in ML-style type inference. The central idea is to base abstract
reduction on narrowing, rather than just rewriting. Our focus in this paper is the use of
confluence to prove type safety, and not necessarily the efficient implementations of the
resulting reduction system. Nevertheless, we believe that abstract reduction systems can
serve as the basis for efficient implementation, as demonstrated by Kuan [11] for similar
reduction systems.

Figure 9 shows the grammar of STLC-inf. In this language, λ-bound variables do not
have type annotations, as they will be inferred. The syntax of types now includes type
variables αi, which may be instantiated by narrowing.

Using narrowing, we can define the abstract reduction system shown in Figure 9 to infer
the types of terms. In the a(β) rule, we calculate the most general unifier of the function
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types T ::= T ⇒ T | αi | A
standard terms t ::= x | t t′ | λx.t | a | f
mixed terms m ::= x | m m′ | λx.m | a | f | T ⇒ m| A | αi
standard values v ::= a | f | λx.t
mixed values u ::= a | f | λx.m | T ⇒ u | A
mixed evaluation contexts Ec ::= ∗ | (Ec m) | (u Ec)
abstract evaluation contexts Ea ::= ∗ | (Ea m) | (m Ea) | T ⇒ Ea | αi Ea

Ec[(λx.m)u] →c Ec[[u/x]m]
c(β)

αi /∈ FV (Ea[λx.m])
Ea[λx.m] →a Ea[αi ⇒ [αi/x]m]

a(λ)

σ is mgu(T1, T2)
Ea[(T1 ⇒ m)T2] →a σ(Ea[m])

a(β)
Ea[f ]→a Ea[A⇒ A]

a(f)

αj /∈ FV (Ea[αi T ])
Ea[αi T ]→a [(T ⇒ αj)/αi](Ea[αj ])

a(gen)
Ea[a]→a Ea[A]

a(a)

ρ is a permutation of type variables
t→a ρ t

a(rename)

Figure 9 Type Inference Syntax and Semantics

type’s domain and the argument, and apply it to the entire term, including the evaluation
context. This contrasts with the rules we have seen in previous systems presented in this
paper, where substitutions are applied only to the focus of the evaluation context. We
assume for all rules that introduce new type variables that they do so following a fixed order.
We include the rule a(rename) to avoid non-confluence due to different choices of new type
variables in the rules a(gen) and a(λ).

The following theorem relates STLC-inf typing to STLC typing. The erasure of an STLC
term, |t|, drops type annotations from λ bindings, producing an STLC-inf term.

I Theorem 5.1 (Relation with STLC Typing). If t→∗a T , where T contains free type variables
α1, ..., αn, then for all types T1, ...Tn, there exists a term t′ in STLC such that t′ →∗a
[T1/α1, ...Tn/αn]T in STLC and |t′| = t.

The complete proof can be found in the Appendix of the expanded technical report.
We extend the metatheoretic results to STLC-inf as follows. We no longer have Ter-

mination of Abstract Reduction, due to a(rename). This does not impact subsequent
results, as aa-peaks are still joinable in one step. The ac-peak depicted in Figure 5 is adapted
to account for the inference of types for λ-bound variables, as shown in Figure 10. The
completion of the a reduction relies on the assumption that the generated type variable α is
not free in the original term.

Because the a(β) rule uses narrowing to compute λ-bound variable types, it is possible to
generate aa-peaks when a polymorphic function is used at multiple monotypes. Consider the
following reduction resulting in a mixed term:

(λg.λx.λy.λh.h (g x) (g y)) (λw.w) f a →+
a αh(αg(A⇒ A))(αgA)

We can reduce this latter term to the following distinct stuck terms, depending on which
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Ec[(λx.m) u]

Ec[[u/x]m]

c

Ec[[T/x]m]

since u→a T

a

Ec[(α⇒ [α/x]m) u]

a

Ec[(α⇒ [α/x]m) T ]

since u→a T
a

[T/α]Ec[[α/x]m]
a

since α /∈ FV (Ec[(λx.m)u])
a

Figure 10 Crucial locally decreasing diagram for STLC-inf

mixed terms t ::= S〈t1, t2, t3〉 | K〈t1, t2〉 | t1 t2 | t1 ⇒ t2 | A | kind(t1, t2)
mixed values u ::= S〈t1, t2, t3〉 | K〈t1, t2〉 | A | t1 ⇒ t2
concrete evaluation contexts Ec ::= ∗ | Ec t | u Ec

Figure 11 Uniform-STLC language syntax and evaluation contexts

application of αg we contract with the a(gen) rule first:

αh ((A⇒ αj) (A⇒ A)) αj αh αj (((A⇒ A) ⇒ αj) A)

But we are proving Confluence only for typeable terms t →∗a T . So such peaks can be
disregarded. We conclude Confluence and then Type Preservation as above. The proof
of Progress is adapted directly from STLC, as the changes in STLC-inf do not essentially
affect the form of stuck terms. So we can conclude Type Safety.

6 Simply Typed Combinators with Uniform Syntax

In this section, we consider a language, which we call Uniform-STC, that does not distinguish
terms and types syntactically. Advanced type systems like Pure Type Systems must often
rely solely on the typing rules to distinguish terms and types (and kinds, superkinds, etc.) [4].
In Uniform-STC, we explore issues that arise in applying the rewriting approach to more
advanced type systems. We must now implement kinding (i.e., type checking of types) as part
the abstract reduction relation. We adopt a combinatory formulation so that the abstract
reduction relation can be described by a first-order term-rewriting system.

Figure 11 shows the syntax for the Uniform-STC language. There is a single syntactic
category t for mixed terms and types, which include a base type A and simple function types.
S〈t1, t2, t3〉 and K〈t1, t2〉 are the usual combinators, indexed by terms which determine their
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c(β-S). Ec[S〈t1, t2, t3〉 u u′ u′′]→c Ec[u u′′ (u′ u′′)]

c(β-K). Ec[K〈t1, t2〉 u u′]→c Ec[u]

a(S). S〈t1, t2, t3〉 →a kind(t1, kind(t2, kind(t3, (t1⇒t2⇒t3)⇒(t1⇒t2)⇒(t1⇒t3))))
a(K). K〈t1, t2〉 →a kind(t1, kind(t2, (t1 ⇒ t2 ⇒ t1)))
a(β). (t1 ⇒ t2) t1 →a kind(t1, t2)
a(k-⇒). kind((t1 ⇒ t2), t)→a kind(t1, kind(t2, t))
a(k-A). kind(A, t)→a t

Figure 12 Concrete and abstract reduction rules

simple types. The kind construct for terms is used to implement kinding. The rules for
concrete and abstract reduction are given in Figure 12. The concrete rules are just the
standard ones for call-by-value reduction of combinator terms. For abstraction reduction, we
are using first-order term-rewriting rules (unlike for previous systems).

For STLC (Section 2), abstract β-redexes have the form (T ⇒ t) T . For Uniform-STC,
since there is no syntactic distinction between terms and types, abstract β-redexes take the
form (t1 ⇒ t2) t1, and we must use kinding to ensure that t1 is a type. This is why the
a(β) rule introduces a kind-term. We also enforce kinding when abstracting simply typed
combinators S〈t1, t2, t3〉 and K〈t1, t2〉 to their types. The rules for kind-terms (a(k-⇒) and
a(k-A)) make sure that the first term is a type, and then reduce to the second term.

Following our general procedure, we wish to show that every local peak at a typable term
can be completed to a locally decreasing diagram. Here, we define typability by value u to
mean abstract reduction to u where u is kindable, which we define as kind(u,A)→∗a A. This
definition avoids the need to define types syntactically.

Abstract reduction for Uniform-STC does not have the diamond property, non-left-linear
rule a(β), where there could indeed be redexes in the expressions matching the repeated
variable t1. Fortunately, abstract reduction can be automatically analyzed for termination:
Aprove reports that it can be shown terminating using a recursive path ordering [8]. This
means that we can use van Oostrom’s source-labeling heuristic for a-steps [18]. We label
steps as follows:

label(m→c m
′) = c label(m→a m

′) = (a,m)

Steps are then ordered by the relation � defined by:

∀m.c � (m, a) ∀m,m′.m→+
a m

′ ⇔ (m, a) � (m′, a)

The abstract reduction rules are non-overlapping. The aa-peaks which occur can all be joined
using either one a-step on either side as for STLC, or else using additional balancing steps if
one of the rules applied is a(β). In the latter case, the diagram is still decreasing due to the
termination of abstract reduction.

But we can actually use even a simpler argument for aa-peaks. The automated confluence
prover ACP reports that the abstract reduction relation is confluent [2]. So by completeness
of decreasing diagrams for countable relations (recalled in [18] from van Oostrom’s PhD
thesis), there must exist a labeling of abstract reduction steps that allows all aa-peaks to
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be completed to locally decreasing diagrams. We can then extend this labeling to include c
(labeling c-steps), with c bigger in the extended ordering than all the labels of a-steps.

With this ordering (or the source-labeling), we then have the following locally decreasing
diagram (the one for c(β-S) is similar and omitted), where t̂ is (t1 ⇒ t2 ⇒ t1) and u is
kind(t1, kind(t2, ∗)):

P. Ec[u[(t̂ t t′)]]←a Ec[(K〈t1, t2〉 t t′)]→a Ec[t]
L. Ec[u[(t̂ t t′)]]→∗a Ec[u[(t̂ t1 t′′)]]→a Ec[u[((t2 ⇒ t1) t′′)]]→∗a

Ec[u[((t2 ⇒ t1) t2)]]→a Ec[kind(t1, kind(t2, t1))]→∗a Ec[t1]
R. Ec[t]→∗a Ec[t1]

The →∗a-steps are justified because the peak term (shown on line (P)) is assumed to be
typable. By confluence of abstract reduction, this implies that the sources of all the left
steps are also typable. For each →∗a-step, since abstract reduction cannot drop redexes
(as all rules are non-erasing), we argue as for STLC that a descendant of the appropriate
displayed kind-term or application must eventually be contracted, as otherwise, a stuck
descendant of such would remain in the final term. Kindable terms cannot contain stuck
applications or stuck kind-terms, because our abstract reduction rules are non-erasing. And
contraction of those displayed kind-terms or applications requires the reductions used for
the →∗a-steps, which are sufficient to complete the diagram. The diagram is again locally
decreasing because the c-step from the peak is greater than all the other steps in the diagram.
We thus have Confluence of ac-reduction for typable terms, and the following statement of
type preservation (relying on our definition above of typability):

I Theorem 6.1 (Type Preservation). If t has type t1 and t→c t
′, then t′ also has type t1.

As an aside, note that a natural modification of this problem is out of the range of ACP,
version 0.20. Suppose we are trying to group kind-checking terms so that we can avoid
duplicate kind checks for the same term. For this, we may wish to permute kind-terms, and
pull them out of other term constructs. The following rules implement this idea, and can be
neither proved confluent nor disproved by ACP, version 0.20. Just the first seven rules are
also unsolvable by ACP.

(VAR a b c A B C D)
(RULES

S(A,B,C) -> kind(A,kind(B,kind(C,
arrow(arrow(arrow(A,arrow(B,C)),arrow(A,B)),arrow(A,C)))))

K(A,B) -> kind(A,kind(B,arrow(A,arrow(B,A))))
app(arrow(A,b),A) -> kind(A,b)
kind(base,a) -> a
kind(arrow(A,B),a) -> kind(A, kind(B, a))
kind(A,kind(A,a)) -> kind(A,a)
kind(A,kind(B,a)) -> kind(B,kind(A,a))
app(kind(A,b),c) -> kind(A,app(b,c))
app(c,kind(A,b)) -> kind(A,app(c,b))
arrow(kind(A,b),c) -> kind(A,arrow(b,c))
arrow(c,kind(A,b)) -> kind(A,arrow(c,b))
kind(kind(a,b),c) -> kind(a,kind(b,c))

)

7 Conclusion

We have seen how to use decreasing diagrams to establish confluence of a reduction relation
combining concrete reduction (the standard operational semantics) with abstract reduction,
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which can be thought of as a small-step typing relation. Type Preservation is then an
immediate corollary of confluence. We have applied this to several example type systems.
We highlight that we are able to cast type inference as a form of narrowing, and that for
first-order systems, we can apply termination and confluence checkers to automate part of
the proof of type preservation.

For future work, the approach should be applied to more advanced type systems. De-
pendent type systems pose a particular challenge, because from the point of view of abstract
reduction, Π-bound variables must play a dual role. When computing a dependent function
type Πx : T. T ′ from an abstraction λx : T.t, we may need to abstract x to T , as for STLC;
but we may also need to leave it unabstracted, since with dependent types, x is allowed to
appear in the range type T ′. We conjecture that this can be accommodated by substituting
a pair (x, T ) for x in the body of the λ-abstraction, and then choosing either the term or
type part of the pair depending on how the pair is used.

It would be interesting to try to use the rewriting method to automate type preservation
proofs completely. While the Programming Languages community has invested substantial
effort in recent years on computer-checked proofs of properties like Type Safety for program-
ming languages (initiated particularly by the POPLmark Challenge [3]), there is relatively
little work on fully automatic proofs of type preservation (an example is [13]). The rewriting
approach could contribute to filling that gap.

Our longer term goal is to use this approach to design and analyze type systems for
symbolic simulation. In program verification tools like Pex and KeY, symbolic simulation
is a central component [5, 16]. But these systems do not seek to prove that their symbolic-
simulation algorithms are correct. Indeed, the authors of the KeY system argue against
expending the effort to do this [6]. The rewriting approach promises to make it easier to
relate symbolic simulation, viewed as an abstract reduction relation, with the small-step
operational semantics.
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