
Rewriting-based Quantifier-free Interpolation for a
Theory of Arrays
Roberto Bruttomesso1, Silvio Ghilardi2, and Silvio Ranise3

1 Università della Svizzera Italiana, Lugano, Switzerland
2 Università degli Studi di Milano, Milan, Italy
3 FBK (Fondazione Bruno Kessler), Trento, Italy

Abstract
The use of interpolants in model checking is becoming an enabling technology to allow fast and
robust verification of hardware and software. The application of encodings based on the theory of
arrays, however, is limited by the impossibility of deriving quantifier-free interpolants in general.
In this paper, we show that, with a minor extension to the theory of arrays, it is possible to
obtain quantifier-free interpolants. We prove this by designing an interpolating procedure, based
on solving equations between array updates. Rewriting techniques are used in the key steps of
the solver and its proof of correctness. To the best of our knowledge, this is the first successful
attempt of computing quantifier-free interpolants for a theory of arrays.

Digital Object Identifier 10.4230/LIPIcs.RTA.2011.171

Category Regular Research Paper

1 Introduction

After the seminal work of McMillan (see, e.g., [20]), Craig’s interpolation [9] has become an
important technique in verification. For example, the importance of computing quantifier-
free interpolants to over-approximate the set of reachable states for model checking has been
observed. Unfortunately, Craig’s interpolation theorem does not guarantee that it is always
possible to compute quantifier-free interpolants. Even worse, for certain first-order theories,
it is known that quantifiers must occur in interpolants of quantifier-free formulae [15]. As a
consequence, a lot of effort has been put in designing efficient procedures for the computa-
tion of quantifier-free interpolants for first-order theories which are relevant for verification
(e.g., uninterpreted functions and fragments of Presburger arithmetics). Despite these ef-
forts, so far, only the negative result in [15] is available for the computation of interpolants
in the theory of arrays with extensionality, axiomatized by the following three sentences:
∀y, i, e.rd(wr(y, i, e), i) = e, ∀y, i, j, e.i 6= j ⇒ rd(wr(y, i, e), j) = rd(y, j), and

∀x, y.x 6= y ⇒ (∃i. rd(x, i) 6= rd(y, i)),

where rd and wr are the usual operations for reading and updating arrays, respectively.
This theory is important for both hardware and software verification, and a procedure for
computing quantifier-free interpolants “would extend the utility of interpolant extraction as
a tool in the verifier’s toolkit” [20]. Indeed, the endeavour of designing such a procedure
would be bound to fail (according to [15]) if we restrict ourselves to the original theory. To
circumvent the problem, we replace the third axiom above with its Skolemization, i.e.,

∀x, y.x 6= y ⇒ rd(x, diff(x, y)) 6= rd(y, diff(x, y))),

so that the Skolem function diff is supposed to return an index at which the elements stored
in two distinct arrays are different. This variant of the theory of arrays admits quantifier-
free interpolants for quantifier-free formulae. The main contribution of the paper is to prove

© R. Bruttomesso, S. Ghilardi, S. Ranise;
licensed under Creative Commons License NC-ND

22nd International Conference on Rewriting Techniques and Applications.
Editor: M. Schmidt-Schauß; pp. 171–186

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62916245?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.RTA.2011.171
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

172 Rewriting-based Quantifier-free Interpolation for a Theory of Arrays

this by designing an algorithm for the generation of quantifier-free interpolants
from finite sets (intended conjunctively) of literals in the theory of arrays with
diff. The algorithm uses as a sub-module a satisfiability procedure for sets of literals of
the theory, based on a sequence of syntactic transformations organized in several groups.
The most important group of such transformations is a Knuth-Bendix completion procedure
(see, e.g., [2]) extended to solve an equation a = wr(b, i, e) for b when this is required by the
ordering defined on terms. The goal of these transformations is to produce a “modularized”
constraint for which it is trivial to establish satisfiability. To compute interpolants, the
satisfiability procedure is invoked on two mutually unsatisfiable sets A and B of literals.
While running, the two instances of the procedure exchange literals on the common signature
of A and B (similarly to the Nelson and Oppen combination method, see, e.g., [21]) and
perform some additional operations. At the end of the computation, the execution trace is
examined and the desired interpolant is built by applying simple rules manipulating Boolean
combinations of literals in the common signature of A and B.

The paper is organized as follows. In §2, we recall some background notions and introduce
the notation. In §3, we give the notion of modularized constraint and state its key properties.
In §4, we describe the satisfiability solver for the theory of arrays with diff and extend it
to produce interpolants in §5. Finally, we discuss the related work and conclude in §6. All
proofs can be found in [5].

2 Background and Preliminaries

We assume the usual syntactic (e.g., signature, variable, term, atom, literal, formula, and
sentence) and semantic (e.g., structure, truth, satisfiability, and validity) notions of first-
order logic. The equality symbol “=” is included in all signatures considered below. For
clarity, we shall use “≡” in the meta-theory to express the syntactic identity between two
symbols or two strings of symbols.

A theory T is a pair (Σ, AxT), where Σ is a signature and AxT is a set of Σ-sentences,
called the axioms of T (we shall sometimes write directly T for AxT). The Σ-structures in
which all sentences from AxT are true are the models of T . A Σ-formula φ is T -satisfiable
if there exists a model M of T such that φ is true in M under a suitable assignment a
to the free variables of φ (in symbols, (M, a) |= φ); it is T -valid (in symbols, T ` ϕ) if
its negation is T -unsatisfiable or, equivalently, iff ϕ is provable from the axioms of T in a
complete calculus for first-order logic. A formula ϕ1 T -entails a formula ϕ2 if ϕ1 → ϕ2 is
T -valid; the notation used for such T -entailment is A `T B or simply A ` B, if T is clear
from the context. The satisfiability modulo the theory T (SMT (T)) problem amounts to
establishing the T -satisfiability of quantifier-free Σ-formulae.

Let T be a theory in a signature Σ; a T -constraint (or, simply, a constraint) A is a set of
ground literals in a signature Σ′ obtained from Σ by adding a set of free constants. Taking
conjunction, we can see a finite constraint A as a single formula; thus, when we say that a
constraint A is T -satisfiable (or just “satisfiable” if T is clear from the context), we mean
that the associated formula (also called A) is satisfiable in a Σ′-structure which is a model
of T . We have two notions of equivalence between constraints, which are summarized in the
next definition:

I Definition 2.1. Let A and B be finite constraints (or, more generally, first order sentences)
in an expanded signature. We say that A and B are logically equivalent (modulo T) iff T `
A↔ B; on the other hand, we say that they are ∃-equivalent (modulo T) iff T ` A∃ ↔ B∃,
where A∃ (and similarly B∃) is the formula obtained from A by replacing free constants

Roberto Bruttomesso, Silvio Ghilardi, and Silvio Ranise 173

with variables and then existentially quantifying them out.

Logical equivalence means that the constraints have the same semantic content (modulo
T); ∃-equivalence is also useful because we are mainly interested in T -satisfiability of con-
straints and it is trivial to see that ∃-equivalence implies equi-satisfiability (again, modulo
T). As an example, if we take a constraint A, we replace all occurrences of a certain term t

in it by a fresh constant a and add the equality a = t, called the (explicit) definition (of t),
the constraint A′ we obtain in this way is ∃-equivalent to A. As another example, suppose
that A `T a = t, that a does not occur in t, and that A′ is obtained from A by replacing a
by t everywhere; then the following four constraints are ∃-equivalent

A, A ∪ {a = t}, A′ ∪ {a = t}, A′

(the first three are also pairwise logically equivalent). The above examples show how explicit
definitions can be introduced and removed from constraints while preserving ∃-equivalence.

Theories of Arrays. In this paper, we consider a variant of a three-sorted the-
ory of arrays defined as follows. The McCarthy theory of arrays AX [17] has three sorts
ARRAY, ELEM, INDEX (called “array”, “element”, and “index” sort, respectively) and two func-
tion symbols rd and wr of appropriate arities; its axioms are:

∀y, i, e. rd(wr(y, i, e), i) = e (1)
∀y, i, j, e. i 6= j ⇒ rd(wr(y, i, e), j) = rd(y, j). (2)

The theory of arrays with extensionality AX ext has the further axiom ∀x, y.x 6= y ⇒
(∃i. rd(x, i) 6= rd(y, i)) (called the ‘extensionality’ axiom). To build the theory of arrays
with diff AX diff, we need a further function symbol diff in the signature and we replace
the extensionality axiom by its Skolemization

∀x, y. x 6= y ⇒ rd(x, diff(x, y)) 6= rd(y, diff(x, y)). (3)

As it is evident from axiom (3), the new symbol diff is a binary function of sort INDEX
taking two arguments of sort ARRAY: its semantics is a function producing an index where
the input arguments differ (it has an arbitrary value in case the input arguments are equal).

We introduce here some notational conventions which are specific for constraints in our
theory AX diff. We use a, b, . . . to denote free constants of sort ARRAY, i, j, . . . for free
constants of sort INDEX, and d, e, . . . for free constants of sort ELEM; α, β, . . . stand for
free constants of any sort. Below, we shall introduce non-ground rewriting rules involving
(universally quantified) variables of sort ARRAY: for these variables, we shall use the symbols
x, y, z, We make use of the following abbreviations.

- [Nested write terms] By wr(a, I, E) we indicate a nested write on the array variable
a, where indexes are represented by the free constants list I ≡ i1, . . . , in and elements
by the free constants list E ≡ e1, . . . , en; more precisely, wr(a, I, E) abbreviates the
term wr(wr(· · ·wr(a, i1, e1) · · ·), in, en). Notice that, whenever the notation wr(a, I, E)
is used, the lists I and E must have the same length; for empty I, E, the term wr(a, I, E)
conventionally stands for a.

- [Multiple read literals] Let a be a constant of sort ARRAY, I ≡ i1, . . . , in and E ≡ e1, . . . , en

be lists of free constants of sort INDEX and ELEM, respectively; rd(a, I) = E abbreviates
the formula rd(a, i1) = e1 ∧ · · · ∧ rd(a, in) = en.

- [Multiple equalities] If L ≡ α1, . . . , αn and L′ ≡ α′1, . . . , α
′
n are lists of constants of the

same sort, by L = L′ we indicate the formula
∧n

i=1 αi = α′i.

RTA’11

174 Rewriting-based Quantifier-free Interpolation for a Theory of Arrays

Refl wr(a, I, E) = a↔ rd(a, I) = E

Proviso: Distinct(I)
Symm (wr(a, I, E) = b ∧ rd(a, I) = D)↔ (wr(b, I,D) = a ∧ rd(b, I) = E)

Proviso: Distinct(I)
Trans (a = wr(b, I, E) ∧ b = wr(c, J,D))↔ (a = wr(c, J · I,D · E) ∧ b = wr(c, J,D))
Confl b = wr(a, I · J,E ·D) ∧ b = wr(a, I ·H,E′ · F)↔

↔ (b = wr(a, I, E) ∧ E = E′ ∧ rd(a, J) = D ∧ rd(a,H) = F)
Proviso: Distinct(I · J ·H)

Red (a = wr(b, I, E) ∧ rd(b, ik) = ek)↔ (a = wr(b, I−k,E−k) ∧ rd(b, ik) = ek)
Proviso: Distinct(I)

Legenda: a and b are constants of sort ARRAY; I ≡ i1, . . . , in, J ≡ j1, . . . , jm and
H ≡ h1, . . . , hl are lists of constants of sort INDEX; E ≡ e1, . . . , en, E′ ≡ e′1, . . . , e

′
n,

D ≡ d1, . . . , dm, and F ≡ f1, . . . , fl are lists of constants of sort ELEM.

Figure 1 Key properties of write terms

- [Multiple distinctions] If L ≡ α1, . . . , αn is a list of constants of the same sort, by
Distinct(L) we abbreviate the formula

∧
i6=j αi 6= αj .

- [Juxtaposition and subtraction] If L ≡ α1, . . . , αn and L′ ≡ α′1, . . . , α
′
m are lists of

constants, by L · L′ we indicate the list α1, . . . , αn, α
′
1, . . . , α

′
m; for 1 ≤ k ≤ n, the list

L− k is the list α1, . . . , αk−1, αk+1, . . . , αn.
Some key properties of equalities involving write terms are stated in the following lemma
(see also Figure 1).

I Lemma 2.2 (Key properties of write terms). The formulae in Figure 1 are all AX diff-valid
under the assumption that their provisoes - if any - hold (when we say that a formula φ is
AX diff-valid under the proviso π, we just mean that π `AX diff φ).

A (ground) flat literal is a literal of the form a = wr(b, I, E), rd(a, i) = e, diff(a, b) = i, α =
β, α 6= β. Notice that replacing a sub-term t with a fresh constant α in a constraint A and
adding the corresponding defining equation α = t to A always produces an ∃-equivalent
constraint; by repeatedly applying this method, one can show that every constraint is ∃-
equivalent to a flat constraint, i.e., to one containing only flat literals. We split a flat
constraint A into two parts, the index part AI and the main part AM : AI contains the
literals of the form i = j, i 6= j, diff(a, b) = i, whereas AM contains the remaining literals,
i.e., those of the form a = wr(b, I, E), a 6= b, rd(a, i) = e, e = d, e 6= d (atoms a = b are
identified with literals a = wr(b, ∅, ∅)). We write A =< AI , AM > to indicate the two parts
of the constraint A.

3 Constraints combination

We shall need basic term rewriting system terminology and results: the reader is referred
to [2] for the required background. In the main part of a constraint, positive literals will be
treated as rewrite rules; to get a suitable orientation, we use a lexicographic path ordering
with a total precedence > such that a > wr > rd > diff > i > e, for all a, i, e of the
corresponding sorts. This choice orients equalities a = wr(b, I, E) from left to right when
a > b; equalities like a = wr(b, I, E) for a < b or a ≡ b will be called badly orientable
equalities. Our plan to derive a quantifier-free interpolation procedure for AX diff relies on

Roberto Bruttomesso, Silvio Ghilardi, and Silvio Ranise 175

the notion of “modularized constraint”: after introducing such constraints, we show that
their satisfiability can be easily recognized (Lemma 3.2) and that they can be combined in
a modular way (Proposition 3.3).

I Definition 3.1. A constraint A =< AI , AM > is said to be modularized iff it is flat and
the following conditions are satisfied (we let Ĩ , Ẽ be the sets of free constants of sort INDEX
and ELEM occurring in A):
(o) no positive index literal i = j occurs in AI ;
(i) no negative array literal a 6= b occurs in AM ;
(ii) AM does not contain badly orientable equalities;
(iii) the rewriting system AR given by the oriented positive literals of AM joined with the

rewriting rules
rd(wr(x, i, e), j)→ rd(x, j) for i, j ∈ Ĩ, e ∈ Ẽ, i 6≡ j (4)

rd(wr(x, i, e), i)→ e for i ∈ Ĩ, e ∈ Ẽ (5)
wr(wr(x, i, e), j, d)→ wr(wr(x, j, d), i, e) for i, j ∈ Ĩ, e, d ∈ Ẽ, i > j (6)

wr(wr(x, i, e), i, d)→ wr(x, i, d). for i ∈ Ĩ, e, d ∈ Ẽ (7)
is confluent and ground irreducible;1

(iv) if a = wr(b, I, E) ∈ AM and i, e are in the same position in the lists I, E, respectively,
then rd(b, i) 6↓AR

e (we use ↓AR
for joinability of terms);

(v) {diff(a, b) = i, diff(a′, b′) = i′} ⊆ AI and a ↓AR
a′ and b ↓AR

b′ imply i ≡ i′;
(vi) diff(a, b) = i ∈ AI and rd(a, i) ↓AR

rd(b, i) imply a ↓AR
b.

I Remark. Condition (o) means that the index constants occurring in a modularized con-
straint are implicitly assumed to denote distinct objects. This is confirmed also by the proof
of Lemma 3.2 below: from which, it is evident that the addition of all the negative literals
i 6= j (for i, j ∈ Ĩ with i 6≡ j) does not compromise the satisfiability of a modularized
constraint, precisely because such negative literals are implicitly part of the constraint.

In Condition (i), negative array literals a 6= b are not allowed because they can be replaced
by suitable literals involving fresh constants and the diff operation (see axiom (3)).

Rules (4) and (5) mentioned in condition (iii) reduce read-over-writes and rules (6) and
(7) sort indexes in flat terms wr(a, I, E) in ascending order. In addition, condition (iv)
prevents further redundancies in our rules.

Conditions (v) and (vi) deal with diff: in particular, (v) says that diff is “well defined”
and (vi) is a “conditional” translation of the contraposition of axiom (3).

I Remark. The non-ground rules from Definition 3.1(iii) form a convergent rewrite system
(critical pairs are confluent): this can be checked manually (and can be confirmed also by
tools like SPASS or MAUDE). Ground rules from AR are of the form

a→ wr(b, I, E), (8)
rd(a, i)→ e, (9)
e→ d. (10)

Only rules of the form (10) can overlap with the non-ground rules (4)-(7), but the resulting
critical pairs are trivially confluent. Thus, in order to check confluence of AM , only overlaps

1The latter means that no rule can be used to reduce the left-hand or the right-hand side of another
ground rule. Notice that ground rules from AR are precisely the rules obtained by orienting an equality
from AM (rules (4)-(7) are not ground as they contain one variable, namely the array variable x).

RTA’11

176 Rewriting-based Quantifier-free Interpolation for a Theory of Arrays

between ground rules (8)-(10) need to be considered (this is the main advantage of our choice
to orient equalities a = wr(b, I, E) from left to right instead of right to left).

I Lemma 3.2. A modularized constraint A is AX diff-satisfiable iff for no negative element
equality e 6= d from AM , we have that e ↓AR

d.

Let A,B be two constraints in the signatures ΣA,ΣB obtained from the signature Σ by
adding some free constants and let ΣC := ΣA ∩ ΣB . Given a term, a literal or a formula ϕ
we call it:

AB-common iff it is defined over ΣC ;
A-local (resp. B-local) if it is defined over ΣA (resp. ΣB);
A-strict (resp. B-strict) iff it is A-local (resp. B-local) but not AB-common;
AB-mixed if it contains symbols in both (ΣA \ ΣC) and (ΣB \ ΣC);
AB-pure if it does not contain symbols in both (ΣA \ ΣC) and (ΣB \ ΣC).

(Notice that, sometimes in the literature about interpolation, “A-local” and “B-local”
are used to denote what we call here “A-strict” and “B-strict”). The following modularity
result is crucial for establishing interpolation in AX diff:

I Proposition 3.3. Let A = 〈AI , AM 〉 and B = 〈BI , BM 〉 be constraints in expanded signa-
tures ΣA,ΣB as above (here Σ is the signature of AX diff); let A,B be both consistent and
modularized. Then A∪B is consistent and modularized, in case all the following conditions
hold:
(O) an AB-common literal belongs to A iff it belongs to B;
(I) every rewrite rule in AM ∪ BM whose left-hand side is AB-common has also an AB-

common right-hand side;
(II) if a, b are both AB-common and diff(a, b) = i ∈ AI ∪BI , then i is AB-common too;
(III) if a rewrite rule of the kind a → wr(c, I, E) is in AM ∪ BM and the term wr(c, I, E)

is AB-common, so is the constant a.

4 A Solver for Arrays with diff

In this section we present a solver for the theory AX diff. The idea underlying our algorithm
is to separate the “index” part (to be treated by guessing) of a constraint from the “array”
and “elem” parts (to be treated with rewriting techniques). The problem is how, given a
finite constraint A, to determine whether it is satisfiable or not by transforming it into a
modularized ∃-equivalent constraint.

4.1 Preprocessing
In order to establish the satisfiability of a constraint A, we first need a pre-processing phase,
consisting of the following sequential steps:
Step 1 Flatten A, by replacing sub-terms with fresh constants and by adding the related

defining equalities.
Step 2 Replace array inequalities a 6= b by the following literals (i, e, d are fresh)

diff(a, b) = i, rd(b, i) = e, rd(a, i) = d, d 6= e.

Step 3 Guess a partition of index constants, i.e., for any pair of indexes i, j add either
i = j or i 6= j (but not both of them); then remove the positive literals i = j by replacing
i by j everywhere (if i > j according to the symbol precedence, otherwise replace j by

Roberto Bruttomesso, Silvio Ghilardi, and Silvio Ranise 177

i); if an inconsistent literal i 6= i is produced, try with another guess (and if all guesses
fail, report unsat).

Step 4 For all a, i such that rd(a, i) = e does not occur in the constraint, add such a literal
rd(a, i) = e with fresh e.

At the end of the preprocessing phase, we get a finite set of flat constraints; the disjunction
of these constraints is ∃-equivalent to the original constraint. For each of these constraints,
go to the completion phase: if the transformations below can be exhaustively applied (without
failure) to at least one of the constraints, report sat, otherwise report unsat.

The reason for inserting Step 4 above is just to simplify Orientation and Gaussian com-
pletion below. Notice that, even if rules rd(a, i)→ e can be removed during completion, the
following invariant is maintained: terms rd(a, i) always reduce to constants of sort ELEM.

4.2 Completion
The completion phase consists in various transformations that should be non-determinis-
tically executed until no rule or a failure instruction applies. For clarity, we divide the
transformations into five groups.
(I) Orientation. This group contains a single instruction: get rid of badly orientable equal-
ities, by using the equivalences Reflexivity and Symmetry of Figure 1; a badly orientable
equality a = wr(b, I, E) (with a < b) is replaced by an equality of the kind b = wr(a, I,D)
and by the equalities rd(a, I) = E (all “read literals” required by the left-hand side of Symm
comes from the above invariant). A badly orientable equality a = wr(a, I, E) is removed
and replaced by read literals only (or by nothing if I, E are empty).
(II) Gaussian completion. We now take care of the confluence of AR (i.e., point (iii)
of Definition 3.1). To this end, we consider all the critical pairs that may arise among our
rewriting rules (8)-(10) (recall that, by Remark 3, there is no need to examine overlaps
involving the non ground rules (4)-(7)). To treat the relevant critical pairs, we combine
standard Knuth-Bendix completion for congruence closure with a specific method (“Gaussian
completion”) based on equivalences Symmetry, Transitivity and Conflict of Figure 1.2
The critical pairs are listed below. Two preliminary observations are in order. First, we
normalize a critical pair by using →∗ before recovering convergence by adding a suitably
oriented equality and removing the parent equalities (the symbol →∗ denotes the reflexive
and transitive closure of the rewrite relation→ induced by the rewrite rules AR∪{(4)−(7)}).
Second, the provisoes of all the equivalences in Figure 1 used below (i.e., Symm, Trans,
and Confl) are satisfied because of the pre-processing Step 3 above.

(C1) wr(b1, I1, E1) ∗← wr(b′1, I ′1, E′1)← a→ wr(b′2, I ′2, E′2)→∗ wr(b2, I2, E2)

with b1 > b2. We proceed in two steps. First, we use Symm (from right to left) to
replace the parent rule a→ wr(b′1, I ′1, E′1) with

wr(a, I1, F) = b1 ∧ rd(a, I1) = E1

for a suitable list F of constants of sort ELEM (notice that the equalities rd(b1, I1) = F ,
which are required to apply Symm, are already available because terms of the form
rd(b1, j) for j in I1 always reduce to constants of sort ELEM by the invariant resulting
from the application of Step 4 in the pre-processing phase). Then, we apply Trans to

2The name “Gaussian” is due to the analogy with Gaussian elimination in Linear Arithmetic (see [1,4]
for a generalization to the first-order context).

RTA’11

178 Rewriting-based Quantifier-free Interpolation for a Theory of Arrays

the previously derived equality b1 = wr(a, I1, F) and to the normalized second equality
of the critical pair (i.e., a = wr(b2, I2, E2)) and we derive

b1 = wr(b2, I2 · I1, E2 · F) ∧ a = wr(b2, I2, E2). (11)
Hence, we are entitled to replace b1 = wr(a, I1, F) with the rule b1 → wr(b2, J,D), where
J and D are lists obtained by normalizing the right-hand-side of the first equality of (11)
with respect to the non-ground rules (6) and (7). To summarize: the parent rules are
removed and replaced by the rules

b1 → wr(b2, J,D), a→ wr(b2, I2, E2)

and a bunch of new equalities of the form rd(a, i) = e, giving rise, in turn, to rules of
the form rd(b2, i) → e or to rewrite rules of the form (10) after normalization of their
left members.

(C2) wr(b, I1, E1) ∗← wr(b′1, I ′1, E′1)← a→ wr(b′2, I ′2, E′2)→∗ wr(b, I2, E2)
Since identities like wr(c,H,G) = wr(c, π(H), π(G)) are AX diff-valid for every permu-
tation π (under the proviso Distinct(H)), it is harmless to suppose that the set of index
variables I := I1 ∩ I2 coincides with the common prefix of the lists I1 and I2; hence we
have I1 ≡ I · J and I2 ≡ I ·H for suitable disjoint lists J and H. Then, let E and E′ be
the prefixes of E1 and E2, respectively, of length equal to that of I; and let E1 ≡ E ·D
and E2 ≡ E′ ·F for suitable lists D and F . At this point, we can apply Confl to replace
both parent rules forming the critical pair with

a = wr(b, I, E) ∧ E = E′ ∧ rd(b, J) = D ∧ rd(b,H) = F,

where the first equality is oriented from left to right (i.e., a→ wr(b, I, E)).

(III) Knuth-Bendix completion. The remaining critical pairs are treated by standard
completion methods for congruence closure.

(C3) d ∗← rd(wr(b, I, E), i)← rd(a, i)→ e′ →∗ e
Remove the parent rule rd(a, i)→ e′ and, depending on whether d > e, e > d, or d ≡ e,
add the rule d → e, e → d, or do nothing. (Notice that terms of the form rd(b, j) are
always reducible because of the invariant of Step 4 in the pre-processing phase; hence,
rd(wr(b, I, E), i) always reduces to some constant of sort ELEM.)

(C4) e ∗← e′ ← rd(a, i)→ d′ →∗ d
Orient the critical pair (if e and d are not identical), add it as a new rule and remove
one parent rule.

(C5) d ∗← d′ ← e→ d′1 →∗ d1

Orient the critical pair (if d and d1 are not identical), add it as a new rule and remove
one parent rule.

(IV) Reduction. The instructions in this group simplify the current rewrite rules.

(R1) If the right-hand side of a current ground rewrite rule can be reduced, reduce it as
much as possible, remove the old rule, and replace it with the newly obtained reduced
rule. Identical equations like t = t are also removed.

(R2) For every rule a→ wr(b, I, E) ∈ AM , exhaustively apply Reduction in Figure 1 from
left to right (this amounts to do the following: if there are i, e in the same position k in
the lists I, E such that rd(b, i) ↓AR

e, replace a = wr(b, I, E) with a = wr(b, I−k,E−k)).
(R3) If diff(a, b) = i ∈ AI , rd(a, i) ↓AR

rd(b, i) and a > b, add the rule a→ b; replace also
diff(a, b) = i by diff(b, b) = i (this is needed for termination, it prevents the rule for
being indefinitely applied).

Roberto Bruttomesso, Silvio Ghilardi, and Silvio Ranise 179

(V) Failure. The instructions in this group aim at detecting inconsistency.

(U1) If for some negative literal e 6= d ∈ AM we have e ↓AR
d, report failure and

backtrack to Step 3 of the pre-processing phase.
(U2) If {diff(a, b) = i, diff(a′, b′) = i′} ⊆ AI and a ↓AR

a′ and b ↓AR
b′ for i 6≡ i′, report

failure and backtrack to Step 3 of the pre-processing phase.

Notice that the instructions in the last two groups may require a confluence test α ↓AR
β

that can be effectively performed in case the instructions from groups (II)-(III) have been
exhaustively applied, because then all critical pairs have been examined and the rewrite
system AR is confluent. If this is not the case, one may pragmatically compute and compare
any normal form of α and β, keeping in mind that the test has to be repeated when all
completion instructions (II)-(III) have been exhaustively applied.

I Theorem 4.1. The above procedure decides constraint satisfiability in AX diff.

5 The Interpolation Algorithm

In the literature one can roughly distinguish two approaches to the problem of computing
interpolants. In the former (see e.g. [3, 19]), an interpolating calculus is obtained from
a standard calculus by adding decorations so as to enable the recursive construction of
an interpolating formula from a proof; in the latter (see, e.g., [7, 11, 23]), the focus is on
how to extend an available decision procedure to return interpolants. Our methodology is
similar to the second approach, since we add the capability of computing interpolants to
the satisfiability procedure in Section 4. However, we do this by designing a flexible and
abstract framework, relying on the identification of basic operations that can be performed
independently from the method used by the underlying satisfiability procedure to derive a
refutation.

5.1 Interpolating Metarules
Let now A,B be constraints in signatures ΣA,ΣB expanded with free constants and ΣC :=
ΣA ∩ ΣB ; we shall refer to the definitions of AB-common, A-local, B-local, A-strict, B-
strict, AB-mixed, AB-pure terms, literals and formulae given in Section 3. Our goal is to
produce, in case A∧B is AX diff-unsatisfiable, a ground AB-common sentence φ such that
A `AX diff φ and φ ∧B is AX diff-unsatisfiable.

Let us examine some of the transformations to be applied to A,B. Suppose for instance
that the literal ψ is AB-common and such that A `AX diff ψ; then we can transform B into
B′ := B ∪ {ψ}. Suppose now that we got an interpolant φ for the pair A,B′: clearly, we
can derive an interpolant for the original pair A,B by taking φ ∧ ψ. The idea is to collect
some useful transformations of this kind. Notice that these transformations can also modify
the signatures ΣA,ΣB . For instance, suppose that t is an AB-common term and that c is
a fresh constant: then we can put A′ := A ∪ {c = t}, B′ := B ∪ {c = t}: in fact, if φ is an
interpolant for A′, B′, then φ(t/c) is an interpolant for A,B.3 The transformations we need
are called metarules and are listed in Table 1 below (in the Table and more generally in this
Subsection, we use the notation φ ` ψ for φ `AX diff ψ).

3Notice that the fresh constant c is now a shared symbol, because ΣA is enlarged to ΣA ∪ {c}, ΣB is
enlarged to ΣB ∪ {c} and hence (ΣA ∪ {c}) ∩ (ΣB ∪ {c}) = ΣC ∪ {c}.

RTA’11

180 Rewriting-based Quantifier-free Interpolation for a Theory of Arrays

An interpolating metarules refutation for A,B is a labeled tree having the following
properties: (i) nodes are labeled by pairs of finite sets of constraints; (ii) the root is labeled
by A,B; (iii) the leaves are labeled by a pair A,B such that ⊥ ∈ A ∪ B; (iv) each non-leaf
node is the conclusion of a rule from Table 1 and its successors are the premises of that rule.
The crucial properties of the metarules are summarized in the following two Propositions.

I Proposition 5.1. The unary metarules A | B
A′ | B′ from Table 1 have the property that A∧B

is ∃-equivalent to A′ ∧ B′; similarly, the n-ary metarules A1 | B1 ··· An | Bn

A | B from Table 1
have the property that A ∧B is ∃-equivalent to

∨n
k=1(Ak ∧Bk).

I Proposition 5.2. If there exists an interpolating metarules refutation for A,B then there
is a quantifier-free interpolant for A,B (namely there exists a quantifier-free AB-common
sentence φ such that A ` φ and B ∧ φ ` ⊥). The interpolant φ is recursively computed
applying the relevant interpolating instructions from Table 1.

5.2 The Interpolation Solver
The metarules are complete, i.e. if A ∧ B is AX diff-unsatisfiable, then (since we shall
prove that an interpolant exists) a single application of (Propagate1) and (Close2) gives
an interpolating metarules refutation. This observation shows that metarules are by no
means better than the brute force enumeration of formulae to find interpolants. However,
metarules are useful to design an algorithm manipulating pairs of constraints based on
transformation instructions. In fact, each of the transformation instructions can be justified
by a metarule (or by a sequence of metarules): in this way, if our instructions form a complete
and terminating algorithm, we can use Proposition 5.2 to get the desired interpolants. The
main advantage of using metarules as justifications is that we just need to take care of the
completeness and termination of the algorithm, and not about interpolants anymore. Here
“completeness” means that our transformations should be able to bring a pair (A,B) of
constraints into a pair (A′, B′) that either matches the requirements of Proposition 3.3 or
is explicitly inconsistent, in the sense that ⊥ ∈ A′ ∪ B′. The latter is obviously the case
whenever the original pair (A,B) is AX diff-unsatisfiable and it is precisely the case leading
to an interpolating metarules refutation.

The basic idea is that of invoking the algorithm of Section 4 on A and B separately and to
propagate equalities involving AB-common terms. We shall assume an ordering precedence
making AB-common constants smaller than A-strict or B-strict constants of the same sort.
However, this is not sufficient to prevent the algorithm of Section 4 from generating literals
and rules violating one or more of the hypotheses of Proposition 3.3: this is why the extra
correcting instructions of group (γ) below are needed. Our interpolating algorithm has a
pre-processing and a completion phase, like the algorithm from Section 4.
Pre-processing. In this phase the four Steps of Section 4.1 are performed both on A and
on B; to justify these steps we need metarules (Define0,1,2), (Redplus1,2), (Redminus1,2),
(Disjunction1,2), (ConstElim0,1,2), and (Propagate1,2) - the latter because if i, j are AB-
common, the guessing of i = j versus i 6= j in Step 3 can be done, say, in the A-component
and then propagated to the B-component. At the end of the preprocessing phase, the
following properties (to be maintained as invariants afterwards) hold:

(i1) A (resp. B) contains i 6= j for all A-local (resp. B-local) constants i, j of sort INDEX
occurring in A (resp. in B);
(i2) if a, i occur in A (resp. in B), then rd(a, i) reduces to an A-local (resp. B-local)
constant of sort ELEM.

Roberto Bruttomesso, Silvio Ghilardi, and Silvio Ranise 181

Close1 Close2 Propagate1 Propagate2

A | B

Prv.: A is unsat.
Int.: φ′ ≡ ⊥.

A | B

Prv.: B is unsat.
Int.: φ′ ≡ >.

A | B ∪ {ψ}
A | B

Prv.: A ` ψ and
ψ is AB-common.

Int.: φ′ ≡ φ ∧ ψ.

A ∪ {ψ} | B
A | B

Prv.: B ` ψ and
ψ is AB-common.

Int.: φ′ ≡ ψ → φ.

Define0 Define1 Define2

A ∪ {a = t} | B ∪ {a = t}
A | B

Prv.: t is AB-common, a fresh.
Int.: φ′ ≡ φ(t/a).

A ∪ {a = t} | B
A | B

Prv.: t is A-local and a is fresh.
Int.: φ′ ≡ φ.

A | B ∪ {a = t}
A | B

Prv.: t is B-local and a is fresh.
Int.: φ′ ≡ φ.

Disjunction1 Disjunction2

· · · A ∪ {ψk} | B · · ·
A | B

Prv.:
∨n

k=1 ψk is A-local and A `
∨n

k=1 ψk.
Int.: φ′ ≡

∨n

k=1 φk.

· · · A | B ∪ {ψk} · · ·
A | B

Prv.:
∨n

k=1 ψk is B-local and B `
∨n

k=1 ψk.
Int.: φ′ ≡

∧n

k=1 φk.

Redplus1 Redplus2 Redminus1 Redminus2

A ∪ {ψ} | B
A | B

Prv.: A ` ψ and
ψ is A-local.

Int.: φ′ ≡ φ.

A | B ∪ {ψ}
A | B

Prv.: B ` ψ and
ψ is B-local.

Int.: φ′ ≡ φ.

A | B
A ∪ {ψ} | B

Prv.: A ` ψ and
ψ is A-local.

Int.: φ′ ≡ φ.

A | B
A | B ∪ {ψ}

Prv.: B ` ψ and
ψ is B-local.

Int.: φ′ ≡ φ.

ConstElim1 ConstElim2 ConstElim0

A | B
A ∪ {a = t} | B

Prv.: a is A-strict and
does not occur in A, t.

Int.: φ′ ≡ φ.

A | B
A | B ∪ {b = t}

Prv.: b is B-strict and
does not occur in B, t.

Int.: φ′ ≡ φ.

A | B
A ∪ {c = t} | B ∪ {c = t}

Prv.: c, t are AB-common,
c does not occur in A,B, t.

Int.: φ′ ≡ φ.

Table 1 Interpolating Metarules: each rule has a proviso Prv. and an instruction Int. for recursively
computing the new interpolant φ′ from the old one(s) φ, φ1, . . . , φk.

Completion. Some groups of instructions to be executed non-deterministically constitute
the completion phase. There is however an important difference here with respect to the
completion phase of Section 4.2: it may happen that we need some guessing also inside the
completion phase (only the instructions from group (γ) below may need such guessings).
Each instruction can be easily justified by suitable metarules (we omit the details for lack
of space). The groups of instructions are the following:

(α) Apply to A or to B any instruction from the completion phase of Section 4.2.
(β) If there is an AB-common literal that belongs to A but not to B (or vice versa),
copy it in B (resp. in A).
(γ) Replace undesired literals, i.e., those violating conditions (I)-(II)-(III) from Propo-
sition 3.3.

RTA’11

182 Rewriting-based Quantifier-free Interpolation for a Theory of Arrays

To avoid trivial infinite loops with the (β) instructions, rules in (α) deleting an AB-common
literal should be performed simultaneously in the A- and in the B-components (it can be
easily checked [5] that this is always possible, for instance if rules in (β) and (γ) are given
higher priority). Instructions (γ) need to be described in more details. Preliminarily, we
introduce a technique that we call Term Sharing. Suppose that the A-component contains
a literal α = t, where the term t is AB-common but the free constant α is only A-local.
Then it is possible to “make α AB-common” in the following way. First, introduce a fresh
AB-common constant α′ with the explicit definition α′ = t (to be inserted both in A and in
B, as justified by metarule (Define0)); then replace the literal α = t by α = α′ and replace
α by α′ everywhere else in A; finally, delete α = α′ too. The result is a pair (A,B) where
basically nothing has changed but α has been renamed to an AB-common constant α′.
Notice that the above transformations can be justified by metarules (Define0), (Redplus1),
(Redminus1), (ConstElim1). We are now ready to explain instructions (γ) in details. First,
consider undesired literals corresponding to the rewrite rules of the form

rd(c, i)→ d (12)

in which the left-hand side is AB-common and the right-hand side is, say, A-strict. If we
apply Term Sharing, we can solve the problem by renaming d to an AB-common fresh
constant d′. We can apply a similar procedure to the rewrite rules

a→ wr(c, I, E) (13)

in case the right-hand side is AB-common and the left-hand side is not; when we rename
a to some fresh AB-common constant c′, we must arrange the precedence so that c′ > c to
orient the renamed literal as c′ → wr(c, I, E). Then, consider the literals of the form

diff(a, b) = k (14)

in which the left-hand side is AB-common and the right-hand side is, say, A-strict. Again,
we can rename k to some AB-common constant k′ by Term Sharing. Notice that k′ is
AB-common, whereas k was only A-local: this implies that we might need to perform
some guessing to maintain the invariant (i1). Basically, we need to repeat Step 3 from
Section 4.1 till invariant (i1) is restored (k′ must be compared for equality with the other
B-local constants of sort INDEX). The last undesired literals to take care of are the rules of
the form4

c→ wr(c′, I, E) (15)

having an AB-common left-hand side but, say, only an A-local right-hand side. Notice
that from the fact that c is AB-common, it follows (by our choice of the precedence) that
c′ is AB-common too. We can freely suppose that I and E are split into sublists I1, I2
and E1, E2, respectively, such that I ≡ I1 · I2 and E ≡ E1 · E2, where I1, E1 are AB-
common, I2 ≡ i1, . . . , in, E2 ≡ e1, . . . , en and for each k = 1, . . . , n at least one from ik, ek

is not AB-common. This n (measuring essentially the number of non AB-common symbols
in (15)) is called the degree of the undesired literal (15): in the following, we shall see how
to eliminate (15) or to replace it with a smaller degree literal. We first make a guess (see
metarule (Disjunction1)) about the truth value of the literal c = wr(c′, I1, E1). In the first

4Literals d = e are automatically oriented in the right way by our choice of the precedence.

Roberto Bruttomesso, Silvio Ghilardi, and Silvio Ranise 183

case, we add the positive literal to the current constraint; as a consequence, we get that
the literal (15) is equivalent to c = wr(c, I2, E2) and also to rd(c, I2) = E2 (see Red in
Figure 1). In conclusion, in this case, the literal (15) is replaced by the AB-common rewrite
rule c→ wr(c′, I1, E1) and by the literals rd(c, I2) = E2. In the second case, we guess that
the negative literal c 6= wr(c′, I1, E1) holds; we introduce a fresh AB-common constant c′′
together with the defining AB-common literal5

c′′ → wr(c′, I1, E1) (16)

(see metarule (Define0)). The literal (15) is replaced by the literal

c→ wr(c′′, I2, E2). (17)

We show how to make the degree of (17) smaller than n. In addition, we eliminate the
negative literal c 6= c′′ coming from our guessing (notice that, according to (16), c′′ renames
wr(c′, I1, E1)). This is done as follows: we introduce fresh AB-common constants i, d, d′′
together with the AB-common defining literals

diff(c, c′′) = i, rd(c, i)→ d, rd(c′′, i)→ d′′ (18)

(see metarule (Define0)). Now it is possible to replace c 6= c′′ by the literal d 6= d′′ (see
axiom (3)). Under the assumption Distinct(I2), the following statement is AX diff valid:

c = wr(c′′, I2, E2) ∧ rd(c′′, i) = d′′ ∧ rd(c, i) = d ∧ d 6= d′′ →
n∨

k=1
(i = ik ∧ d = ek).

Thus, we get n alternatives (see metarule (Disjunction1)). In the k-th alternative, we
can remove the constants ik, ek from the constraint, by replacing them with the AB-
common terms i, d respectively (see metarules (Redplus1), (Redplus2), (Redminus1), (Red-
minus2),(ConstElim1),(ConstElim0)); notice that it might be necessary to complete the
index partition. In this way, the degree of (17) is now smaller than n.

In conclusion, if we apply exhaustively Pre-Processing and Completion instructions
above, starting from an initial pair of constraints (A,B), we can produce a tree, whose
nodes are labelled by pairs of constraints (the successor nodes are labelled by pairs of con-
straints that are obtained by applying an instruction). We call such a tree an interpolating
tree for (A,B). The following result shows that we obtained an interpolation algorithm for
AX diff:

I Theorem 5.3. Any interpolation tree for (A,B) is finite; moreover, it is an interpolating
metarules refutation (from which an interpolant can be recursively computed according to
Proposition 5.2) precisely iff A ∧B is AX diff-unsatisfiable.

From the above Theorem it immediately follows that:

I Theorem 5.4. The theory AX diff admits quantifier-free interpolants (i.e., for every quan-
tifier free formulae φ, ψ such that ψ∧φ is AX diff-unsatisfiable, there exists a quantifier free
formula θ such that: (i) ψ `AX diff θ; (ii) θ ∧ φ is not AX diff-satisfiable: (iii) only variables
occurring both in ψ and in φ occur in θ).

In [5], we also give a direct (although non-constructive) proof of this theorem by using the
model-theoretic notion of amalgamation.

5We put c > c′′ > c′ in the precedence. Notice that invariant (i2) is maintained, because all terms
rd(c′′, h) normalize to an element constant. In case I1 is empty, one can directly take c′ as c′′.

RTA’11

184 Rewriting-based Quantifier-free Interpolation for a Theory of Arrays

5.3 An Example
To illustrate our method, we describe the computation of an interpolant for the mutually
unsatisfiable sets A ≡ {a = wr(b, i, d)}, B ≡ {rd(a, j) 6= rd(b, j), rd(a, k) 6= rd(b, k), j 6= k}.
Notice that i, d are A-strict constants, j, k are B-strict constants, and a, b are AB-common
constants with precedence a > b. We first apply Pre-Processing instructions to obtain
A ≡ {a = wr(b, i, d), rd(a, i) = e5, rd(b, i) = e6}, B ≡ {rd(a, j) = e1, rd(b, j) = e2, rd(a, k) =
e3, rd(b, k) = e4, e1 6= e2, e3 6= e4, j 6= k}. Since a = wr(b, i, d) is an undesired literal of
the kind (15), we generate the two subproblems Π1 ≡ (A ∪ {rd(b, i) = d, a = b}, B) and
Π2 ≡ (A ∪ {a 6= b}, B).6

Let us consider Π1 first. Notice that A ` a = b, and a = b is AB-common. Therefore we
send a = b to B, and we may derive the new equality e1 = e2 from the critical pair (C3) e1 ←
rd(a, j)→ rd(b, j)→ e2, thus obtaining A ≡ {a = b, rd(b, i) = d, rd(a, i) = e5, rd(b, i) = e6},
B ≡ {rd(b, j) = e2, rd(a, k) = e3, rd(b, k) = e4, e1 6= e2, e3 6= e4, j 6= k, a = b, e1 = e2}. Now
B is inconsistent. The interpolant for Π1 can be computed with the interpolating instructions
of the metarules (Close1,Propagate1,Redminus1,Redplus1) resulting in ϕ1 ≡ (> ∧ a = b) ≡
a = b.

Then, let us consider branch Π2. Recall that this branch originates from the attempt
of removing the undesired rule a → wr(b, i, d). We introduce the AB-common defin-
ing literals diff(a, b) = l, rd(a, l) = f1, rd(b, l) = f2, and f1 6= f2, in order to remove
a 6= b from A. These are immediately propagated to B: A ≡ {a = wr(b, i, d), rd(a, i) =
e5, rd(b, i) = e6, diff(a, b) = l, rd(a, l) = f1, rd(b, l) = f2, f1 6= f2}, B ≡ {rd(a, j) =
e1, rd(b, j) = e2, rd(a, k) = e3, rd(b, k) = e4, e1 6= e2, e3 6= e4, j 6= k, diff(a, b) = l, rd(a, l) =
f1, rd(b, l) = f2, f1 6= f2}. Since a = wr(b, i, d) contains only the index i, we do not
have a real case split. Therefore we replace i with l, and d with f1. At last, we prop-
agate the AB-common literal a = wr(b, l, f1) to B. After all these steps we obtain:
A ≡ {a = wr(b, l, f1), rd(a, l) = e5, rd(b, i) = e6, diff(a, b) = l, rd(a, l) = f1, rd(b, l) =
f2, f1 6= f2}, B ≡ {rd(a, j) = e1, rd(b, j) = e2, rd(a, k) = e3, rd(b, k) = e4, e1 6= e2, e3 6=
e4, j 6= k, diff(a, b) = l, rd(a, l) = f1, rd(b, l) = f2, f1 6= f2, a = wr(b, l, f1)}. Since we have
one more AB-common index constant l, we complete the current index constant partition,
namely {k} and {j}: we have three alternatives, to let l stay alone in a new class, or to add l
to one of the two existing classes. In the first alternative, because of the following critical pair
(C3) e1 ← rd(a, j)→ rd(wr(b, l, f1), j)→ e2, we add e1 = e2 to B, which becomes trivially
unsatisfiable. The other two alternatives yield similar outcomes. For each subproblem the in-
terpolant, reconstructed by reverse application of the interpolating instructions of (Define0)
and (Propagate1), is ϕ′2 ≡ {(a = wr(b, diff(a, b), rd(a, diff(a, b))) ∧ rd(a, diff(a, b)) 6=
rd(b, diff(a, b)))}. The interpolant ϕ2 for the branch Π2 has to be computed by combining
with (Disjunction2) three copies of ϕ′2, and so ϕ2 ≡ ϕ′2.

The final interpolant is computed by combining the interpolants for Π1 and Π2 by means
of (Disjunction1), yielding ϕ ≡ ϕ1 ∨ ϕ2 ≡ (a = b∨ (a = wr(b, diff(a, b), rd(a, diff(a, b)))∧
rd(a, diff(a, b)) 6= rd(b, diff(a, b)))), i.e. a = wr(b, diff(a, b), rd(a, diff(a, b))).

6 Related work and Conclusions

There is a series of papers devoted to building satisfiability procedures for the theory of
arrays with or without extensionality. The interested reader is pointed to, e.g., [10, 12] for

6Notice that this is precisely the case in which there is no need of an extra AB-common constant c′′.

Roberto Bruttomesso, Silvio Ghilardi, and Silvio Ranise 185

an overview. In the following, for lack of space, we discuss the papers more closely related
to interpolation for the theory of arrays.

After McMillan’s seminal work on interpolation for model checking [18,20], several papers
appeared whose aim was to design techniques for the efficient computation of interpolants
in first-order theories of interest for verification, mainly uninterpreted function symbols,
fragments of Linear Arithmetic, or their combination. An interpolating theorem prover is
described in [19], where a sequent-like calculus is used to derive interpolants from proofs
in propositional logic, equality with uninterpreted functions, linear rational arithmetic, and
their combinations. In [15], a method to compute interpolants in data structures theo-
ries, such as sets and arrays (with extensionality), by axiom instantiation and interpolant
computation in the theory of uninterpreted functions is described. It is also shown that
the theory of arrays with extensionality does not admit quantifier-free interpolation. The
“split” prover in [13] applies a sequent calculus for the synthesis of interpolants along the
lines of that in [19] and is tuned for predicate abstraction [22]. The “split” prover can handle
a combination of theories among which also the theory of arrays without extensionality is
considered. In [13], it is pointed out that the theory of arrays poses serious problems in de-
riving quantifier-free interpolants because it entails an infinite set of quantifier-free formulae,
which is indeed problematic when interpolants are to be used for predicate abstraction. To
overcome the problem, [13] suggests to constrain array valued terms to occur in equalities of
the form a = wr(a, I, E) in the notation of this paper. It is observed that this corresponds
to the way in which arrays are used in imperative programs. Further limitations are imposed
on the symbols in the equalities in order to obtain a complete predicate abstraction proce-
dure. In [14], the method described in [13] is specialized to apply CEGAR techniques [8]
for the verification of properties of programs manipulating arrays. The method of [13] is ex-
tended to cope with range predicates which allow one to describe unbounded array segments
which permit to formalize typical programming idioms of arrays, yielding property-sensitive
abstractions. In [16], a method to derive quantified invariants for programs manipulating
arrays and integer variables is described. A resolution-based prover is used to handle an
ad hoc axiomatization of arrays by using predicates. Neither McCarthy’s theory of arrays
nor one of its extensions are considered in [16]. The invariant synthesis method is based on
the computation of interpolants derived from the proofs of the resolution-based prover and
constraint solving techniques to handle the arithmetic part of the problem. The resulting
interpolants may contain even alternation of quantifiers.

To the best of our knowledge, the interpolation procedure presented in this paper is the
first to compute quantifier-free interpolants for a natural variant of the theory of arrays with
extensionality. In fact, the variant is obtained by replacing the extensionality axiom with its
Skolemization which should be sufficient when the procedure is used to detect unsatisfiability
of formulae as it is the case in standard model checking methods for infinite state systems.
Because our method is not based on a proof calculus, we can avoid the burden of generating
a large proof before being able to extract interpolants. The implementation of our procedure
is currently being developed in the SMT-solver OpenSMT [6] and preliminary experiments
are encouraging. An extensive experimental evaluation is planned for the immediate future.
Acknowledgements. We wish to thank an anonymuous referee for many useful criticisms
that helped improving the quality of the paper.

References
1 F. Baader, S. Ghilardi, and C. Tinelli. A new combination procedure for the word prob-

lem that generalizes fusion decidability results in modal logics. Inform. and Comput.,

RTA’11

186 Rewriting-based Quantifier-free Interpolation for a Theory of Arrays

204(10):1413–1452, 2006.
2 F. Baader and T. Nipkow. Term rewriting and all that. Cambridge University Press,

Cambridge, 1998.
3 A. Brillout, D. Kroening, P. Rümmer, and W. Thomas. An Interpolating Sequent Calculus

for Quantifier-Free Presburger Arithmetic . In IJCAR, 2010.
4 R. Bruttomesso. Problemi di combinazione nella dimostrazione automatica e nella verifica

del software. Università degli Studi di Milano, 2004. Master Thesis.
5 R. Bruttomesso, S. Ghilardi, and S. Ranise. Rewriting-based Quantifier-free Interpolation

for a Theory of Arrays. Technical Report RI 334-10, Dip. Scienze dell’Informazione, Univ.
di Milano, 2010.

6 R. Bruttomesso, E. Pek, N. Sharygina, and A. Tsitovich. The OpenSMT Solver. In TACAS,
pages 150–153, 2010.

7 A. Cimatti, A. Griggio, and R. Sebastiani. Efficient Interpolation Generation in Satisfia-
bility Modulo Theories. ACM Trans. Comput. Logic, 12:1–54, 2010.

8 E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-Guided Abstraction
Refinement. In CAV, pages 154–169, 2000.

9 W. Craig. Three uses of the Herbrand-Gentzen theorem in relating model theory and proof
theory. J. Symb. Log., pages 269–285, 1957.

10 L. de Moura and N. Bjørner. Generalized, Efficient Array Decision Procedures. In FMCAD,
pages 45–52, 2009.

11 A. Fuchs, A. Goel, J. Grundy, S. Krstić, and C. Tinelli. Ground Interpolation for the
Theory of Equality. In TACAS, pages 413–427, 2009.

12 S. Ghilardi, E. Nicolini, S. Ranise, and D. Zucchelli. Decision procedures for extensions of
the theory of arrays. Annals of Mathematics and Artificial Intelligence, 50:231–254, 2007.

13 R. Jhala and K. L. McMillan. A Practical and Complete Approach to Predicate Refinement.
In TACAS, pages 459–473, 2006.

14 R. Jhala and K. L. McMillan. Array Abstractions from Proofs. In CAV, pages 193–206,
2007.

15 D. Kapur, R. Majumdar, and C. Zarba. Interpolation for Data Structures. In
SIGSOFT’06/FSE-14, pages 105–116, 2006.

16 L. Kovács and A. Voronkov. Finding Loop Invariants for Programs over Arrays Using a
Theorem Prover. In FASE, pages 470–485, 2009.

17 J. McCarthy. Towards a Mathematical Science of Computation. In IFIP Congress, pages
21–28, 1962.

18 K. L. McMillan. Interpolation and SAT-Based Model Checking. In CAV, pages 1–13, 2003.
19 K. L. McMillan. An Interpolating Theorem Prover. Theor. Comput. Sci., 345(1):101–121,

2005.
20 K. L. McMillan. Applications of Craig Interpolation to Model Checking. In TACAS, pages

1–12, 2005.
21 S. Ranise, C. Ringeissen, and D. Tran. Nelson-Oppen, Shostak and the Extended Canonizer:

A Family Picture with a Newborn. In ICTAC, pages 372–386, 2004.
22 H. Saidi and S. Graf. Construction of abstract state graphs with PVS. In CAV, pages

72–83, 1997.
23 G. Yorsh and M. Musuvathi. A Combination Method for Generating Interpolants. In

CADE, pages 353–368, 2005.

	Introduction
	Background and Preliminaries
	Constraints combination
	A Solver for Arrays with diff
	Preprocessing
	Completion

	The Interpolation Algorithm
	Interpolating Metarules
	The Interpolation Solver
	An Example

	Related work and Conclusions

