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Abstract
Unravelings are transformations from a conditional term rewriting system (CTRS, for short)
over an original signature into an unconditional term rewriting systems (TRS, for short) over
an extended signature. They are not sound for every CTRS w.r.t. reduction, while they are
complete w.r.t. reduction. Here, soundness w.r.t. reduction means that every reduction sequence
of the corresponding unraveled TRS, of which the initial and end terms are over the original
signature, can be simulated by the reduction of the original CTRS. In this paper, we show that
an optimized variant of Ohlebusch’s unraveling for deterministic CTRSs is sound w.r.t. reduction
if the corresponding unraveled TRSs are left-linear or both right-linear and non-erasing. We also
show that soundness of the variant implies that of Ohlebusch’s unraveling.
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1 Introduction

Unravelings are transformations from a conditional term rewriting system (CTRS, for short)
over an original signature into an unconditional term rewriting system (TRS, for short) over
an extended signature, that are complete for every CTRS w.r.t. the simulation of reduction
sequences of the CTRS [11], i.e., every reduction sequence of the CTRS can be simulated by
the reduction of the corresponding unraveled TRS. The unraveled TRSs are approximations
of the original CTRSs and they are useful in analyzing properties of the CTRSs, such as
syntactic properties, modularity and operational termination, since TRSs are much easier
to handle than CTRSs. Marchiori has proposed unravelings for join and normal CTRSs in
order to analyze ultra-properties and modularity of the CTRSs [11], and he has also proposed
an unraveling for deterministic CTRSs (DCTRS, for short) [12]. Ohlebusch has presented
an improved variant of Marchiori’s unraveling for DCTRSs in order to analyze termination
of logic programs [20]. Termination of the unraveled TRSs is a practical sufficient-condition
for proving operational termination of the original CTRSs [10]. A variant of Ohlebusch’s
unraveling for DCTRSs has been proposed in [14] and [4] (cf. [19, 18, 3]). This variant is
sometimes called optimized in the sense that the variable-carrying arguments of U symbols
introduced via the application of the unraveling are optimized.

Although the mechanism of unconditional rewriting is much simpler than that of condi-
tional rewriting, the reduction of the unraveled TRSs has never been used as an alternative
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to that of the original CTRSs in order to simulate reduction sequences of the CTRSs. This is
because unravelings are not sound for every CTRS w.r.t. reduction [11, 20]. Here, soundness
w.r.t. reduction (simply, soundness) means that every reduction sequence of the unraveled
TRSs, of which the initial and end terms are over the original signatures, can be simulated
by the reduction of the original CTRSs [11]. It has been shown that unravelings are sound if
the unraveled TRSs satisfy some syntactic properties or if appropriate reduction strategies
are introduced to the reduction of the unraveled TRSs. Marchiori has shown in [11] that
his unravelings for join and normal CTRSs are sound for left-linear ones, and he has also
shown in [12] that his unraveling for DCTRSs is sound for semi-linear DCTRSs. Nishida et
al. have shown in [19] that the combined reduction restriction of the membership [25] and
context-sensitive [9] conditions that are determined via the application of the optimized un-
raveling is sufficient for soundness. Schernhammer and Gramlich have shown in [23, 22] that
a similar context-sensitive restriction is sufficient for soundness of Ohlebusch’s unraveling.
Gmeiner et al. have shown in [5] that Marchiori’s unraveling for normal CTRSs is sound for
confluent, non-erasing or weakly left-linear ones. They have also given a discussion what
properties are necessary or sufficient for soundness.

In this paper, we show two sufficient syntactic-conditions of DCTRSs for soundness
of the optimized unraveling. One is ultra-left-linearity w.r.t. the unraveling, i.e., that the
unraveled TRSs are left-linear. The other is the combination of ultra-right-linearity and
ultra-non-erasingness w.r.t. the unraveling, i.e., that the unraveled TRSs are right-linear
and non-erasing. We also provide necessary and sufficient syntactic-conditions of DCTRSs
in which the corresponding unraveled TRSs are left-linear, right-linear and non-erasing,
respectively. Finally, we show that soundness of the optimized unraveling implies that of
Ohlebusch’s unraveling, i.e., if the optimized one is sound for a DCTRS, then Ohlebusch’s
one is also sound for the DCTRS. A main difference to the preliminary version [17] is the
result on the relationship with Ohlebusch’s unraveling.

The optimized unraveling in this paper is employed in the inversion compilers for con-
structor TRSs [14, 19, 18]. The compilers transform a constructor TRS into a DCTRS
defining inverses of functions defined in the constructor TRS and then unravel it into a
TRS (see Example 3.3). The resulting TRS may have extra variables since the interme-
diate DCTRS may have extra variables that occur in the right-hand side but not in the
conditional part. For this reason, this paper allows TRSs to have extra variables (called
EV-TRS). It is allowed to instantiate extra variables with arbitrary terms in applying re-
write rules. Since many instantiated terms of extra variables are meaningless and sometimes
cause non-termination, we focus on meaningful derivations by giving a restriction to reduc-
tion sequences of the resulting TRS. The restriction, called EV-basicness [16, 14, 17], is a
relaxed variant of the basicness property [7, 13] of reduction sequences: if a TRS has extra
variables, then any redex introduced by extra variables is not reduced anywhere in reduc-
tion sequences. Roughly speaking, in applying the inversion compilers, the resulting TRS is
often right-linear (left-linear, resp.) if the input constructor TRS is left-linear (right-linear,
resp.). Moreover, the resulting TRS is usually non-erasing if the target function is injective.
Note that injective functions are the most interesting targets of program inversion. For
these reasons, the sufficient conditions shown in this paper are very practical because they
guarantee that the resulting TRS is definitely an inverse of the given constructor TRS.

As described above, Ohlebusch’s unraveling is sound for any DCTRS if we introduce
the particular context-sensitive restriction to the reduction of the corresponding unraveled
TRSs. However, characterizing sufficient syntactic-properties for soundness without the
restriction to the reduction is important for the use of the unraveled TRSs instead of the
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original CTRSs since the context-sensitivity makes the reduction more complicated than
the ordinary reduction. Moreover, if the unraveling is sound for the resulting TRS obtained
by the inversion compilers [14, 19, 18] without context-sensitivity, then we can apply the
restricted completion [15] to the resulting TRS in order to make it convergent. Note that
when the target of the inversion compilers are injective functions, convergence of the resulting
TRSs is desirable. For these reasons, soundness of unravelings without any restriction to
the reduction is important in employing the reduction of the unraveled TRSs instead of that
of the original CTRSs.

Finally, we briefly describe a related work that is not mentioned above. Serbanuta and
Rosu have proposed a sound and complete transformation of left-linear or ground-confluent
DCTRSs into TRSs where function symbols in the original signatures are completely ex-
tended, increasing their arities [24]. Their transformation is based on Viry’s approach [26]
that is another direction of developing transformations of CTRSs to TRSs. Rules produced
by this transformation are much more complicated than those produced by unravelings.
Moreover, it is not easy to know if DCTRSs are ground-confluent.

This paper is organized as follows. In Section 2, we review basic notions and notations
of term rewriting. In Section 3, we review unravelings for DCTRSs and syntactic properties
related to DCTRSs and the corresponding unraveled TRSs. In Section 4, we show the main
results of this paper, i.e., the optimized unraveling for DCTRSs is sound if the corresponding
unraveled TRSs are left-linear or both right-linear and non-erasing. We also show that these
results hold for Ohlebusch’s unraveling. In Section 5, we briefly describe future work on
soundness of unravelings.

2 Preliminaries

In this section, we review basic notions and notations of term rewriting [2, 21].
Throughout the paper, we use V as a countably infinite of variables. Let F be a signature,

a finite set of function symbols each of which has its own fixed arity that is denoted by ar(f)
for a function symbol f . The set of terms over F and V is denoted by T (F ,V), and the set
of variables appearing in any of terms t1, · · · , tn is denoted by Var(t1, · · · , tn). The identity
of terms s and t is written by s ≡ t. A term is called linear if any variable occurs in the term
at most once. The set of positions of a term t is denoted by Pos(t). The sets of positions for
function symbols and for variables in t are denoted by PosF (t) and PosV(t), respectively.
For a term t and a position p of t, the notation t|p represents the subterm of t at the position
p. The function symbol at the root position ε of term t is denoted by root(t). Given an n-hole
context C[ ] with parallel positions p1, · · · , pn, the notation C[t1, · · · , tn]p1,··· ,pn represents
the term obtained by replacing each occurrence of hole � at position pi with term ti for all
1 ≤ i ≤ n. We may omit the subscription p1,··· ,pn . For positions p and p′ of a term, we write
p′ ≥ p if p is a prefix of p′ (i.e., there exists a q′ such that pq = p′). Moreover, we write p′
> p if p is a proper prefix of p′.

The domain and range of a substitution σ are denoted by Dom(σ) and Ran(σ), respect-
ively. We may denote σ by {x1 7→ t1, · · · , xn 7→ tn} if Dom(σ) = {x1, · · · , xn} and σ(xi)
≡ ti for all 1 ≤ i ≤ n. For a signature F , the set of substitutions whose domains are over
F and V is denoted by Sub(F ,V): Sub(F ,V) = {σ | Ran(σ) ⊆ T (F ,V)}. The application
σ(t) of a substitution σ to a term t is abbreviated to tσ. Given a set X of variables, σ|X
denotes the restricted substitution of σ w.r.t. X: σ|X = {x 7→ xσ | x ∈ Dom(σ) ∩X}. The
composition σθ of substitutions σ and θ is defined as xσθ = (xσ)θ.

An oriented conditional rewrite rule over a signature F is a triple (l, r, c), denoted by
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l → r ⇐ c, such that the left-hand side l is a non-variable term in T (F ,V), the right-hand
side r is a term in T (F ,V), and the conditional part c is a sequence s1 � t1; · · · ; sk � tk
(k ≥ 0) where all of s1, t1 · · · , sk, tk are terms in T (F ,V). In particular, the rewrite rule
is called unconditional if the conditional part is the empty sequence (i.e., k = 0), and we
may abbreviate it to l → r. The rewrite rule is called extended if the condition “l 6∈ V”
is not imposed. We sometimes attach a unique label ρ to the rewrite rule l → r ⇐ c by
denoting ρ : l→ r ⇐ c, and we use the label to refer to the rewrite rule. The set of variables
in c and in ρ are denoted by Var(c) and Var(ρ), respectively: Var(s1 � t1; · · · ; sk � tk)
= Var(s1, t1, · · · , sk, tk) and Var(ρ) = Var(l, r, c). A variable occurring in r or c is called
an extra variables of the rule ρ if it does not occur in l. The set of extra variables of ρ is
denoted by EVar(ρ): EVar(ρ) = Var(r, c) \ Var(l).

An oriented conditional term rewriting system (CTRS, for short) over a signature F is a
finite set of oriented conditional rewrite rules over F . In particular, a CTRS is called an EV-
TRS if all of its rules are unconditional, and called an extended CTRS (eCTRS, for short)
if the condition “l 6∈ V” of conditional rewrite rules is not imposed. Moreover, a CTRS is
called an (unconditional) term rewriting system (TRS, for short) if every rule l → r ⇐ c in
it is unconditional and satisfies Var(l) ⊇ Var(r). Note that an eCTRS is called an eTRS if
all of its rules are unconditional. For an eCTRS R, the n-level reduction relation →(n),R of
R is defined as follows: →(0),R = ∅, and →(i+1),R = →(i),R ∪{(C[lσ]p, C[lσ]p) | ρ : l→ r ⇐
s1 � t1; · · · ; sk � tk ∈ R, s1σ →∗(i),R t1σ, · · · , skσ →∗(i),R tkσ} where i ≥ 0 and →∗(i),R is
the reflexive and transitive closure of→(i),R. The reduction relation of R is defined as→R =⋃
n≥0 →(n),R. To specify the applied rule ρ and the position p, we may write→ρ,p,R or→p,R

instead of→R. Moreover, we may write→>ε,R instead of→ρ,p,R or→p,R if p > ε. The join
relation ↓R is defined as ↓R = {(s, t) | ∃u. s→∗R u ∧ t→∗R u}. The parallel reduction ⇒R is
defined as ⇒R = {(C[s1, · · · , sn]p1,··· ,pn , C[t1, · · · , tn]p1,··· ,pn) | s1 →R t1, · · · , sn →R tn}.
We may write ⇒>ε,R instead of ⇒R if pi > ε for all 1 ≤ i ≤ pn.

An (extended) conditional rewrite rule ρ : l→ r ⇐ c is called left-linear (LL, for short) if
l is linear, called right-linear (RL, for short) if r is linear, called non-erasing (NE, for short)
if Var(l) ⊆ Var(r), called non-collapsing if the right-hand side r is not a variable, and called
non-left-variable (non-LV, for short) if l is not a variable. An eCTRS is called left-linear
(right-linear, non-erasing, non-collapsing, non-left-variable, resp.) if all of its rules are left-
linear (right-linear, non-erasing, non-collapsing and non-LV, resp.). Note that a non-LV
eCTRS is a CTRS (i.e., it is not an extended one).

An (extended) conditional rewrite rule ρ : l→ r ⇐ s1 � t1; · · · ; sk � tk is called determ-
inistic if Var(si) ⊆ Var(l, t1, · · · , ti−1) for all 1 ≤ i ≤ k. An eCTRS is called deterministic
(eDCTRS, for short) if all of its rules are deterministic. The rule ρ is classified according to
the distribution of variables in the rule as follows: Type 1 if Var(r, s1, t1, · · · , sk, tk) ⊆ Var(l),
Type 2 if Var(r) ⊆ Var(l), Type 3 if Var(r) ⊆ Var(l, s1, t1, · · · , sk, tk), and Type 4 otherwise.
An e(D)CTRS is called a 1-e(D)CTRS (2-e(D)CTRS 3-e(D)CTRS, and 4-e(D)CTRS, resp.)
if all of its rules are Type 1 (Type 2, Type 3 and Type 4, resp.).

3 Unraveling for DCTRSs

In this section, we first recall an unraveling for DCTRSs proposed by Ohlebusch and its
optimized variant. Then, we show some syntactic properties related to the unraveled TRSs.
The unravelings and some results are extended to eDCTRSs.

A computable transformation U from eCTRSs into eTRSs is called an unraveling if for
every eCTRS R, ↓R ⊆ ↓U(R) and U(T ∪ R) = T ∪ U(R) whenever T is an eTRS [11, 12].
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Note that a sufficient condition for ↓R ⊆ ↓U(R) is →R ⊆ →∗U(R). For an eDCTRS R over a
signature F , the unraveling U is called sound w.r.t. reduction (simulation-sound [17, 19], or
simply sound) if→∗U(R) ⊆ →

∗
R on T (F ,V)×T (F ,V) (i.e., for any terms s and t in T (F ,V),

s →∗U(R) t implies s →∗R t).
For a finite set A = {a1, · · · , an},

−→
A denotes the unique sequence a1, · · · , an of elements

in A, following some fixed ordering ≺ such that a1 ≺ · · · ≺ an.

I Definition 3.1 (unraveling U [20]). Let R be an eDCTRS over a signature F . For every
conditional rule ρ : l→ r ⇐ s1 � t1; · · · ; sk � tk in R, we prepare k fresh function symbols
Uρ1 , · · · , U

ρ
k , called U symbols, that do not appear in F . We transform ρ into a set U(ρ) of

k + 1 unconditional rewrite rules as follows:

U(ρ) = { l→ Uρ1 (s1,
−→
X1), Uρ1 (t1,

−→
X1)→ Uρ2 (s2,

−→
X2), · · · , Uρk (tk,

−→
Xk)→ r }

where Xi = Var(l, t1, · · · , ti−1). Note that U(l′ → r′) = {l′ → r′}. U is extended to
eDCTRSs (i.e., U(R) =

⋃
ρ∈R U(ρ)) and U(R) is an eTRS over the extended signature

FU(R) where FU(R) = F ∪ {Uρi | ρ : l→ r ⇐ s1 � t1; · · · ; sk � tk ∈ R, 1 ≤ i ≤ k}.

It is clear that →R ⊆ →∗U(R) and U(T ]R) = T ∪U(R) if T is unconditional. Thus, U is an
unraveling for eDCTRSs.

I Definition 3.2 (optimized unraveling Uopt [14, 4]). Let R be an eDCTRS over a signature
F . Introducing U symbols Uρ1 , · · · , U

ρ
k again, we transform ρ : l→ r ⇐ s1 � t1; · · · ; sk � tk

into a set Uopt(ρ) of k + 1 unconditional rewrite rules as follows:

Uopt(ρ) = { l→ Uρ1 (s1,
−→
X1), Uρ1 (t1,

−→
X1)→ Uρ2 (s2,

−→
X2), · · · , Uρk (tk,

−→
Xk)→ r }

where Xi = Var(l, t1, · · · , ti−1) ∩ Var(r, ti, si+1, ti+1, · · · , sk, tk). Note that Uopt(l′ → r′) =
{l′ → r′}. Uopt is extended to eDCTRSs (i.e., Uopt(R) =

⋃
ρ∈R Uopt(ρ)) and Uopt(R) is an

eTRS over the extended signature FUopt(R) where FUopt(R) = FU(R).

It is clear that Uopt is also an unraveling for eDCTRSs. Note that Xi in Definition 3.2
is the set of variables which appear in any of l, t1, · · · , ti−1 and also appear in any of
r, ti, si+1, ti+1, · · · , sk, tk, i.e., every variable in Xi is referred after si is considered. On
the other hand, Xi in Definition 3.1 is used for carrying all the variables that already ap-
pear. This is the only difference between U and Uopt and the reason why Uopt is sometimes
called an optimized variant of U. Note that all of the following are equivalent: R is in Type 3,
U(R) has no extra variable, and Uopt(R) has no extra variable.

I Example 3.3. Consider the following TRS defining addition and multiplication of natural
numbers encoded as 0, s(0), s(s(0)), · · · :

R1 =
{

0 + y→ y s(x) + y→ s(x + y)
0 × y→ 0 x × 0→ 0 s(x) × s(y)→ s((x × s(y)) +y)

}
This TRS is inverted to the following 4-DCTRS R2 [14, 19, 18] where +−1 and ×−1 are
function symbols that define the inverse relation of + and ×, respectively (i.e., +−1(sm+n(0))
→∗R2

tp2(sm(0), sn(0)) and ×−1(sm×n(0)) →∗R2
tp2(sm(0), sn(0))) and tp2 is a constructor

for representing tuples of two terms:

R2 =


+−1(y)→ tp2(0, y) +−1(s(z))→ tp2(s(x), y)⇐ +−1(z)� tp2(x, y)
×−1(0)→ tp2(0, y) ×−1(0)→ tp2(x, 0)

×−1(s(z))→ tp2(s(x), s(y))⇐ +−1(z)� tp2(w, y); ×−1(w)� tp2(x, s(y))
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This DCTRS is unraveled by U and Uopt as follows:

U(R2) =

+−1(y)→ tp2(0, y)
+−1(s(z))→ U1(+−1(z), z)

U1(tp2(x, y), z)→ tp2(s(x), y)
×−1(0)→ tp2(0, y)
×−1(0)→ tp2(x, 0)

×−1(s(z))→ U2(+−1(z), z)
U2(tp2(w, y), z)→ U3(×−1(w), z, w, y)

U3(tp2(x, s(y)), z, w, y)→ tp2(s(x), s(y))



Uopt(R2) =

+−1(y)→ tp2(0, y)
+−1(s(z))→ U1(+−1(z))

U1(tp2(x, y))→ tp2(s(x), y)
×−1(0)→ tp2(0, y)
×−1(0)→ tp2(x, 0)

×−1(s(z))→ U2(+−1(z))
U2(tp2(w, y))→ U3(×−1(w), y)

U3(tp2(x, s(y)), y)→ tp2(s(x), s(y))


Unravelings are not sound for every target (e)CTRS. The CTRS shown in the following

example is a counterexample against soundness of an unraveling proposed in [11], and also
of both U and Uopt.

I Example 3.4. Consider the following 3-DCTRS and its unraveled TRS:

R3 =
{

f(x)→ x⇐ x� e g(d, x, x)→ A a→ c b→ c c→ e k→ l
h(x, x)→ g(x, x, f(k)) d→m a→ d b→ d c→ l k→m

}
U(R3) = Uopt(R3) = { f(x)→ U4(x, x) U4(e, x)→ x · · · }

We have a reduction sequence of U(R3) from h(f(a), f(b)) to A but not a reduction sequence
of R3. Thus, neither U nor Uopt is sound for R3. We will observe the detail of the reduction
sequence in Subsection 4.1.

Soundness of U can be recovered by restricting the reduction of the unraveled TRSs to
the context-sensitive one [9] with the replacement mapping determined via the application of
U: U is sound for a 3-DCTRS R if the reduction of U(R) is restricted to context-sensitive re-
writing with the replacement mapping µ such that µ(Uρi ) = {1} for any U symbol Uρi [23, 22].
This holds for Uopt by restricting the context-sensitive reduction to one with the membership
constraints [25] that x ∈ T (F ,V) for any variable x appearing in the left-hand sides of rules
in Uopt(R) [19]. Soundness of Uopt requires a more complicated restriction than U requires.
From this viewpoint, Uopt does not look an “optimized” variant of U.

To analyze syntactic relationships between eDCTRS and the corresponding unraveled
eTRSs, we recall ultra-properties of DCTRSs [11, 12], extending them to eDCTRSs.

I Definition 3.5 (ultra-property [11, 12]). Let P be a property on (extended) conditional
rewrite rules, and U be an unraveling. An (extended) conditional rewrite rule ρ is said to be
ultra-P w.r.t. U (U -P, for short) if all the rules in U(ρ) satisfy the property P. An eDCTRS
R is said to be ultra-P w.r.t. U if all the rules in R are ultra-P.

For example, U-LL, U-RL and U-NE denote ultra-left-linear w.r.t. U, ultra-right-linear w.r.t.
U and ultra-non-erasing w.r.t. U, respectively, and Uopt-LL, Uopt-RL and Uopt-NE denote
ultra-left-linear w.r.t. Uopt, ultra-right-linear w.r.t. Uopt and ultra-non-erasing w.r.t. Uopt,
respectively. Note that ultra-left-linearity w.r.t. U is the same as the semi-linearity in [12].

I Example 3.6. The DCTRS R2 in Example 3.3 is non-LV and non-collapsing w.r.t. both
U and Uopt but R2 is not U-LL, U-RL or U-NE, while R2 is Uopt-RL and Uopt-NE but not
Uopt-LL.

The ultra-LL, ultra-RL and ultra-NE properties w.r.t. Uopt are characterized by syntactic
properties of DCTRSs as follows.
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I Lemma 3.7 ([14, 18]). Let ρ : l→ r ⇐ s1 � t1; · · · ; sk � tk be an extended deterministic
conditional rewrite rule. Then, all of the following hold:

ρ is Uopt-LL iff all of l, t1, · · · , tk are linear and Var(ti)∩Var(l, t1, · · · , ti−1) = ∅ for all
1 ≤ i ≤ k,
ρ is Uopt-RL iff all of r, s1, · · · , sk are linear and Var(si)∩Var(r, ti, si+1, ti+1, · · · , sk, tk)
= ∅ for all 1 ≤ i ≤ k, and
ρ is Uopt-NE iff Var(l) ⊆ Var(r, s1, · · · , sk) and Var(ti) ⊆ Var(r, si+1, · · · , sk, ) for all
1 ≤ i ≤ k.

The sufficient and necessary condition for the Uopt-NE property in Lemma 3.7 is equi-
valent to the one shown in [14, 18] that Var(l) ⊆ Var(r, s1, t1, · · · , sk, tk) and Var(ti) ⊆
Var(r, si+1, ti+1, · · · , sk, tk) for all 1 ≤ i ≤ k. Neither of the second nor third claims in
Lemma 3.7 holds for U (cf. Example 3.6), while the first one holds for U. Quite restricted
variants of the second and third claims hold for U.
I Lemma 3.8. Let ρ : l → r ⇐ s1 � t1; · · · ; sk � tk be an extended deterministic
conditional rewrite rule. Then, all of the following hold:

ρ is U-LL iff l, t1, · · · , tk are linear and Var(ti) ∩ Var(l, t1, · · · , ti−1) = ∅ for all 1 ≤ i

≤ k, (i.e., ρ is U-LL iff ρ is Uopt-LL),
ρ is U-RL iff r is linear and all of s1, · · · , sk are ground, and
ρ is U-NE iff Var(l, t1, · · · , tk) ⊆ Var(r).

By definition of U(ρ), it is clear that Lemma 3.8 holds. Due to Lemmas 3.7 and 3.8, we have
the following relationship between the ultra-RL and ultra-NE properties w.r.t. U and Uopt.
I Corollary 3.9. The U-RL and U-NE properties imply Uopt-RL and Uopt-NE, resp.

As for the non-collapsing and non-LV properties, we have the following relationships
between eDCTRSs and the corresponding unraveled eTRSs.
I Lemma 3.10. Let U be either U or Uopt, and ρ be an (extended) conditional rewrite rule.
Then, ρ is non-collapsing (non-LV, resp.) iff U(ρ) is non-collapsing (non-LV, resp.). Thus,
an eDCTRS R is non-collapsing (non-LV, resp.) iff U(R) is non-collapsing (non-LV, resp.).
By definition, it is clear that Lemma 3.10 holds. It follows from Lemma 3.10 that for both
U and Uopt, the non-LV and non-collapsing properties are equivalent to the ultra-non-LV
and ultra-non-collapsing properties, respectively.

4 Soundness without Context-Sensitivity

In this section, we first show that the unraveling Uopt is sound for a Uopt-LL DCTRS if
the reduction of the corresponding unraveled EV-TRS is restricted to EV-basic ones (see
Definition 4.2). Then, we show that Uopt is sound for DCTRSs that are both Uopt-RL and
Uopt-NE. Finally, we show that these claims also hold for the unraveling U. In the rest of
this paper, we may write the terminology “RL-NE” for “right-linear and non-erasing”, and
may also write the terminology “ultra-RL-NE w.r.t. an unraveling U” (U -RL-NE, for short)
for “ultra-RL and ultra-NE w.r.t. U”.

4.1 Observation of Unsoundness
To begin with, we discuss why Uopt is not sound for R3 in Example 3.4. Consider the detail
of the derivation h(f(a), f(b)) →∗Uopt(R3) A:

h(f(a), f(b))→∗Uopt(R3) h(U4(c, d),U4(c, d))→∗Uopt(R3) g(U4(c, d),U4(c, d), f(k))
→∗Uopt(R3) g(d,U4(l,m),U4(l,m))→Uopt(R3) A
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To succeed in this derivation, the following subderivations are necessary:
to apply the rule g(d, x, x)→ A, the subterm f(a) in the initial term is reduced to d,
to apply the rule h(x, x) → g(x, x, f(k)), both the subterms f(a) and f(b) in the initial
term are reduced to the same term, and
to apply the rule g(d, x, x)→ A, both the subterm f(b) in the initial term and the term
f(k) derived from the application of h(x, x)→ g(x, x, f(k)) are reduced to the same term.

In summary, all of the terms f(a), f(b) and f(k) have to be reduced to the same term d.
However, this is impossible on the reduction of R3. Nevertheless, in the above derivation,
h(x, x)→ g(x, x, f(k)) is applied after reducing f(a) and f(b) to U4(c, d); one of U4(c, d) that
comes from f(a) is reduced to d, and the other U4(c, d) that comes from f(b) is reduced to
U4(l,m) in order to be the same with f(k); finally, g(d, x, x)→ A is applied. These undesired
subderivations must be caused by the non-right-linear rule h(x, x) → g(x, x, f(k)) and the
erasing rule g(d, x, x)→ A in Uopt(R3). This is because

the application of h(x, x)→ g(x, x, f(k)) to h(U4(c, d),U4(c, d)) keeps two occurrences of
U4(c, d) that are intermediate states of evaluating f(a) and f(b), respectively, and each
of them has a capability to be reduced to a different term later though they should be
the same, and
g(d, x, x)→ A erases the two occurrences of U4(l,m) as if they come from the same term
(in fact, they come from the terms f(b) and f(k), respectively, that should be reduced to
different terms).

Viewed in this light, it is conjectured that the combination of right-linearity and non-
erasingness of the unraveled TRSs is a sufficient condition for soundness of Uopt.

On the other hand, left-linearity of the unraveled TRSs also seems a sufficient condition
for soundness of Uopt. A positive witness is that the unravelings for join and normal CTRSs
are sound for left-linear CTRSs [11, 5] and Marchiori’s unraveling for 3-DCTRSs is sound for
Uopt-LL ones [12]. In addition, left-linearity of the unraveled TRSs seems another solution
to avoid the problem mentioned above. Thus, it is conjectured that left-linearity of the
unraveled TRSs is a sufficient condition for soundness of Uopt.

In the next two subsections, we will prove these two conjectures above. We first show
the case of left-linearity since the other case can be reduced to soundness under the left-
linearity case, by transforming a DCTRS into the inverted one. The key features are that
the inverted one is Uopt-LL if the DCTRS is Uopt-RL, and that the unraveled TRS of the
inverted one is equivalent to the inverted unraveled TRS of the DCTRS if the DCTRS is
Uopt-NE. The converse of this approach is impossible since the second key feature needs the
Uopt-NE property (i.e., every Uopt-LL DCTRS does not imply the Uopt-NE property of the
corresponding inverted DCTRS).

4.2 Soundness on Ultra-Left-Linearity
In this subsection, we show that the optimized unraveling Uopt is sound for Uopt-LL DCTRSs
if the reduction of the unraveled TRSs is restricted to the EV-basic one (see Definition 4.2).
Roughly speaking, in an EV-basic reduction sequence, any redex introduced via extra vari-
ables at the application of rewrite rules is never reduced anywhere. Note that for eTRSs
having no extra variables, the EV-basic property is not a restriction at all, since all of their
reduction sequences are EV-basic. In practical cases (e.g., inverse TRSs [14, 19, 18, 16]),
extra variables are instantiated with constructor terms. At the application of rewrite rules,
extra variables in the unraveled eTRSs may introduce undesired terms, e.g., terms rooted by
U symbols that are not reachable from terms over the original signature. As a consequence,
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Uopt is not always sound w.r.t. non-EV-basic reduction sequences of the unraveled eTRSs
(see Example 4.7).

We first prepare a technical lemma to help us to prove the main lemma. Let X be a
finite set of variables, σ and θ be substitutions, and→ be a binary relation on terms. Then,
we write Xσ → Xθ if xσ → xθ for any x ∈ X.

I Lemma 4.1. Let R be an eDCTRS, ρ : l → r ⇐ s1 � t1; · · · ; sk � tk be a Uopt-LL
conditional rewrite rule in R, σ1, · · · , σk+1 be substitutions, and Xi = Var(l, t1, · · · , ti−1)∩
Var(r, ti, si+1, ti+1, · · · , sk, tk) for all 1 ≤ i ≤ k. If siσi →∗R tiσi+1 and Xiσi →∗R Xiσi+1
for all 1 ≤ i ≤ k, then lσ1 →+

R rσk+1.

Proof. Let σ be the substitution σ1|Var(l)∪σ2|X1\Var(l)∪· · ·∪σk|Xk\Xk−1∪σk+1|Var(ti,r)\Xk .
Then, we have that lσ ≡ lσ1. It follows from Xiσi →∗R Xiσi+1 that Xiσ →∗R Xiσi+1
for all 1 ≤ i ≤ k. It follows from the Uopt-LL property and Lemma 3.7 that Var(ti) ∩(
Dom(σ1|Var(l)) ∪ · · · ∪ Dom(σi−1|Xi−1\Xi−2)

)
= ∅ for all 1 ≤ i ≤ k, and hence tiσi ≡ tiσ

for all 1 ≤ i ≤ k. Thus we have that siσ →∗R siσi →∗R tiσi+1 ≡ tiσ. Similarly, we have that
rσ →∗R rσk+1. Therefore, we have that lσ1 ≡ lσ →R rσ →∗R rσk+1. J

Next we define the notion of EV-basic (EV-safe [16, 14, 17]) reduction sequences of
eTRSs. Roughly speaking, in an EV-basic reduction sequences, any redex introduced via
extra variables are not reduced anywhere. This notion can be formalized by relaxing the
notion of basic reduction sequences [7, 13].

I Definition 4.2 (EV-basic reduction [16]). Let R be an eTRS and ρi : li → ri ∈ R for all i
≥ 1. Let t0 →ρ1,p1,R t2 →ρ2,p2,R · · · be a reduction sequence of R, and B0 ⊆ PosF (t0) such
that B0 is prefix closed (i.e., if p < q and q ∈ B0 then p ∈ B0). We define the sets B1, B2, · · ·
of positions from the sequence and B0 inductively as Bi = (Bi−1 \ {q ∈ Bi−1 | q ≥ pi}) ∪
{piq | q ∈ PosF (ri)} ∪ {pip′q | pipq ∈ Bi−1, p ∈ PosV(li), li|p ≡ ri|p′} for all i ≥ 1. Note
that B1, B2, · · · are prefix closed. For all i ≥ 0, positions in Bi are referred as basic positions
of ti w.r.t. extra variables. The reduction sequence above is said to be based on B0 w.r.t.
extra variables if pi ∈ Bi−1 for all i ≥ 1. If the sequence is finite with length n, then we
denote it by B0 : t0 −−→evb

∗
R
Bn : tn or B0 : t0 −−→evb

∗
R
tn. In particular, the reduction sequence

is called basic w.r.t. extra variables (EV-basic, for short) if B0 = PosF (t0). If the EV-basic
sequence is finite with length n, then we denote it by t0 −−→evb

∗
R
tn.

Note that EV-basicness is different from basicness [7, 13] in the sense that all the basic
positions are propagated at the application of rewrite rules but none of the positions for extra
variables are added to basic positions. A typical instance of EV-basic reduction sequences is
a reduction sequence obtained by substituting a normal form for each extra variable when
applying rewrite rules.

To specify a set of terms with which extra variables are possibly instantiated at the rule
application, we introduce the notion of EV-instantiation on sets of terms. Let R be an eTRS
and T be a set of terms. A derivation t0 →ρ1,p1,R t1 →ρ2,p2,R · · · is called EV-instantiated on
T if any extra variable of ρi : li → ri is instantiated by a term in T , i.e., ti|piq ∈ T for any q ∈
PosV(ri) such that ri|q ∈ EVar(ρi). By the same token, the notion of the EV-instantiation
property is defined for the parallel reduction of eTRSs. For any of the unraveled eTRSs,
its EV-basic reduction sequences have the following property related to EV-instantiation on
the set of terms over the original signature.

I Lemma 4.3. Let R be a Uopt-LL eDCTRS over a signature F , and s, t be terms in
T (F ,V). If s −−→

evb
∗
Uopt(R)

t then there exists a derivation s →∗Uopt(R) t that is EV-instantiated
on T (F ,V).
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Proof. It can be proved by induction on the term structure that for a term s, a linear term
l with U-symbol-free proper subterms, and substitutions θ, σ, η such that θ ∈ Sub(F ,V) and
root(xδ) is a U symbol for any x ∈ Dom(η), if sθη ≡ lσ, then there exists a substitution σ′
such that sθ ≡ lσ′ and lσ ≡ lσ′η.

To prove this lemma, it suffices to show that for terms s ∈ T (FUopt(R),V) and t ∈ T (F ,V)
and for substitutions θ and η such that θ ∈ Sub(FUopt(R),V) and root(xη) is a U symbol
for any x ∈ Dom(η), if PosF (sθ) : sθη −−→

evb
n

Uopt(R)
t then there exists a substitution σ ∈

Sub(F ,V) such that sθσ →n
Uopt(R) t and the derivation is EV-instantiated on T (F ,V). We

prove this claim by induction on n.
Suppose that PosF (sθ) : sθη −−→

evb
n

Uopt(R)
t. From the EV-basic property of the derivation

and the above claim, we can assume w.l.o.g. that sθ is of the form C[s′]p, sθη ≡ Cθη[s′η]
≡ Cθη[lδη]p →ρ,p,Uopt(R) Cθη[rδη] →n−1

Uopt(R) t, δ ∈ Sub(F ,V), s′ ≡ lδ, and p ∈ PosF (sθ),
where ρ is l → r, Var(l, r) ∩ Var(sθ) = ∅, the set B of EV-basic positions in Cθη[rδη] is
(PosF (sθ) \ {q ∈ PosF (sθ) | p ≤ q}) ∪ {pq | q ∈ PosF (r)} ∪ {pp′q | pp′′q ∈ PosF (sθ), p′′ ∈
PosV(l), l|p′′ ≡ r|p′}, and B : Cθη[rδη] −−→

evb
n−1
Uopt(R)

t. Let δ′ and δ′′ be substitutions such
that δ′ ∈ Sub(F ,V), δ|EVar(ρ) = δ′η, Dom(δ′′)∩ (Var(l, r)∪Dom(η)) = ∅, and root(xδ′′) is
a U symbol for any x ∈ Dom(δ′′).

Let θ′ = θ|Var(C[ ])∪δVar(l)∪δ′|EVar(ρ) and η′ = η∪δ′′. Then, θ′ and η′ are substitutions
such that Cθη[rδ] ≡ (C[r])θ′η′. By the definition of the EV-basic property, we have that B
= PosF ((C[r])θ′). Thus, by the induction hypothesis, we have that there exists a substitu-
tion σ in Sub(F ,V) such that (C[r])θ′σ →n−1

Uopt(R) t and the derivation is EV-instantiated on
T (F ,V). Now we have that sθσ ≡ (Cθ[s′])σ ≡ (Cθ[lδ])σ ≡ (Cθ′[lθ′])σ →Uopt(R) (Cθ′[rθ′])σ
≡ (C[r])θ′σ′ →n−1

Uopt(R) t. Since θ and σ are in Sub(F ,V), any extra variables in r is instan-
tiated by a term in T (F ,V). Therefore, this derivation is EV-instantiated on T (F ,V). J

The soundness result of this subsection is a consequence of the following key lemma.

I Lemma 4.4. Let R be a Uopt-LL eDCTRS over a signature F , s be a term in T (F ,V),
t be a linear term in T (FUopt(R),V), and σ be a substitution in Sub(FUopt(R),V). Suppose
that R is non-LV or non-collapsing. If s ⇒n

Uopt(R) tσ for some n ≥ 0 and the derivation is
EV-instantiated on T (F ,V), then there exists a substitution θ in Sub(F ,V) such that s →∗R
tθ ⇒m

Uopt(R) tσ and the derivation tθ ⇒m
Uopt(R) tσ is EV-instantiated on T (F ,V) for some

m ≤ n such that if tσ ∈ T (F ,V) then m = 0.

Proof. We prove this lemma by induction on the lexicographic product (n, s) of n and the
structure of s. Suppose that s ⇒n

Uopt(R) tσ. Since the case that s is a variable is trivial, we
only consider the remaining case that s is rooted by a function symbol.

We first consider the case that s ⇒n
Uopt(R) tσ does not contain any reduction step at the

root position. Let s be of the form f(s1, · · · , sk). Then, we have that s ≡ f(s1, · · · , sk)
⇒n

Uopt(R) f(t1, · · · , tk)σ ≡ tσ and thus si ⇒ni
Uopt(R) tiσ, where n1 + · · · + nk = n. By

the induction hypothesis, there exists a substitution θi ∈ Sub(F ,V) such that si →∗R tiθi
⇒mi

Uopt(R) tiσ and the derivation tiθi ⇒mi
Uopt(R) tiσ is EV-instantiated on T (F ,V) for some mi

≤ ni such that mi = 0 if tiσ ∈ T (F ,V). Let θ = θ1|Var(t1)∪ · · ·∪ θk|Var(tk). Then, it follows
from the linearity of t that θ is a substitution in Sub(F ,V). We have that s ≡ f(s1, · · · , sk)
→∗R f(t1, · · · , tk)θ ≡ tθ ⇒m

Uopt(R) tσ and the derivation tθ ⇒m
Uopt(R) tσ is EV-instantiated on

T (F ,V). where m = m1 + · · ·+mk ≤ n such that if tσ ∈ T (F ,V) then m = 0.
Next we consider the remaining case. To simplify the proof, we assume w.l.o.g. that any
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rule has two conditions of the form s1 � t1; s2 � t2. Then, we can assume that

s⇒n0
Uopt(R) lσ1→ε,Uopt(R) u1σ1 ⇒

n1
>ε,Uopt(R) u

′
1σ2

→ε,Uopt(R) u2σ2 ⇒
n2
>ε,Uopt(R) u

′
2σ3 →ε,Uopt(R) rσ3 ⇒

n3
Uopt(R) t3σ3,

where s ⇒n0
>ε,Uopt(R) lσ1 if R is non-LV, and rσ3 ⇒

n3
>ε,Uopt(R) rσ otherwise (i.e., if R is non-

collapsing), ρ : l → r ⇐ s1 � t1; s2 � t2 ∈ R, ui ≡ Uρi (si,
−→
Xi), u′i ≡ Uρi (ti,

−→
Xi), X1 =

Var(l) ∩ Var(r, t1, s2, t2), X2 = Var(l, t1) ∩ Var(r), and tσ is a term between u1σ to t3σ3.
We only consider the case that tσ is t3σ3 since this case is the most complicated. For this
reason, we assume that t3σ3 ≡ tσ and n0 + n1 + n2 + n3 + 3 = n.

By the induction hypothesis, there exists a substitution θ1 ∈ Sub(F ,V) such that s →∗R
lθ ⇒m0

Uopt(R) lσ1 and the derivation lθ ⇒m0
Uopt(R) lσ1 is EV-instantiated on T (F ,V). Let θ′1 =

θ|Var(l)∪σ1|EVar(l→u1). Then, θ′1 is a substitution in T (F ,V). Moreover, it follows from the
standard property of the parallel reduction that u1θ

′
1 ⇒

m1
>ε,Uopt(R) u1σ1 ⇒

n2
>ε,Uopt(R) u

′
1σ2.

Thus, we have that s1θ
′
1 ⇒

m′1
Uopt(R) t1σ2 and X1θ

′
1 ⇒

m′′1
Uopt(R) X1σ2 where m′′1 is the summation

of reduction steps andm′1+m′′1 = m1+n2. Since the Uopt-LL property provides Var(t1)∩X1
= ∅, by the induction hypothesis, there exists a substitution θ2 ∈ Sub(F ,V) such that s1θ

′
1

→∗R t1θ2 ⇒
m2
Uopt(R) t1σ2 and X1θ

′
1 →∗R X1θ2 ⇒

j2
Uopt(R) X1σ2 where j2 is the summation of

reduction steps and m2 + j2 ≤ m1 + n2.
In the same way, we obtain substitutions θ3 and θ in Sub(F ,V) such that s2θ2 →∗R t2θ3,

X2 →∗R X2θ3, rθ3 →∗R tθ ⇒m
Uopt(R) tσ, where m ≤ n such that if tσ ∈ T (F ,V) then m =

0. It follows from Lemma 4.1 that lθ1 →∗R rθ3. Therefore, we have that s →∗R rθ3 →∗R tθ

⇒m
Uopt(R) tσ where m ≤ n such that if tσ ∈ T (F ,V) then m = 0. J

As a consequence of Lemma 4.4, we show the main theorem of this subsection.

I Theorem 4.5. Uopt is sound for a Uopt-LL eDCTRSs R over a signature F if R is non-LV
or non-collapsing and if the reduction of Uopt(R) is restricted to the EV-basic one (i.e., for
any terms s and t in T (F ,V), if s −−→

evb
∗
Uopt(R)

t then s →∗R t).

Proof. Suppose that s −−→
evb
∗
Uopt(R)

t and s, t ∈ T (F ,V). Then, it follows from Lemma 4.3
that there is a derivation s →∗Uopt(R) t that is EV-instantiated on T (F ,V). Since a single
step of →Uopt(R) can be considered as a single step of the parallel reduction, we have the
derivation s ⇒∗Uopt(R) t that is EV-instantiated on T (F ,V). Let x be a variable and σ be a
substitution such that xσ ≡ t. Then, it follows from Lemma 4.4 that s →∗R xσ ≡ t. J

It is clear that for a 3-eDCTRS R, any reduction sequence of R is EV-basic. Therefore, Uopt
is sound for Uopt-LL 3-eDCTRSs.

I Corollary 4.6. Uopt is sound for Uopt-LL 3-eDCTRSs that are non-LV or non-collapsing.

Due to the technical proof of Lemma 4.4, we assumed that eDCTRS is non-LV or non-
collapsing. It is not known yet that this assumption can be relaxed (or removed). However,
this assumption is not so restrictive since every DCTRS (not an extended one) is non-LV.
Corollary 4.6 is not a direct consequence of the result in [12] on soundness for Uopt-LL 3-
DCTRSs since U symbols introduced by Uopt have less arguments than those introduced by
Marchiori’s unraveling for DCTRSs.

Finally, we show a counterexample against Theorem 4.5 without the EV-basic property.
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I Example 4.7. Consider the following DCTRS and its unraveled EV-TRS:

R4 = { e→ f(x)⇐ l� d, A→ h(x, x) }
Uopt(R4) = U(R4) = { e→ U5(l), U5(d)→ f(x), A→ h(x, x) }

We have the derivation A →Uopt(R4) h(U5(d),U5(d)) →∗Uopt(R4) h(f(a), f(b)) that is not EV-
basic: the term U5(d) introduced by instantiating the extra variable x in the applied rule
A → h(x, x) is reduced. However, A cannot be reduced by R4 to h(f(a), f(b)). Therefore,
Uopt is not sound for R4. Note that U is not sound either.

4.3 Soundness on Ultra-Right-Linear-Non-Erasing Property
In this subsection, we show that Uopt is sound for DCTRSs that are ultra-RL-NE w.r.t.
Uopt. To prove it, we reduce the soundness to that of Uopt for ultra-LL DCTRSs.

We first define the operation to transform an eDCTRS into an eDCTRS that defines
the inverse relation of the former eDCTRS. Note that the “inverse” has a different meaning
from the sense of program inversion.

I Definition 4.8. Let ρ : l → r ⇐ s1 � t1; · · · ; sk � tk be an (extended) conditional
rewrite rule. We define the operation ( )−1 as (l → r ⇐ s1 � t1; · · · ; sk � tk)−1 =
r → l ⇐ tk � sk; · · · ; t1 � s1. This operation is extended to eDCTRSs as (R)−1 =
{(ρ)−1 | ρ ∈ R}. Moreover, for a binary relation →, we denote the inverse relation of → by
(→)−1: (→)−1 = {(t, s) | s→ t}.

For an eCTRS R, the inverse relation of →R is equivalent to the reduction of (R)−1.

I Theorem 4.9. Let R be an eCTRS. Then, (→R)−1 = →(R)−1 .

Proof. It suffices to show that (→(n),R)−1 = →(n),(R)−1 for all n ≥ 0. This can be proved
by induction on n. J

Regarding the operation ( )−1 and the Uopt-NE property, there are dual relationships
between Uopt-LL and Uopt-RL and between the non-LV and non-collapsing properties.

I Lemma 4.10. Let ρ : l → r ⇐ s1 � t1; · · · ; sk � tk be an extended deterministic rewrite
rule. Then all of the following hold:
1. Var(ti) ⊆ Var(r, si+1, · · · , sk) for all 1 ≤ i ≤ k iff (ρ)−1 is deterministic,
2. Var(l) ⊆ Var(r, s1, · · · , sk) iff (ρ)−1 is in Type 3,
3. if Var(ti) ⊆ Var(r, si+1, · · · , sk) for all 1 ≤ i ≤ k, then

a. Uopt((ρ)−1) = (Uopt(ρ))−1 up to the renaming of U symbols, and
b. ρ is Uopt-LL (Uopt-RL, resp.) iff (ρ)−1 is Uopt-RL (Uopt-LL, resp.),

4. ρ is non-LV (non-collapsing, resp.) iff (ρ)−1 is non-collapsing (non-LV, resp.).

Proof. The claims 1, 2 and 4 are trivial. Consider Uopt(ρ) in Definition 3.2. We can assume
w.l.o.g. that Uopt((ρ)−1) = {r → Uρk (tk,

−→
Yk), · · · , Uρ2 (s2,

−→
Y2) → Uρ1 (t1,

−→
Y1), Uρ1 (s1,

−→
Y1) → l}

where Yi = Var(r, sk, · · · , si+1) ∩ Var(l, si, ti−1, si−1, · · · , t1, s1). Since ρ is deterministic,
we have that Var(si) ⊆ Var(l, t1, · · · , ti−1) for all 1 ≤ i ≤ k.

To prove the claim 3-a, it suffices to show that Xi = Yi for all 1 ≤ i ≤ k. It follows from
Var(si) ⊆ Var(l, t1, · · · , ti−1) that Var(l, s1, t1, · · · , si−1, ti−1, si) = Var(l, t1, · · · , ti−1), and
hence Yi = Var(r, si+1, · · · , sk) ∩ Var(l, t1, · · · , ti−1). Moreover, it follows from Var(ti) ⊆
Var(r, si+1, · · · , sk) that Var(r, ti, si+1, ti+1, · · · , sk, tk) = Var(r, si+1, · · · , sk), and hence
Xi = Var(l, t1, · · · , ti−1) ∩ Var(r, si+1, · · · , sk). Therefore, Xi = Yi for all 1 ≤ i ≤ k.
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Finally, we prove the claim 3-b. Suppose that ρ is Uopt-LL. Then, it follows from Lemma
3.7 that l, Uρ1 (t1,

−→
X1), · · · , Uρk (tk,

−→
Xk) are linear. Thus, Uopt((ρ)−1) is right-linear and

hence (ρ)−1 is Uopt-RL. Suppose that ρ is Uopt-RL. Then, it follows from Lemma 3.7 that
r, Uρ1 (s1,

−→
X1), · · · , Uρk (sk,

−→
Xk) are linear. Thus, Uopt((ρ)−1) is left-linear and hence (ρ)−1 is

Uopt-LL. The if part is similar to the only-if part above. J
Note that neither the claims 3-a nor 3-b in Lemma 4.10 holds for U.

I Corollary 4.11. Let R be an eDCTRS. Then all of the following hold:
R is Uopt-NE iff (R)−1 is a 3-eDCTRS,
if R is Uopt-NE, then

Uopt((R)−1) = (Uopt(R))−1 up to the renaming of U symbols, and
R is Uopt-LL (Uopt-RL, resp.) iff (R)−1 is Uopt-RL (Uopt-LL, resp.), and

R is non-LV (non-collapsing, resp.) iff (R)−1 is non-collapsing (non-LV, resp.).

Finally, we show soundness of Uopt for a Uopt-RL-NE eDCTRS R by reducing it to
soundness for the Uopt-LL eDCTRS (R)−1.

I Theorem 4.12. Uopt is sound for Uopt-RL-NE eDCTRSs that are non-LV or non-collapsing.

Proof. Let R be a Uopt-RL-NE eDCTRS over a signature F . Then, it follows from Co-
rollary 4.11 that (R)−1 is a Uopt-LL 3-eDCTRS that is non-collapsing or non-LV. Thus, it
follows from Corollary 4.6 that Uopt is sound for (R)−1, i.e., →∗Uopt((R)−1) ⊆ →

∗
(R)−1 holds

over T (F ,V) × T (F ,V). It follows from Corollary 4.11 that Uopt((R)−1) = (Uopt(R))−1,
and hence →∗Uopt((R)−1) = →∗(Uopt(R))−1 . By Theorem 4.9, we have that →∗(Uopt(R))−1 =
(→∗Uopt(R))−1 and →∗(R)−1 = (→∗R)−1. Thus, we have that (→∗Uopt(R))−1 ⊆ (→∗R)−1 (i.e.,
→∗Uopt(R) ⊆ →

∗
R) over T (F ,V)× T (F ,V). J

I Example 4.13. Consider R2 in Example 3.3 again. The eDCTRS R2 is non-LV, Uopt-RL-
NE but neither U-RL nor U-LL. Thanks to Theorem 4.12, Uopt is sound for R2 and thus
Uopt(R2) can be used for simulating the reduction of R2.

Ultra-right-linearity is not a soundness condition for Uopt.

I Example 4.14. Consider the 3-DCTRS (R4)−1 and the unraveled TRS (Uopt(R4))−1

obtained from Example 4.7. (R4)−1 is Uopt-RL but not Uopt-NE. We have the derivation
h(f(a), f(b)) →∗Uopt((R4)−1) A. However, h(f(a), f(b)) cannot be reduced by (R4)−1 to A.
Therefore, Uopt is not sound for (R4)−1. Note that U is sound for (R4)−1.

It is possible to prove Theorem 4.12 directly [17], by using the feature that every reduction
sequence of right-linear TRSs can be transformed to a basic one [13]. However, Theorem 4.5
cannot be proved by using Theorem 4.12. This is because Uopt((R)−1) = (Uopt(R))−1 does
not hold for every Uopt-LL DCTRSs (see Uopt(R2) in Example 3.3).

4.4 Soundness of Ohlebusch’s Unraveling
In this subsection, we show that soundness of Uopt implies that of U.

We first introduce the notion of argument filterings [1, 8]. An argument filtering over a
signature F is a mapping π from F to sets of natural numbers such that π(f)⊆ {1, · · · , ar(f)}
for any f ∈ F . Note that this paper does not use collapsing definitions π(f) ∈ {1, · · · , ar(f)}.
When π(f) is not defined explicitly, we assume that π(f) = {1, · · · , ar(f)}. Argument
filterings are extended to terms as follows: π(x) = x for x ∈ V, and π(f(t1, · · · , tn)) =
f(π(ti1), · · · , π(tim)) for f ∈ F where π(f) = {i1, · · · , im} and 1 ≤ i1 < i2 < · · · < im ≤ n.
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They are also extended to eTRSs as follows: π(R) = {π(l)→ π(r) | l → r ∈ R}. Note that
π(R) is an eTRS. Argument filterings have the following properties.

I Lemma 4.15. Let π be an argument filtering. Let t be a term and σ, σπ be substitutions
such that σπ = {x 7→ π(xσ) | x ∈ Dom(σ)}. Then, π(tσ) ≡ (π(t))σπ. Let R be an eTRS
and s, t be terms. If s →∗R t then π(s) →∗π(R) π(t).

The unraveling Uopt is an optimized variant of U in the sense that variables carried by U
symbols are optimized. Thus, Uopt(R) can simulate any reduction sequence of U(R).

I Lemma 4.16. Let R be an eDCTRS over a signature F , and s, t be terms in T (F ,V). If
s →∗U(R) t, then s →∗Uopt(R) t.

Proof. We assume w.l.o.g. that for every rule ρ : l → r ⇐ s1 � t1; · · · ; sk � tk in
R, the same U symbols Uρ1 , · · · , U

ρ
k are introduced for U(R) and Uopt(R). Let π be an

argument filtering such that for every ρ : l → r ⇐ s1 � t1; · · · ; sk � tk in R, π(Uρi )
= {1, i1, · · · , im} where Xi = Var(l, t1, · · · , ti−1), −→Xi is a sequence x1, · · · , xn, Yi = Xi ∩
Var(r, ti, si+1, ti+1, · · · , sk, tk), −→Yi is a sequence y1, · · · , ym, and xij ≡ yj for all 1 ≤ j ≤ m.
Then, it is clear that π(U(R)) = Uopt(R). Since s, t are in T (F ,V), we have that π(s) ≡ s

and π(t) ≡ t. Thus, it follows from Lemma 4.15 that s ≡ π(s) →∗Uopt(R) π(t) ≡ t. J

Moreover, Uopt(R) can simulate every EV-basic reduction sequence of U(R).

I Lemma 4.17. Let R be an eTRS, s, t be terms, and π be an argument filtering such that
EVar(π(l)→ π(r)) ⊆ EVar(ρ) for every ρ : l→ r ∈ R. If s −−→

evb
∗
R
t then π(s) −−→

evb
∗
π(R)

π(t).

Proof. We first define modifications for a position p of a term u and a set P of positions of
u by applying an argument filtering π: πu(p) = p if p = ε; πu(p) = jp′′ if u ≡ f(u1, · · · , un),
π(f) = {i1, · · · , im}, i1 < · · · < im, p = ijp

′, and p′′ = πui(p′); πu(P ) = P if u ∈ V; πu(P ) =
{ε | ε ∈ P}∪

{
jp′ | p′ ∈ πtij ({p

′′ | ijp′′ ∈ P})
}
if u ≡ f(u1, · · · , un), π(f) = {i1, · · · , im}, i1

< · · · < im. We prove that if B : s −−→
evb

n

R
B′ : t and πs(B) ⊆ B1 ⊆ Pos(π(s)) then B1 : π(s)

−−→
evb
∗
π(R)

B′1 : π(t) and πt(B′) ⊆ B′1. To prove this claim by induction on n, it suffices to show
that if B : s −−→

evb p,R
B′ : t then πs(p) is defined and πs(B) : π(s) −−→

evb πs(p),π(R)
πt(B′) : π(t).

This follows from the assumption and the definitions of −−→
evb

and πt( ). J

I Lemma 4.18. Let R be an eDCTRS over a signature F , and s, t be terms in T (F ,V). If
s −−→

evb
∗
U(R)

t then s −−→
evb
∗
Uopt(R)

t.

Proof. Rules in Uopt(R) that may contain extra variables are of the form Uρk (tk,
−→
Yk) → r

where ρ : l → r ⇐ s1 � t1; · · · ; sk � tk in R. By the definition of U, we have
that Uρk(tk,

−→
Xk) → r in U(R), Yk ⊆ Xk, and Var(r) ∩ Yk = Var(r) ∩ Xk. Thus, we

have that EVar(Uρk (tk,
−→
Yk) → r) = Var(r) \ (Var(tk) ∪ Yk) = Var(r) \ (Var(tk) ∪ Xk)

= EVar(Uρk (tk,
−→
Xk)→ r). Thus, this theorem follows from Lemma 4.17. J

Finally, it can be said that soundness of Uopt implies that of U.

I Theorem 4.19. U is sound for an eDCTRS (w.r.t. EV-basic reduction of U(R)) if Uopt
is sound for the eDCTRS (w.r.t. EV-basic reduction of Uopt(R)).

Proof. Let R be an eDCTRS over a signature F , and s, t be terms in T (F ,V) such that s
→∗U(R) t. Then, it follows from Lemma 4.16 that s →∗Uopt(R) t. Moreover, it follows from
soundness of Uopt that s →∗R t. Therefore, U is sound. In the same way, the case of the
EV-basic reduction can be proved. J
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I Corollary 4.20. U is sound for 3-DCTRSs that are U-LL or Uopt-RL-NE.

The converse of Theorem 4.19 does not hold. For example, U is sound for the DCTRS (R4)−1

in Example 4.14 but Uopt is not sound. The reason must be that U symbols introduced via
the application of U have more variables (i.e., information) than the corresponding U symbols
introduced by Uopt. Thus, U is sufficient to produce TRSs that can be used instead of the
original DCTRSs. Though, Uopt will be useful in investigating soundness of U since the
unraveled TRSs obtained by Uopt are simpler than those obtained by U.

5 Conclusion

In this paper, we have shown that the unravelings for DCTRSs are sound for DCTRSs
that are ultra-LL or ultra-RL-NE, and shown that Ohlebusch’s unraveling is sound for a
DCTRS if the optimized one is sound for the DCTRS. We have also shown necessary and
sufficient syntactic conditions for ultra-LL, ultra-RL, and ultra-NE, respectively. Future
work is to relax these syntactic conditions for the soundness, e.g., that each rule is ultra-LL
or ultra-RL-NE.

Extending the results in [5], it is shown in [6] that U is sound for confluent 3-DCTRSs
w.r.t. the reduction to normal forms, and U is sound for 3-DCTRSs that are U-RL or weakly
left-linear. For the case of U-RL 3-DCTRSs, this result is incompatible with Theorem 4.12
(see Example 4.13). For the case of weakly left-linear 3-DCTRS, this result is strictly
stronger than Corollary 4.6 since Uopt-LL 3-DCTRSs are weakly left-linear. Extending the
results in [6] w.r.t. confluence and weak left-linearity to Uopt is a further direction of this
research.
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