
Termination Proofs in the Dependency Pair
Framework May Induce Multiple Recursive
Derivational Complexity∗

Georg Moser1 and Andreas Schnabl1

1 Institute of Computer Science
University of Innsbruck, Austria
{georg.moser,andreas.schnabl}@uibk.ac.at

Abstract
We study the complexity of rewrite systems shown terminating via the dependency pair frame-
work using processors for reduction pairs, dependency graphs, or the subterm criterion. The
complexity of such systems is bounded by a multiple recursive function, provided the complexity
induced by the employed base techniques is at most multiple recursive. Moreover this upper
bound is tight.

1998 ACM Subject Classification F.2.2, F.4.1, D.2.4, D.2.8

Keywords and phrases Complexity, DP Framework, Multiple Recursive Functions

Digital Object Identifier 10.4230/LIPIcs.RTA.2011.235

Category Regular Research Paper

1 Introduction

Several notions to assess the complexity of a terminating term rewrite system (TRS) have
been proposed in the literature, compare [3, 13, 4, 11]. The conceptually simplest one was
suggested by Hofbauer and Lautemann in [13]: the derivational complexity function with
respect to a terminating TRSR relates the maximal derivation height to the size of the initial
term. We adopt this notion as our central definition of the complexity of a TRS. However,
we emphasise that our results immediately carry over to other complexity measures of TRSs
(compare Section 5). Hence our results are conceivable as an investigation into implicit
computational complexity theory (see [2] for an overview). To motivate our study consider
the following example.

I Example 1.1. Let R1 be the TRS defined by the following rules:

Ack(0, y)→ S(y) Ack(S(x),S(y))→ Ack(x,Ack(S(x), y))
Ack(S(x), 0)→ Ack(x, S(0))

The R1 encodes the Ackermann function. Hence its derivational complexity function grows
faster than any primitive recursive functions. Furthermore it is easy to see that the deriva-
tional complexity with respect to R1 is bounded by a multiple recursive function.

∗ This research is supported by FWF (Austrian Science Fund) project P20133 and a grant of the Uni-
versity of Innsbruck.

© Georg Moser and Andreas Schnabl;
licensed under Creative Commons License NC-ND

22nd International Conference on Rewriting Techniques and Applications (RTA’11).
Editor: M. Schmidt-Schauß; pp. 235–250

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62916256?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.RTA.2011.235
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

236 Complexity Induced by the DP Framework

We show termination of R1 by an application of the dependency pair framework (DP
framework for short), compare [9, 23]. (All used notions will be defined in Section 2.) The
set of dependency pairs DP(R1) with respect to R1 is given below:

Ack](S(x), 0)→ Ack](x, S(0)) Ack](S(x),S(y))→ Ack](x,Ack(S(x), y))

Ack](S(x),S(y))→ Ack](S(x), y)

These six rules together constitute the DP problem (DP(R1),R1). We apply the subterm
criterion processor ΦSC with respect to the simple projection π1 that projects the first argu-
ment of the dependency pair symbol Ack]. Thus ΦSC((DP(R1),R1)) consists of the single
DP problem (P,R1), where P = {Ack](S(x),S(y)) → Ack](S(x), y))}. Another application
of ΦSC, this time with the simple projection π2 projecting on the second argument of Ack]

yields the DP problem (∅,R1), which is trivially finite. Thus termination of R1 follows.
For termination proofs by direct methods a considerable number of results establish

essentially optimal upper bounds on the growth rate of the derivational complexity function.
For example [25] studies the derivational complexity induced by the lexicographic path order
(LPO). LPO induces multiple recursive derivational complexity. In recent years the research
focused on automatable proof methods that induce polynomially bounded (derivational)
complexity (see for example [26, 18, 24]). The focus and the re-newed interest in this area
was partly triggered by the integration of a dedicated complexity category in the annual
international termination competition.1.

None of these results can be applied to our motivating example. Abstracting from
Example 1.1 suppose termination of a given TRS R can be shown via the DP framework
in conjunction with a well-defined set of processors. Furthermore assume that all base
techniques employed in the termination proof (employed within a processor) induce at most
multiple recursive derivational complexity. Kindly note that this assumption is rather weak
as for all termination techniques whose complexity has been analysed a multiple recursive
upper bound exists. Then we show that the derivational complexity with respect to R is
bounded by a multiply recursive function. We restrict our attention to simple DP processors
like the reduction pair processor, the dependency graph processor or the subterm criterion
processor. Furthermore we show that this upper bound is tight, even if we restrict to base
techniques that induce linear derivational complexity. This result can be understood as
a negative result: using the above mentioned DP processors, it is theoretically impossible
to prove termination of any TRS whose (derivational) complexity is not bounded by a
multiply recursive function. One famous example of such a TRS is Dershowitz’s system
TRS/D33-33, aka the Hydra battle rewrite system (see [6, 14]). On the other hand, our result
immediately turns termination provers into automatic complexity provers, albeit rather weak
ones. Furthermore it provides the basis for further investigations into termination techniques
that induced more feasible (derivational) complexities.

The rest of this paper is organised as follows. In Section 2 we present basic notions and
starting points of the paper. Section 3 states our main result and provides suitable examples
to show that the multiple recursive bound presented is tight. The technical construction is
given in Section 4. Finally, we conclude in Section 5. Due to space restriction, some technical
proofs have been replaced by sketches. For the full proofs, we refer to the extended version
of this paper [17].

1 http://termcomp.uibk.ac.at

http://termcomp.uibk.ac.at

G. Moser and A. Schnabl 237

2 Preliminaries

We assume familiarity with term rewriting (see [22]) and in particular with the DP method
and the DP framework (see [9, 10, 23]). Let V denote a countably infinite set of variables
and F a signature. Without loss of generality we assume that F contains at least one
constant. The set of (ground) terms over F and V is denoted by T (F ,V) (T (F)). The
(proper) subterm relation is denoted as E (C) and the subterm of t at position p is denoted
as t|p. Let t be a term. The root symbol of t is denoted as rt(t); the positions of t are denoted
as Pos(t); the size (depth) of t is denoted as |t| (dp(t)). Let R and S be finite TRSs over F .
We write →R (or simply→) for the induced rewrite relation. Let s ε−→R t (s >ε−−→R t) denote
rewrite steps at (below) the root. We recall the notion of relative rewriting [8]. Let R and S
be finite TRSs over F . The relative rewrite relation →R/S is defined as→∗S · →R · →∗S . We
use NF(R) to denote the set of normal-forms of R, and NF(R/S) for the set of normal forms
of→R/S . The n-fold composition of→ is denoted as→n and the derivation height of a term
s with respect to a finitely branching, well-founded binary relation → on terms is defined
as dh(s,→) := max{n | ∃t s →n t}. The derivational complexity function of R is defined
as: dcR(n) = max{dh(t,→R) | |t| 6 n}. Let R be a TRS and M a termination method.
We say M induces a certain derivational complexity, if dcR is bounded by a function of this
complexity, whenever termination of R follows by M .

Let t be a term. We set t] = t if t ∈ V, and t] = f](t1, . . . , tn) if t = f(t1, . . . , tn). Here f]
is a new n-ary function symbol called dependency pair symbol. The set DP(R) of dependency
pairs of R is defined as {l] → u] | l→ r ∈ R, u E r, but u 6 l, and rt(u) is defined}.2 A DP
problem is a pair (P,R), where P and R are sets of rewrite rules.3 It is finite if there
exists no infinite sequence of rules s1 → t1, s2 → t2, . . . from P such that for all i > 0, ti is
terminating with respect to R, and there exist substitutions σ and τ with tiσ →∗R si+1τ .
A DP problem of the form (∅,R) is trivially finite. We recall the following (well-known)
characterisation of termination of a TRS. A TRS R is terminating if and only if the DP
problem (DP(R),R) is finite. A DP processor is a mapping from DP problems to sets of DP
problems. A DP processor Φ is sound if for all DP problems (P,R), (P,R) is finite whenever
all DP problems in Φ((P,R)) are finite. A reduction pair (<,�) consists of a preorder <
which is closed under contexts and substitutions, and a compatible well-founded order �
which is closed under substitutions. Here compatibility means the inclusion < · � · < ⊆ �.
Recall that any well-founded weakly monotone algebra (A,<) gives rise to a reduction pair
(<A,�A).

I Proposition 2.1 ([9]). Let (<,�) be a reduction pair. Then the following DP processor
(reduction pair processor) ΦRP is sound:

ΦRP((P,R)) =
{
{(P ′,R)} if P ′ ∪R ⊆ < and P \ P ′ ⊆ �
{(P,R)} otherwise .

The dependency graph of a DP problem (P,R) (denoted by DG(P,R)) is a graph whose
nodes are the elements of P. It contains an edge from s → t to u → v whenever there
exist substitutions σ and τ such that tσ →∗R uτ . A strongly connected component (SCC for
short) of DG(P,R) is a maximal subset of nodes such that for each pair of nodes s → t,
u → v, there exists a path (possibly empty) from s → t to u → v. Note that this is the

2 The observation that pairs l] → u] such that u C l need not be considered is due to Dershowitz.
3 We use a simpler definition of DP problems than [9, 23], which suffices in our context.

RTA’11

238 Complexity Induced by the DP Framework

standard definition of SCC from graph theory (cf. [5], for instance), which slightly differs
from the definition that is often used in the termination literature. We call an SCC trivial
if it consists of a single node s → t such that the only path from that node to itself is the
empty path. All other SCCs are called nontrivial.

I Proposition 2.2 ([9]). The following DP processor (dependency graph processor) ΦDG is
sound: ΦDG((P,R)) = {(P ′,R) | P ′ is a nontrivial SCC of DG(P,R)} .

A simple projection is an argument filtering π such that for each function symbol f ∈ F
of arity n, we have π(f) = [1, . . . , n], and for each dependency pair symbol f ∈ F] \ F ,
π(f) = i for some 1 6 i 6 n.

I Proposition 2.3 ([10, 23]). Let π be a simple projection. Then the following DP processor
(subterm criterion processor) ΦSC is sound:

ΦSC((P,R)) =
{
{(P ′,R)} if π(P ′) ⊆ D and π(P \ P ′) ⊆ B

{(P,R)} otherwise .

Let R be a TRS. A proof tree of R is a tree satisfying the following: the nodes are
DP problems, the root is (DP(R),R), each leaf is a DP problem of the shape (∅,R), and
for each inner node (P,R′), there exists a sound DP processor Φ such that each element
of Φ((P,R′)) is a child of (P,R′), and each of the edges from (P,R′) to the elements of
Φ((P,R′)) is labelled by Φ.

I Theorem 2.4. Let R be a TRS such that there exists a proof tree PT of R. Suppose that
each edge label of that proof tree is a reduction pair, dependency graph, or subterm criterion
processor. Then R is terminating.

Furthermore, we recall some essentials of recursion theory, compare [20, 21]. We call the
following functions over N initial functions: the constant zero function zn(x1, . . . , xn) = 0
of all arities, the unary successor function s(x) = x + 1, and all projection functions
πin(x1, . . . , xn) = xi for 1 6 i 6 n. A class C of functions over N is closed under com-
position if for all f : Nm → N and g1, . . . , gm : Nn → N in C, the function h(x1, . . . , xn) =
f(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)) is in C, as well. It is closed under primitive recur-
sion if for all f : Nn → N and g : Nn+2 → N, the function h defined by h(0, x1, . . . , xn) =
f(x1, . . . , xn) and h(y + 1, x1, . . . , xn) = f(y, h(y, x1, . . . , xn), x1, . . . , xn) is contained in C,
as well. The k-ary Ackermann function Ak for k > 2 is defined recursively as follows:

Ak(0, . . . , 0, xk) = xk + 1
Ak(x1, . . . , xk−2, xk−1 + 1, 0) = Ak(x1, . . . , xk−1, 1)

Ak(x1, . . . , xk−2, xk−1 + 1, xk + 1) = Ak(x1, . . . , xk−1, Ak(x1, . . . , xk−2, xk−1 + 1, xk))
Ak(x1, . . . , xi−1, xi + 1, 0, . . . , 0, xk) = Ak(x1, . . . , xi, xk, 0, . . . , 0, xk)

Here, the last equation is a schema instantiated for all 1 6 i 6 k − 2. The set of primitive
recursive functions is the smallest set of functions over N which contains all initial functions
and is closed under composition and primitive recursion. The set of multiply recursive
functions is the smallest set of functions over N which contains all initial functions and
k-ary Ackermann functions, and is closed under composition and primitive recursion.

I Proposition 2.5 ([21], Chapter 1). For every multiply recursive function f , there exists a
k such that Ak asymptotically dominates f .

G. Moser and A. Schnabl 239

3 Main Theorem

In this short section we show that there exist TRSs whose termination is shown via The-
orem 2.4 such that the derivational complexity cannot be bounded by a primitive recursive
function. Furthermore we state our main result in precise terms.

I Example 3.1. Consider the following TRS R2, taken from [13, 12]: i(x) ◦ (y ◦ z) → x ◦
(i(i(y)) ◦ z) and i(x) ◦ (y ◦ (z ◦ w))→ x ◦ (z ◦ (y ◦ w)). It is shown in [12] that dcR2 is not
primitive recursive as the system encodes the Ackermann function.

Following Endrullis et al. [7, Example 11] we show termination of R2 employing The-
orem 2.4. The dependency pairs with respect to R2 are:

1: i(x) ◦] (y ◦ z)→ x ◦] (i(i(y)) ◦ z) 2 : i(x) ◦] (y ◦ z)→ i(i(y)) ◦] z
3: i(x) ◦] (y ◦ (z ◦ w))→ x ◦] (z ◦ (y ◦ w)) 4 : i(x) ◦] (y ◦ (z ◦ w))→ z ◦] (y ◦ w)
5 : i(x) ◦] (y ◦ (z ◦ w))→ y ◦] w

First, consider the reduction pair induced by the polynomial algebra A defined as follows:
◦]A(x, y) = y, ◦A(x, y) = y+ 1, and iA(x) = 0. An application of the processor ΦRP removes
the dependency pairs {2, 4, 5}. Next, we apply the reduction pair induced by the polynomial
algebra B with ◦]B(x, y) = x, ◦B(x, y) = 0, and iB(x) = x+ 1, which removes the remaining
pairs {1, 3}. Hence we conclude termination of R.

As a corollary we see that the derivational complexity function dcR2 is bounded from
below by a function that grows faster than any primitive recursive function. On the other
hand the complexity induced by the base techniques is linear. Let P1 denote the set of
dependency pairs {2, 4, 5} and let P2 = {1, 3}. It is easy to infer from the polynomial algebras
A and B employed in the two applications of ΦRP that the derivation height functions
dh(t],→P1/(P2∪R)) and dh(t],→P2/R) are linear in |t|. In order to obtain a tight lower
bound we generalise Example 1.1

I Example 3.2. Let k > 2 and consider the following schematic rewrite rules, denoted as
Rk3 . It is easy to see that for fixed k, the TRS Rk3 encodes the k-ary Ackermann function:

Ackk(0, . . . , 0, n)→ S(n)
Ackk(l1, . . . , lk−2,S(m), 0)→ Ackk(l1, . . . , lk−2,m,S(0))

Ackk(l1, . . . , lk−2,S(m),S(n))→ Ackk(l1, . . . , lk−2,m,Ackk(l1, . . . , lk−2,S(m), n))
Ackk(l1, . . . , li−1,S(li), 0, . . . , 0, n)→ Ackk(l1, . . . , li, n, 0, . . . , 0, n)

Here, the last rule is a schema instantiated for all 1 6 i 6 k − 2.

Following of the pattern of the termination proof of R1, we show termination of Rk3 by
k applications of processor ΦSC. The next lemma is a direct consequence of Proposition 2.5
and the above considerations.

I Lemma 3.3. For any multiple recursive function f , there exists a TRS R whose deriv-
ational complexity function dcR majorises f . Furthermore termination of R follows by an
application of Theorem 2.4.

Lemma 3.3 shows that the DP framework admits much higher derivational complexities
than the basic DP method. In [15, 16] we show that the derivational complexity induced by
the DP method is primitive recursive in the complexity induced by the base technique, even

RTA’11

240 Complexity Induced by the DP Framework

if standard refinements like usable rules or dependency graphs are considered. Examples 3.1
and 3.2 show that we cannot hope to achieve such a bound in the context of the DP frame-
work. In the remainder of this paper we show that jumping to the next function class, the
multiple recursive functions, suffices to bound the induced derivational complexities.

I Definition 3.4. Let R be a TRS whose termination is shown via Theorem 2.4, and PT
the proof tree employed by the theorem. Let k be the maximum number of SCCs in any
dependency graph employed by any instance of ΦDG occurring in PT, and let g : N → N
denote a monotone function such that:

g(n) > max({k} ∪ {dh(t],→(P\Q)/(R∪Q)) | there exists an edge from (P,R) to (Q,R)
in PT labelled by an instance of ΦRP and |t| 6 n}) .

Then g is called a reduction pair function of R with respect to PT.

Note that some reduction pair function can often be computed just by inspection of the
employed instances of ΦRP. Moreover, for most of the known reduction pairs (in particular,
for virtually all reduction pairs currently applied by automatic termination provers), it is
easily possible to compute a multiply recursive reduction pair function.

I Theorem 3.5 (Main Theorem). Let R be a TRS whose termination is shown via The-
orem 2.4 and let the reduction pair function g of R be multiple recursive. Then the deriva-
tional complexity function dcR with respect to R is bounded by a multiple recursive function.
Furthermore this upper bound is tight.

The proof of Theorem 3.5 makes use of a combinatorial argument, and is given in the
next section. Here we present the proof plan. In proving the theorem we essentially use three
different ideas. First, we exploit the given proof tree PT. We observe that, if we restrict
our attention to termination of terms, we can focus on specific branches of the proof tree.
Secondly, we define a TRS S simulating the initial TRS R: s →R t implies tr(s) →+

S tr(t).
Here tr denotes a suitable interpretation of terms into the signature of the simulating TRS S,
compare Definition 4.11. The term tr(t) aggregates the termination arguments for t given by
the DP processors in part of the proof tree which has been identified as particularly relevant
for t in the first step. Finally, S will be simple enough to be compatible with a LPO so that
we can employ Weiermann’s result in [25] to deduce a multiple recursive upper bound on
the derivational complexity with respect to S and conclusively with respect to R.

Note that our proof technique is conceptually simpler than the technique we used in
[15, 16] to show a triple exponential upper complexity bound on the most basic version of
the dependency pair method: in order to establish the much lower bound in [15, 16], we con-
structed the whole proof argument from scratch, while in this paper we exploit Weiermann’s
analysis of the derivational complexity induced by LPO (see [25]). Still the here presented
application of Weiermann’s result is non-trivial and requires some preparation.

4 Proof of the Main Result

In this section we prove our main result, Theorem 3.5. We start with some preliminary
definitions. Let R denote a TRS. We assume without loss of generality for each considered
termination proof that whenever a DP processor Φ is applied to a DP problem (P,R),
then Φ((P,R)) 6= {(P,R)}. For each of the DP processors Φ considered in this paper, the
following facts are obvious: (P ′,R′) ∈ Φ((P,R)) implies P ′ ⊂ P and R′ = R. Therefore,
we assume throughout the rest of this paper that for each DP problem (P,R), P ⊆ DP(R).

G. Moser and A. Schnabl 241

In particular, each rule in P has the shape s] → t] for some s, t ∈ T (F ,V). Moreover,
(P ′,R) ∈ Φ((P,R)), (P ′′,R) ∈ Φ((P,R)), and P ′ 6= P ′′ imply P ′ ∩ P ′′ = ∅. Therefore,
each dependency pair can only appear in a single branch of a proof tree.

Let G be a dependency graph; we order the SCCs of G by assigning a rank to each of
them. Let P, Q denote two distinct SCCs of G. We call Q reachable from P if there exist
nodes u ∈ P, v ∈ Q and a path in G from u to v. Let k be the number of SCCs in G. Consider
a bijection rk(G, ·) from the set of SCCs of G to {1, . . . , k} such that rk(G,P) > rk(G,Q)
whenever Q is reachable from P in G. We call rk(G,P) the rank of an SCC P in G. The
rank of a dependency pair l → r, denoted by rk(G, l → r), is the rank of P in G such that
l→ r ∈ P. Finally, the rank of a term t such that t] 6∈ NF(P/R) for some SCC P of G is
defined by rk(G, t) := max{rk(G, l → r) | ∃σ t] →∗R lσ}. Observe that rk(G, t) need not be
defined, although t has a redex at the root position. This is due to the fact that this redex
need not be governed by a dependency pair. On the other hand observe that if t 6∈ NF(P/R)
for some SCC P of G, then rk(G, t) is defined. Furthermore in this case rk(G, t) > 0 and
dh(t],→P/R) > 0.

We now change the definition of proof trees to better suit our needs. The main change is
that for ΦDG, all SCCs of the respective dependency graph are taken into account (not just,
as usual, the nontrivial ones). While termination of trivial SCCs follows trivially, they might
still form a bridge between nontrivial SCCs in a dependency graph thus crucially increasing
the length of derivations. Example 4.2 below illustrates this. Moreover, as mentioned above,
we use the proof tree to track its currently relevant part with respect to showing termination
of a given term. This relevant part may very well include the DP problem belonging to a
trivial SCC of a dependency graph.

I Definition 4.1. We redefine proof trees. A proof tree PT of R is a tree satisfying:
1) The nodes of PT are DP problems and (DP(R),R) is the root of PT.
2) For every inner node (P,R) in PT, there exists a sound DP processor Φ such that for

each DP problem (Q,R) ∈ Φ((P,R)), there exists an edge from (P,R) to (Q,R) in PT
labelled by Φ.

3) Further, suppose Φ = ΦDG. Then there exists an edge from (P,R) to a leaf (Q,R)
(labelled by Φ) for every trivial SCC Q of DG(P,R). Moreover the successors of (P,R)
are ordered from left to right in decreasing order with respect to the function rk.

The positions of nodes in PT are defined as usual as finite sequences of numbers. We
write Greek letters for positions in PT. It is easy to verify that there is a one-to-one
correspondence between proof trees according to Section 2 and Definition 4.1.

I Example 4.2. Consider the TRS R4 given by the rewrite rules: d(0) → 0, d(S(x)) →
S(S(d(x))), e(S(x), y) → e(x, d(y)), and sexp(S(x), e(0, y)) → sexp(x, e(y,S(0))). The de-
pendency pairs DP(R4) of R4 are:

1: d](S(x))→ d](x)
2 : e](S(x), y)→ d](y) 3 : e](S(x), y)→ e](x, d(y))
4 : sexp](S(x), e(0, y))→ e](y,S(0)) 5 : sexp](S(x), e(0, y))→ sexp](x, e(y,S(0)))

We start with the dependency graph processor ΦDG. The dependency graph of the initial
DP problem (DP(R4),R4) contains three nontrivial SCCs {1}, {3}, and {5}, and two trivial
SCCs {2} and {4}. Finiteness of each of the nontrivial SCCs can be shown by the reduction
pair processor ΦRP employing the following linear polynomial algebra A: SA(x) = x + 1,
0A = 0, dA(x) = 2x, eA(x, y) = 0, sexpA(x, y) = 0, and d]A(x) = e]A(x, y) = sexp]A(x, y) = x.

RTA’11

242 Complexity Induced by the DP Framework

Figure 1 shows the proof tree PT of this termination proof, where we make use of a
simplified notation for edge labels. The nodes at positions 11, 31, and 51 are leaves in this
proof tree because they are labelled by the DP problem (∅,R4), which is trivially finite. The
nodes at positions 2 and 4 are leaves because {4} and {2} are trivial SCCs of the dependency
graph employed. The following derivation illustrates the importance of trivial SCCs in our
analysis:

e](Sn(0),S(0))→∗{3}∪R4
e](S(0),S2n(0))→{2} d](S2n(0))→∗{1}∪R4

S2n+1
(0)

Observe that the step within the trivial SCC {2} connects two subderivations using the
(otherwise unconnected) SCCs {3} and {1}, thus increasing the length of the total derivation.
In order to capture this behaviour, we keep track of trivial SCCs in our proof trees.

(DP(R4),R4)

({3},R4)({4},R4)({5},R4) ({2},R4) ({1},R4)

(∅,R4) (∅,R4) (∅,R4)

ΦDG

ΦRP ΦRP ΦRP

Figure 1 A proof tree of R4

For the remainder of this section, we assume that termination of R is shown Theorem 2.4
employing a proof tree PT. Further suppose that there exists a multiply recursive reduction
pair function of R, and fix such a function g. Let d be the depth of PT plus one. As
stated in the proof plan, we now determine which part of the termination proof is active
with respect to a given term. Intuitively, for many terms, only a part of PT is relevant for
showing termination of that particular term. More specifically, for any term t, only a certain
subset of the dependency pairs can be used for rewriting t]. Of these dependency pairs, we
view the one occurring in the leftmost positions of PT (with respect to the order of PT) as
the current dependency pair. We call the set of positions in which the current dependency
pair occurs, the current path of t in PT.

I Example 4.3 (continued from Example 4.2). Consider the terms t1 = sexp(S(0), e(0,S(0))),
t2 = sexp(0, e(S(0),S(0))), and t3 = e(S(0),S(0)). We obtain the following derivations:
t]1 →DP(R4) t

]
2 and t]1 →DP(R4) t

]
3. Hence the term t]1 is not a normal form with respect to

{5}/R4 nor with {4}/R4. Similarly t]3 is not a normal form with respect to {3}/R4 and
{2}/R4. Therefore, the parts of PT highlighted in Figure 2 are particularly relevant for t1
and t3, respectively. The term t]2 is a normal form with respect to DP(R4)/R4, therefore no
part of the proof tree is relevant to show termination for t2.

The next definition formalises the relevant parts of a proof tree. As mentioned above it
suffices to restrict the notion to a single path.

I Definition 4.4. The current path PT(t) of a term t in PT is defined as follows. If t] ∈
NF(DP(R)/R), then PT(t) is the empty path, denoted as (). Otherwise, for each dependency
pair l → r such that t] /∈ NF({l → r}/R), consider the set of nodes whose label contains
l → r. By previous observations, each of these sets forms a path starting at the root node

G. Moser and A. Schnabl 243

(DP(R4),R4)

({3},R4)({4},R4)({5},R4) ({2},R4) ({1},R4)

(∅,R4) (∅,R4) (∅,R4)

ΦDG

ΦRP ΦRP ΦRP

(DP(R4),R4)

({3},R4)({4},R4)({5},R4) ({2},R4) ({1},R4)

(∅,R4) (∅,R4) (∅,R4)

ΦDG

ΦRP ΦRP ΦRP

Figure 2 The relevant parts of the proof tree for two terms

of PT. The set of positions forming the leftmost of these paths is PT(t). We use PTi(t)
to project on single elements of PT(t) = (α1 = ε, α2, . . . , αn): if i > n, then PTi(t) = ⊥,
otherwise PTi(t) = αi.

I Example 4.5 (continued from Example 4.3). The current paths of t1, t2, and t3 are the
following: we have PT(t1) = (ε, 1), PT(t2) = (), and PT(t3) = (ε, 3). For t1, the projections
on the single elements of the path are the following: PT1(t1) = ε, PT2(t1) = 1, and PTi(t1) =
⊥ for i > 2.

Using the DP processors applied to the nodes of PT(t), we now define the complexity
measure norm(t) assigned to t. For each DP processor, we use whatever value is naturally
decreasing in the termination argument of that processor in order to get the associated
bound. Given the reduction pair function g, norm(t) is easily computable.

I Definition 4.6. We define the mapping normi : T (F ,V) → N ∪ T (F ,V) ∪ {⊥} for i ∈ N
as follows: let t ∈ T (F ,V) and α = PTi(t).
1) If α = ⊥, we set normi(t) = 0 if rt(t) is a defined symbol, and normi(t) = ⊥ otherwise.
2) If α 6= ⊥ and (P,R) denotes the node at position α in PT such that (P,R) is a leaf,

then either P = ∅, or P is a trivial SCC of a dependency graph. In both cases, we set
normi(t) = dh(t],→P/R).

3) If α 6= ⊥ and (P,R) denotes the node at position α in PT such that (P,R) is an inner
node, then suppose Φ labels each edge starting from (P,R):
– If Φ is ΦRP with Φ((P,R)) = {(Q,R)}, then we set normi(t) = dh(t],→(P\Q)/(Q∪R)).
– If Φ is ΦDG using a dependency graph G, then we set normi(t) = rk(G, t).
– If Φ is ΦSC using a simple projection π, then we set normi(t) = π(t]).

We extend the mappings normi to the norm of a term: norm(t) = (norm1(t), . . . , normd(t)).

The central idea behind the complexity measures used in the mapping norm is that
rewrite steps induce lexicographical decreases in the norm of the considered term.

I Definition 4.7. We define the following order A on N∪T (F ,V)∪{⊥}. We have a A b if and
only if one of the following properties holds: (i) a ∈ N, b ∈ N, and a > b, (ii) a ∈ T (F ,V),
b ∈ T (F ,V), and a(→R ∪ B)+b, and (iii) a ∈ T (F ,V) and b = 0, or a ∈ T (F ,V) ∪ N and
b = ⊥.

We define w to be the reflexive closure of A. We write Alex and wlex for the lexicographic
extensions of A and w, respectively. Note that termination of R implies well-foundedness
of (→R ∪B)+, hence A is well-founded.

I Lemma 4.8. Let s and t be terms such that s >ε−−→R t. For all 1 6 i < d, if PTi(s) = PTi(t)
and normi(s) = normi(t), then either PTi+1(t) = ⊥, or PTi+1(s) = PTi+1(t).

RTA’11

244 Complexity Induced by the DP Framework

Proof Sketch. Straightforward case distinction on the node at position PTi(s). J

I Lemma 4.9. For any terms s and t such that s >ε−−→R t, we have norm(s) wlex norm(t).

Proof. We can assume that rt(t) is a defined symbol. Otherwise, normi(t) = ⊥ for all
1 6 i 6 d, and hence norm(t) = (⊥, . . . ,⊥), so the lemma would be trivial. As rt(s) = rt(t),
rt(s) is also defined. Hence, s] →R t].

We now show the following by induction on d−i: if for all 1 6 j < i, normj(s) = normj(t),
then (normi(s), . . . , normd(s)) wlex (normi(t), . . . , normd(t)). Clearly, this claim implies the
lemma, so the remainder of this proof is devoted to it. Applying Lemma 4.8 i − 1 times
reveals that PTi(t) is either ⊥ or the same as PTi(s). We perform case distinction on
PTi(t). We restrict our attention to the interesting case that PTi(s) = PTi(t) = α, α 6= ⊥,
and (P,R) denotes the node at α in PT such that (P,R) is an inner node.

Suppose Φ labels the edges starting from (P,R). If Φ is ΦRP with Φ((P,R)) = {(Q,R)},
then because of s] →R t], the inequality dh(s],→(P\Q)/(Q∪R)) > dh(t],→(P\Q)/(Q∪R)).
Thus normi(s) w normi(t) holds. If Φ is ΦDG using a dependency graph G, then for each
SCC Pj in G, s] can only be a normal form of Pj/R if t] is one, as well. Therefore, we
have normi(s) w normi(t) in that case, too. If Φ is ΦSC with simple projection π, then
normi(s) = π(s])→=

R π(t]) = normi(t), and hence normi(s) w normi(t).
So, regardless of the processor Φ, we have normi(s) w normi(t). If normi(s) A normi(t),

then the claim trivially follows. On the other hand, if normi(s) = normi(t), then the claim
holds by induction hypothesis. J

The following lemma extends Lemma 4.9 to root steps s ε−→R t. However, in this case,
we do not consider only the root position of t, but all positions that were “created” by the
rewrite step. So essentially, we show that such a step causes a decrease in Alex from s to
subterms of t. The restriction on positions p below takes care of the Dershowitz condition
in the definition of dependency pairs and the substitution of the applied rewrite rule.

I Lemma 4.10. For any terms s and t such that s ε−→R t, we have norm(s) Alex norm(t|p)
for all p ∈ Pos(t) such that t|p 6 s.

Proof. For this proof, we fix p, and let u = t|p. We can assume that rt(u) is a defined symbol.
Otherwise, norm(u) = (⊥, . . . ,⊥), but norm(s) wlex (0, . . . , 0) (note that rt(s) is defined),
so the lemma would be immediate. Hence, we have s] →DP(R) u

] using some dependency
pair l → r. Let j be the greatest number between 1 and d such that PTj(s) 6= ⊥, the
node at PTj(s) is (Q,R), and Q contains l → r. Note that such a number exists: since
s] →DP(R) u

], we have PT1(s) = ε, which denotes (DP(R),R), and DP(R) contains l → r.
Let α = PTj(s). We distinguish whether PTj(u) = α. This determines whether the strict
part of the lexicographic decrease must happen at index j or at an earlier index.

Suppose PTj(u) = α. Then we show that for all 1 6 i 6 j, normi(s) w normi(u) holds,
and normj(s) A normj(u). From these two properties, the lemma follows. In order to show
them, we fix some 1 6 i 6 j. Let β = PTi(s) = PTi(u).
1) If the node at position β is a leaf of PT, then i = j, andQ is a trivial SCC of a dependency

graph. By assumption, l → r ∈ Q. Therefore, dh(s],→Q/R) > dh(u],→Q/R), and thus
normi(s) A normi(u).

2) If the node (P,R) at position β is an inner node of PT, let Φ be the label of each edge
starting from (P,R). Obviously, Q ⊆ P, and therefore l → r ∈ P. For all possibilities
of Φ, the semantics of Φ imply that normi(s) w normi(u). Moreover, if i = j, then
normi(s) A normi(u) follows. In more detail: If Φ is ΦRP, then let {(P ′,R)} = Φ((P,R)).
Since l → r ∈ P, it follows that dh(s],→(P\P′)/(P′∪R)) > dh(u],→(P\P′)/(P′∪R)), and

G. Moser and A. Schnabl 245

thus normi(s) w normi(u). If i = j, then by definition of j, l→ r is contained in P \ P ′.
Therefore, normi(s) A normi(u) in that case. If Φ is ΦDG using a dependency graph G,
then by definition of SCCs in a dependency graph, rk(G, s) > rk(G, l → r) > rk(G, u),
hence normi(s) w normi(u). If i = j, then by definition of j, rk(G, s) 6= rk(G, l → r).
Thus, normi(s) A normi(u) in that case. If Φ is ΦSC with Φ((P,R)) = (P ′,R) and
simple projection π, then π(s]) D π(u]), and hence normi(s) w normi(u). If i = j, then
by definition of j, l → r ∈ P \ P ′, and hence π(s]) B π(u]) and normi(s) A normi(u) in
that case.

In all cases, it follows that for all 1 6 i 6 j, normi(s) w normi(u) holds, and normj(s) A
normj(u).

Now suppose PTj(u) 6= α. Then let i be the greatest number between 1 and j such that
PTi(s) = PTi(u) = β. As β is a prefix of α, the node (P,R) at β is an inner node of PT.
Let Φ be the label of each edge starting from (P,R). Using the arguments from above, we
see that normi′(s) w normi′(u) for all 1 6 i′ 6 i. We now show that normi(s) A normi(u) or
normi+1(s) A normi+1(u) holds.

1) If Φ is ΦRP or ΦSC, then by our assumptions, PTi+1(s) = β1. Since β has only one child
in this case, this implies PTi+1(u) = ⊥. Thus, normi+1(s) > 0 = normi+1(u).

2) If Φ is ΦDG, then normi(s) 6= normi(u), since PTi+1(s) 6= PTi+1(u) by assumption. Thus
normi(s) A normi(u).

In both cases, it follows that norm(s) Alex norm(u), which is what we wanted to show. J

Up to now, we have shown norm decreases under rewriting. For rewrite steps whose
redex position is at the root, this decrease is even strict. In order to turn this into an upper
bound on derivational complexities, we still have to do some work: we also have to consider
the norm of all proper subterms of a considered term, and the range of norm is not suitable
for direct complexity measures yet. We now solve these problems by lifting the range of
norm to the term level and simulating derivations of R at that level.

For the rest of this section let A be the maximum arity of any function symbol occurring
in R, and C := max{dp(r) | l → r ∈ R}. Depending on PT, d, A, C, and g, we now
define a TRS S which simulates R and is compatible with LPO. The simulating TRS S
is based on a mapping tr (see Definition 4.13) such that s →R t implies tr(s) →+

S tr(t).
Given a term t, tr employs the d + A-ary function symbol f. The first d arguments of f
are used to represent norm(t); the last a arguments of f are used to represent tr(t′) for each
direct subterm t′ of t. In the simulation, we often have to recalculate the first d arguments
of each f. Due to the definition of norm, we know that for each term t and 1 6 i 6 d,
either normi(t) ∈ N and normi(t) 6 g(|t|), or normi(t) ∈ T (F ,V) and normi(t) E t, or
normi(t) = ⊥. We use a unary function symbol choice such that choice(tr(t)) rewrites to
the representations of g(|t|), tr(t′) for each subterm t′ of t, and ⊥. In particular we often
we use terms of the shape choice(f(0, . . . , 0, x1, . . . , xA)) in the definition of S, so we use the
abbreviation N(x1, . . . , xA) for this.

The main tool for achieving the simulation of a root rewrite step s ε−→R t are rules which
build the new f symbols for the positions in t “created” by the step. These are at most AC+1

many new positions, and each proper subterm of s may be duplicated at most that many
times. As a very simple example, if d = 3, A = 1, and C = 1, this behaviour is simulated

RTA’11

246 Complexity Induced by the DP Framework

by rules of the following shape:

f(u1,S(u2), u3, x)→ f(u1, u2, N(x), f(u1, u2, N(x), x))
f(u1, f(v1, v2, v3, y), u3, x)→ f(u1, y,N(x), f(u1, y,N(x), x))
f(u1, f(v1, v2, v3, y), u3, x)→ f(u1, 0, N(x), f(u1, 0, N(x), x))

f(u1, 0, u3, x)→ f(u1,⊥, N(x), f(u1,⊥, N(x), x))

We use similar rules for decreases of u1 or u3 with respect to the ordering A. In order
to write down these rules concisely for arbitrary A and C, we make use of the following
abbreviation Mk

i (for i ∈ {1, . . . , d} and k ∈ N):

M0
i (u1, . . . , ui, x1, . . . , xA) = f(u1, . . . , ui, N(x1, . . . , xA), x1, . . . , xA)

Mk+1
i (u1, . . . , ui, x1, . . . , xA)

= f(u1, . . . , ui, N(Mk
i (u1, . . . , ui, x1, . . . , xA)),Mk

i (u1, . . . , ui, x1, . . . , xA))

Here ui (i ∈ {1, . . . , i}) and xj (j ∈ {1, . . . , A}) denote variables and t is an abbreviation of
t, . . . , t, where the number of repetitions of t follows from the context.

Consider the reduction pair function g of R. Since g is assumed to be a multiple recursive
function, it is an easy exercise to define a TRS S ′ (employing the constructors S, 0) that
computes the function g: one can simply define g using only initial functions, composition,
primitive recursion, and k-ary Ackermann functions, and directly turn the resulting defini-
tion of g into rewrite rules. That is, there exists a TRS S ′ and a defined function symbol
g such that g(Sn(0)) →∗S′ Sg(n)(0). Here we use Sn(0) to denote S(. . . (S(0)) . . .), where S
is repeated n times. Moreover, S ′ is compatible with a LPO such that the precedence � of
the LPO includes g � S � 0.

I Definition 4.11. Consider the following (schematic) TRS S, where 1 6 i 6 d and 1 6
j 6 A. Here we use ~x as a shorthand for x1, . . . , xA.

1i : f(u1, . . . , ui−1,S(ui), ui+1, . . . , ud, ~x)→MC
i (u1, . . . , ui, ~x)

2i,j : f(u1, . . . , ui−1, f(v1, . . . , vd, ~y), ui+1, . . . , ud, ~x)→MC
i (u1, . . . , ui−1, yj , ~x)

3i : f(u1, . . . , ui−1, f(v1, . . . , vd, ~y), ui+1, . . . , ud, ~x)→MC
i (u1, . . . , ui−1, 0, ~x)

4i : f(u1, . . . , ui−1, 0, ui+1, . . . , ud, ~x)→MC
i (u1, . . . , ui−1,⊥, ~x)

5j : size(f(u1, . . . , ud, ~x))→ ×A(size(xj))
6 : size(c)→ S(0)
7 : ×A(S(x))→ SA(×A(x))
8 : ×A(0)→ 0
9: f(u1, . . . , ud, ~x)→ c

10j : f(u1, . . . , ud, ~x)→ xj

11: h(x)→ f(N(x), x)

12: z→ f(N(c), c)
13j : choice(f(u1, . . . , ud, ~x))→ xj

14: choice(x)→ g(size(x))
15: choice(x)→ ⊥

These rules are augmented by S ′ defining the function symbol g. The signatures of S ′ and
S \ S ′ are disjoint with the exception of g and the constructors S and 0.

G. Moser and A. Schnabl 247

Note that S depends only on the constants d, A, C, and the reduction pair function g.
The rules 1i–4i are the main rules for the simulation of the effects of a single rewrite step
s
ε−→R t in S. These rules employ that normi(s]) A normi((t|p)]) for all p ∈ Pos(t) such that

t|p 6 s, and normi′(s]) w normi′((t|p)]) for all 1 6 i′ 6 i. They are also responsible for
creating the at most AC+1 many new positions and copies of each subterm of s in t. The
rules 5j–8 define a function symbol size, that is, size(s) reduces to a numeral Sn(0) such that
n > |s|. The rules 9–10j make sure that any superfluous positions and copies of subterms
created by the rules of type 1i–4i can be deleted. The rules 11 and 12 guarantee that the
simulating derivation can be started with a small enough initial term. The rules 13j–15
define the function symbol choice introduced in the abbreviations MC

i , and N . Loosely
speaking, choice(t) is an upper bound of all normi(t) with respect to w.

The next lemma essentially follows from Weiermann’s result that LPO induces multiple
recursive derivational complexity.

I Lemma 4.12. The function dcS is multiply recursive.

Proof. The TRS S ′ computing g can be shown terminating using an LPO such that the
precedence � of the LPO contains g � S � 0. It is easy to check that extending this
precedence by

h, z � f � choice � g size � S � ×,0, c,⊥ ,

makes the whole TRS S compatible with this LPO. By [25], termination of a finite TRS by
an LPO implies that the derivational complexity of that TRS is multiple recursive. Note
that the definition of multiple recursion used in this paper and the definition given in [25]
coincide by [19]. Thus, dcS is a multiple recursive function. J

For the remainder of this section, let H denote the signature of S. We now show that
the TRS S indeed simulates R as requested. Since the proofs of the lemmas in this part of
the paper are rather straightforward, but very technical. for them.

I Definition 4.13. The mapping tr : T (F) → T (H) is defined by the equation tr(t) =
f((norm1(t))∗, . . . , (normd(t))∗, tr(t1), . . . , tr(tn), c, . . . , c), where t = f(t1, . . . , tn) and the op-
erator (·)∗ is defined for a term s as follows:

u∗ :=

⊥ if u = ⊥
Su(0) if u ∈ N
tr(u) if u ∈ T (F ,V)

We define an equivalence s ≈ t on T (H). If s = c, then t = c. Otherwise if s =
f(u1, . . . , ud, s1, . . . , sA), then t = f(v1, . . . , vd, t1, . . . , tA) such that si ≈ ti for all 1 6 i 6 A.

I Lemma 4.14. For all ground terms s with t ≈ tr(s), size(t)→+
S Sn(0) where n > |s|.

Proof Sketch. The proof uses induction on |s|. The main ingredient of the inductive argu-
ment is straightforward application of the rules 5j–8 of S. J

I Lemma 4.15. The following properties of S hold:
1) If s = f(u∗1, . . . , u∗d, ~s), t = tr(t′) = f(v∗1 , . . . , v∗d, ~s), and (u1, . . . , ud) Alex (v1, . . . , vd),

then s→+
S t.

2) For any ground terms s = tr(s′) and t = tr(t′), s′ ε−→R t′ implies s→+
S t.

RTA’11

248 Complexity Induced by the DP Framework

3) If a →R b and tr(a) →+
S tr(b), then for any n-ary function symbol f ∈ F , we have

s = tr(f(t1, . . . , a, . . . , tn))→+
S tr(f(t1, . . . , b, . . . , tn)).

Proof Sketch. The proof uses mutual induction on dh(s,→S∪B). Note that by Lemma 4.12,
S terminates, and hence →S ∪B is well-founded. The following are the central parts of the
inductive arguments for the three properties of the lemma:
1) Property 1 states that all lexicographic decreases in the norm of a term occurring during

a simulation can indeed be handled by S. The main ingredient for this part of the proof
is the application of the rules 1i–4i of S.

2) Property 2 states that the simulation of a root rewrite step can indeed be done within
S. The outline of this part of the proof is the following: The first step of the simulation
is an application of one of the rules 1i–4i. This yields a rewrite step of the shape

s→S MC
i ((norm1(s′))∗, . . . , (normi−1(s′))∗, v′∗i , s1, . . . , sn)

such that v′i A normi(s′). The proof then proceeds to show by side induction on dp(u)
the following for subterms u of t′, which concludes Property 2 of the lemma:

M
dp(u)
i ((norm1(s′))∗, . . . , (normi−1(s′))∗, v′∗i , s1, . . . , sn)→∗S tr(u) .

The most important argument within the side induction is the application of Lemma 4.10.
3) Property 3 essentially states that Property 2 is closed under contexts. The main ingredi-

ent for this part of the proof is the application of Lemma 4.9.
J

The next lemma is an easy consequence of Lemma 4.15(2) and (3).
I Lemma 4.16. For any ground terms s and t, s→R t implies tr(s)→+

S tr(t).
Lemma 4.16 yields that the length of any derivation in R can be estimated by the

maximal derivation height with respect to S. To extend Lemma 4.16 so that the derivational
complexity function dcR can be measured via the function dcS we make use of the following
lemma.
I Lemma 4.17. For any ground term t, we have hdp(t)(z)→+

S tr(t).
Proof Sketch. The proof uses induction on dp(t). The main ingredients of the induct-
ive argument are rules 11–12 of S and choice(t′) essentially being an upper bound for all
normi(t′). J

We recall our main result, Theorem 3.5.
I Theorem (Main Theorem). Let R be a TRS whose termination is shown via Theorem 2.4
and let the reduction pair function g of R be multiple recursive. Then the derivational
complexity function dcR with respect to R is bounded by a multiple recursive function. Fur-
thermore this upper bound is tight.
Proof. Let S be the simulating TRS for R, as defined over the course of this section. Due
to Lemma 4.12, dcS is multiply recursive. Let t be a term. Without loss of generality, we
assume that t is ground. Due to Lemmas 4.16 and 4.17, we have the following inequalities:

dh(t,→R) 6 dh(tr(t),→S) 6 dh(hdp(t)(z),→S) .

Note that |hdp(t)(z)| 6 |t|. Hence for all n ∈ N: dcR(n) 6 dcS(n). Thus, dcR is multiply
recursive. Tightness of the bound follows by Lemma 3.3: for any multiply recursive function
f , there exists a k such that dcRk3 dominates f , and dcRk3 terminates by Theorem 2.4.
Moreover, the proof tree induced by the termination proof shown in Example 3.2 admits a
constant reduction pair function. J

G. Moser and A. Schnabl 249

5 Conclusion and Future Work

In this paper we established that the derivational complexity of any TRS whose termina-
tion can be shown within the DP framework is bounded by a multiple recursive function,
whenever the set of processors used is suitably restricted.

As briefly mentioned in the introduction the derivational complexity is not the only
measure of the complexity of a TRS suggested in the literature. In particular, alternative
approaches have been suggested by Choppy et al. [3], Cichon and Lescanne [4], Hirokawa
and the first author [11]. In [11] the runtime complexity with respect to a TRS is defined as
a refinement of the derivational complexity, by restricting the set of admitted initial terms.
This notion has first been suggested in [3], where it is augmented by an average case analysis.
Finally [4] studies the complexity of the functions computed by a given TRS. This latter
notion is extensively studied within implicit computational complexity theory (see [2] for an
overview).

While we have presented our results for derivational complexity, it is easy to see that the
same result holds for runtime complexity (as defined in [11]) and also for the complexity of
the functions computed by the TRS (as suggested in [4]). For the former it suffices to observe
that runtime complexity is a restriction of derivational complexity and that Example 3.2
provides a non-primitive recursive lower bound also in the context of runtime complexity.
With respect to the second claim it suffices to observe that any function computed by a
TRS that admits at most multiple recursive runtime complexity is computable on a Turing
machine in multiple recursive time (compare also [1]). We assume that a similar result holds
for the more involved notion proposed in [3]. However, this requires further work.

Thus our results indicate that the DP framework may induce multiple recursive com-
plexity. This constitutes a first, but important, step towards the analysis of the complexity
induced by the DP framework in general. Note that for all termination technique whose
complexity has been analysed a multiple recursive upper bound exists. This leads us to the
following conjecture.

I Conjecture. Let R be a TRS whose termination can be proved with the DP framework
using any DP processors, whose induced complexity does not exceed the class of multiple
recursive functions. Then the derivational complexity with respect to R is multiple recursive.

Should this conjecture be true, then for instance, none of the existing automated termination
techniques would in theory be powerful enough to prove termination of Dershowitz’s sys-
tem TRS/D33-33, aka the Hydra battle rewrite system, whose complexity is not a provable
recursive function of Peano Arithmetic (see [6, 14]). Hence far beyond multiple-recursion.

References
1 M. Avanzini and G. Moser. Closing the gap between runtime complexity and polytime

computability. In Proc. 21st RTA, volume 6 of LIPIcs, pages 33–48, 2010.
2 P. Baillot, J.-Y. Marion, and S. R. D. Rocca. Guest editorial: Special issue on implicit

computational complexity. ACM Trans. Comput. Log., 10(4), 2009.
3 C. Choppy, S. Kaplan, and M. Soria. Complexity analysis of term-rewriting systems. TCS,

67(2–3):261–282, 1989.
4 E.-A. Cichon and P. Lescanne. Polynomial interpretations and the complexity of algorithms.

In Proc. 11th CADE, volume 607 of LNCS, pages 139–147, 1992.
5 T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. Introduction to Algorithms.

McGraw-Hill Higher Education, 2nd edition, 2001.

RTA’11

250 Complexity Induced by the DP Framework

6 N. Dershowitz and G. Moser. The Hydra battle revisited. In Rewriting, Computation and
Proof, volume 4600 of LNCS, pages 1–27, 2007.

7 J. Endrullis, J. Waldmann, and H. Zantema. Matrix interpretations for proving termination
of term rewriting. JAR, 40(3):195–220, 2008.

8 A. Geser. Relative Termination. PhD thesis, Universität Passau, 1990.
9 J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing and improving

dependency pairs. JAR, 37(3):155–203, 2006.
10 N. Hirokawa and A. Middeldorp. Tyrolean termination tool: Techniques and features. IC,

205:474–511, 2007.
11 N. Hirokawa and G. Moser. Automated complexity analysis based on the dependency pair

method. In Proc. 4th IJCAR, volume 5195 of LNAI, pages 364–380, 2008.
12 D. Hofbauer. Termination Proofs and Derivation Lengths in Term Rewriting Systems.

PhD thesis, Technische Universität Berlin, 1992.
13 D. Hofbauer and C. Lautemann. Termination proofs and the length of derivations. In Proc.

3rd RTA, volume 355 of LNCS, pages 167–177, 1989.
14 G. Moser. The Hydra Battle and Cichon’s Principle. AAECC, 20(2):133–158, 2009.
15 G. Moser and A. Schnabl. The derivational complexity induced by the dependency pair

method. In Proc. 20th RTA, volume 5595 of LNCS, pages 255–269, 2009.
16 G. Moser and A. Schnabl. The derivational complexity induced by the dependency pair

method. LMCS, 2011. To appear. Available at http://arxiv.org/abs/0904.0570.
17 G. Moser and A. Schnabl. Termination proofs in the dependency pair framework may

induce multiple recursive derivational complexity. CoRR, abs/1103.5082, 2011.
18 F. Neurauter, H. Zankl, and A. Middeldorp. Revisiting matrix interpretations for polyno-

mial derivational complexity of term rewriting. In Proc. 17th LPAR, volume 6397 of LNCS
(ARCoSS), pages 550–564, 2010.

19 R. Péter. Zusammenhang der mehrfachen und transfiniten Rekursionen. JSL, 15(4):248–
272, 1950.

20 R. Péter. Recursive Functions. Academic Press, 1967.
21 H. E. Rose. Subrecursion - function and hierarchies. Clarendon Press, 1984.
22 TeReSe. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical Computer

Science. Cambridge University Press, 2003.
23 R. Thiemann. The DP Framework for Proving Termination of Term Rewriting. PhD thesis,

University of Aachen, 2007.
24 J. Waldmann. Polynomially bounded matrix interpretations. In Proc. 21st RTA, volume 6

of LIPIcs, pages 357–372, 2010.
25 A. Weiermann. Termination proofs for term rewriting systems with lexicographic path

orderings imply multiply recursive derivation lengths. TCS, 139(1,2):355–362, 1995.
26 H. Zankl and M. Korp. Modular complexity analysis via relative complexity. In Proc. 21st

RTA, volume 6 of LIPIcs, pages 385–400, 2010.

http://arxiv.org/abs/0904.0570

	Introduction
	Preliminaries
	Main Theorem
	Proof of the Main Result
	Conclusion and Future Work

