
Modular Termination Proofs of Recursive Java
Bytecode Programs by Term Rewriting∗

Marc Brockschmidt, Carsten Otto, and Jürgen Giesl

LuFG Informatik 2, RWTH Aachen University, Germany

Abstract
In [5, 15] we presented an approach to prove termination of non-recursive Java Bytecode (JBC) pro-
grams automatically. Here, JBC programs are first transformed to finite termination graphs which
represent all possible runs of the program. Afterwards, the termination graphs are translated to
term rewrite systems (TRSs) such that termination of the resulting TRSs implies termination
of the original JBC programs. So in this way, existing techniques and tools from term rewriting
can be used to prove termination of JBC automatically. In this paper, we improve this approach
substantially in two ways:
(1) We extend it in order to also analyze recursive JBC programs. To this end, one has to

represent call stacks of arbitrary size.
(2) To handle JBC programs with several methods, we modularize our approach in order to re-

use termination graphs and TRSs for the separate methods and to prove termination of the
resulting TRS in a modular way.

We implemented our approach in the tool AProVE. Our experiments show that the new contri-
butions increase the power of termination analysis for JBC significantly.

1998 ACM Subject Classification D.1.5 - Object-oriented Programming, D.2.4 - Software/Pro-
gram Verification, D.3.3 - Language Constructs and Features, F.3 - Logics and Meanings of
Programs, F.4.2 - Grammars and Other Rewriting Systems, I.2.2 - Automatic Programming

Keywords and phrases termination, Java Bytecode, term rewriting, recursion

Digital Object Identifier 10.4230/LIPIcs.RTA.2011.155

Category Regular Research Paper

1 Introduction

While termination of TRSs and logic programs was studied for decades, recently there have
also been many results on termination of imperative programs (e.g., [3, 6, 7, 8]). However,
these methods do not re-use the many existing termination techniques for TRSs and declar-
ative languages. Therefore, in [5, 15] we presented the first rewriting-based approach for
proving termination of a real imperative object-oriented language, viz. Java Bytecode [14].

We only know of two other automated methods to analyze JBC termination, implemented
in the tools COSTA [2] and Julia [16]. They transform JBC into a constraint logic program
by abstracting objects of dynamic data types to integers denoting their path-length (e.g., list
objects are abstracted to their length). While this fixed mapping from objects to integers
leads to high efficiency, it also restricts the power of these methods.

In contrast, in [5, 15] we represent data objects not by integers, but by terms which express
as much information as possible about the objects. For example, list objects are represented
by terms of the form List(t1, List(t2, . . . List(tn, null) . . .)). In this way, we benefit from the fact

∗ Supported by the DFG grant GI 274/5-3 and the G.I.F. grant 966-116.6.

© M. Brockschmidt, C. Otto, J. Giesl;
licensed under Creative Commons License NC-ND

22nd International Conference on Rewriting Techniques and Applications (RTA’11).
Editor: M. Schmidt-Schauß; pp. 155–170

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62916243?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.RTA.2011.155
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

156 Modular Termination Proofs of Recursive JBC Programs by Term Rewriting

that rewrite techniques can automatically generate well-founded orders comparing arbitrary
forms of terms. Moreover, by using TRSs with built-in integers [9], our approach is not only
powerful for algorithms on user-defined data structures, but also for algorithms on pre-defined
data types like integers. To obtain TRSs that are suitable for termination analysis, our
approach first transforms a JBC program into a termination graph which represents all
possible runs of the program. These graphs handle all aspects of JBC that cannot easily be
expressed in term rewriting (e.g., side effects, cyclic data objects, object-orientation, etc.).
Afterwards, a TRS is generated from the termination graph. As proved in [5, 15], termination
of this TRS implies termination of the original JBC program.

We implemented this approach in our tool AProVE [10] and in the International Termin-
ation Competitions,1 AProVE achieved competitive results compared to Julia and COSTA.

However, a significant drawback was that (in contrast to techniques that abstract objects
to integers [2, 8, 16]), our approach in [5, 15] could not deal with recursion. The problem is
that for recursive methods, the size of the call stack usually depends on the input arguments.
Hence, to represent all possible runs, this would lead to termination graphs with infinitely
many states (since [5, 15] used no abstraction on call stacks). An abstraction of call stacks is
non-trivial due to possible aliasing between references in different stack frames.

In the current paper, we solve these problems. Instead of directly generating a termination
graph for the whole program as in [5, 15], in Sect. 2 we construct a separate termination
graph for each method. These graphs can be combined afterwards. Similarly, one can also
combine the TRSs resulting from these “method graphs” (Sect. 3). As demonstrated by our
implementation in AProVE (Sect. 4), our new approach has two main advantages over [5, 15]:

(1) We can now analyze recursive methods, since our new approach can deal with call stacks
that may grow unboundedly due to method calls.

(2) We obtain a modular approach, because one can re-use a method graph (and the rewrite
rules generated from it) whenever the method is called. So in contrast to [5, 15], now we
generate TRSs that are amenable to modular termination proofs.

See [4] for all proofs, and see [1] for experimental details and our previous papers [5, 15].

2 From Recursive JBC to Modular Termination Graphs

To analyze termination of a set of desired initial (concrete) program states, we represent this
set by a suitable abstract state which is the initial node of the termination graph. Then this
state is evaluated symbolically, which leads to its child nodes in the termination graph.

Our approach is restricted to verified2 sequential JBC programs. To simplify the present-
ation in this paper, we exclude arrays, static class fields, interfaces, and exceptions. We also
do not describe the annotations introduced in [5, 15] to handle complex sharing effects. With
such annotations one can for example also model “unknown” objects with arbitrary sharing
behavior as well as cyclic objects. Extending our approach to such constructs is easily possi-
ble and has been done for our implementation in the termination prover AProVE. However, cur-
rently our implementation has only minimal support for features like floating point arithmetic,
strings, static initialization of classes, instances of java.lang.Class, reflection, etc.

Sect. 2.1 presents our notion of states. Sect. 2.2 introduces termination graphs for one
method and Sect. 2.3 shows how to re-use these graphs for programs with many methods.

1 See http://www.termination-portal.org/wiki/Termination_Competition.
2 The bytecode verifier of the JVM [14] ensures certain properties of the code that are useful for our

analysis, e.g., that there is no overflow or underflow of the operand stack.

http://www.termination-portal.org/wiki/Termination_Competition

Marc Brockschmidt, Carsten Otto, and Jürgen Giesl 157

2.1 States
final class List {

List n;
public void appE(int i) {

if (n == null) {
if (i <= 0) return ;
n = new List ();
i--;

}
n.appE(i);

}}

00: aload_0 // load this to opstack
01: getfield n // load this.n to opstack
04: ifnonnull 26 // jump to 26 if n is not null
07: iload_1 // load i to opstack
08: ifgt 12 // jump to 12 if i > 0
11: return // return (without value)
12: aload_0 // load this to opstack
13: new List // create new List object
16: dup // duplicate top stack entry
17: invokespecial <init > // invoke constructor
20: putfield n // write new List to field n
23: iinc 1, -1 // decrement i by 1
26: aload_0 // load this to opstack
27: getfield n // load this.n to opstack
30: iload_1 // load i to opstack
31: invokevirtual appE // recursive call
34: return // return (without value)

Consider the recursive method
appE (presented in both Java and
JBC). We use a class List where
the field n points to the next list
element. For brevity, we omitted a field for the value of a list element. The method appE
recursively traverses the list to its end, where it attaches i fresh elements (if i > 0).

o1, i3 | 0 | t :o1,i : i3 | ε
o1:List(n=o2) i3:Z
o2:List(?)

Figure 1 State

Fig. 1 displays an abstract state of appE. A state consists of a
sequence of stack frames and the heap, i.e., States = SFrames∗

×Heap. The state in Fig. 1 has just a single stack frame “o1, i3 | 0 |
t :o1,i : i3 | ε” which consists of four components. Its first component
o1, i3 are the input arguments, i.e., those objects that are “visible” from outside the analyzed
method. This component is new compared to [5, 15] and it is needed to denote later on which
of these objects have been modified by side effects during the execution of the method. In
our example, appE has two input arguments, viz. the implicit formal parameter this (whose
value is o1) and the formal parameter i with value i3. In contrast to JBC, we also represent
integers by references and adapt the semantics of all instructions to handle this correctly. So
o1, i3 ∈ Refs, where Refs is an infinite set of names for addresses on the heap.

The second component 0 of the stack frame is the program position (from ProgPos),
i.e., the index of the next instruction. So 0 means that evaluation continues with aload_0.

The third component is the list of values of local variables, i.e., LocVar = Refs∗. To
ease readability, we do not only display the values, but also the variable names. For example,
the name of the first local variable this is shortened to t and its value is o1.

The fourth component is the operand stack to store temporary results, i.e., OpStack =
Refs∗. Here, ε is the empty stack and “o8, o1” denotes a stack with o8 on top.

So the set of all stack frames is SFrames=InpArgs×ProgPos×LocVar×OpStack.
As mentioned, the call stack of a state can consist of several stack frames. If a method calls
another method, then a new frame is put on top of the call stack.

In addition to the call stack, a state contains information on the heap. The heap is a partial
function mapping references to their value, i.e., Heap = Refs→ Integers∪ Instances∪
Unknown∪{null}.We depict a heap by pairs of a reference and a value, separated by “:”.

Integers are represented by intervals, i.e., Integers = {{x ∈ Z | a ≤ x ≤ b} | a ∈
Z∪ {−∞}, b ∈ Z∪ {∞}, a ≤ b}. We abbreviate (−∞,∞) by Z, [1,∞) by [> 0], etc. So “i3 :
Z” means that any integer can be at the address i3. Since current TRS tools cannot handle
32-bit int-numbers, we treat all numeric types like int as the infinite set of all integers.

To represent Instances (i.e., objects) of some class, we store their type and the values of
their fields, i.e., Instances = Classnames×(FieldIDs→ Refs). Classnames contains
the names of all classes. FieldIDs is the set of all field names. To prevent ambiguities, in
general the FieldIDs also include the respective class name. For all (cl, f) ∈ Instances,
the function f is defined for all fields of cl and of its superclasses. Thus, “o1 : List(n = o2)”
means that at the address o1, there is a List object whose field n has the value o2.

RTA’11

158 Modular Termination Proofs of Recursive JBC Programs by Term Rewriting

Unknown = Classnames×{?} represents null and all tree-shaped objects for which
we only have type information. In particular, Unknown objects are acyclic and do not
share parts of the heap with any objects at the other references in the state. For example,
“o2 : List(?)” means that o2 is null or an instance of List (or a subtype of List).

Every input argument has a boolean flag, where false indicates that it may have been
modified (as a side effect) by the current method. Moreover, we store which formal parameter
of the method corresponds to this input argument. So in Fig. 1, the full input arguments are
(o1, lv0,0, true) and (i3, lv0,1, true). Here, lvi,j is the position of the j-th local variable in
the i-th stack frame. When the top stack frame (i.e., frame 0) is at program position 0 of a
method, then its 0-th and 1-st local variables (at positions lv0,0 and lv0,1) correspond to
the first and second formal parameter of the method. Formally, InpArgs = 2Refs× SPos×B.

A state position π ∈ SPos(s) is a sequence starting with lvi,j , osi,j (for operand stack
entries), or ini,τ (for input arguments (r, τ, b) in the i-th stack frame), followed by a sequence
of FieldIDs. This sequence indicates how to access a particular object.

I Definition 2.1 (State Positions). Let s = (〈fr0, . . . , frn〉, h) ∈ States where fr i = (ini, ppi,
lvi, osi). Then SPos(s) is the smallest set containing all the following sequences π:

π = lvi,j where 0 ≤ i ≤ n, lvi = 〈l0, . . . , lm〉, 0 ≤ j ≤ m. Then s|π is lj .
π = osi,j where 0 ≤ i ≤ n, osi = 〈o0, . . . , ok〉, 0 ≤ j ≤ k. Then s|π is oj .
π = ini,τ where 0 ≤ i ≤ n and (r, τ, b) ∈ ini. Then s|π is r.
π = π′ v for some v ∈ FieldIDs and some π′ ∈ SPos(s) where h(s|π′) = (cl, f) ∈
Instances and where f(v) is defined. Then s|π is f(v).

The references in the state s are defined as Ref (s) = {s|π | π ∈ SPos(s)}.

So for the state s in Fig. 1, we have s|lv0,0 = s|in0,lv0,0
= o1, s|lv0,0 n = s|in0,lv0,0 n = o2, etc.

2.2 Termination Graphs for a Single Method
In Fig. 2, we construct the termination graph of appE. The state in Fig. 1 is its initial state
A, i.e., we analyze termination of appE for acyclic lists of arbitrary length and any integer.

In A, aload_0 loads the value of the 0-th local variable this on the operand stack. So
A is connected by an evaluation edge to a state with program position 1 (omitted from
Fig. 2 due to space reasons, i.e., dotted arrows abbreviate several steps). Then “getfield
n” replaces o1 on the operand stack by the value o2 of its field n, resulting in state B. The
value List(?) of o2 does not provide enough information to evaluate ifnonnull. Thus, we
perform an instance refinement [5, Def. 5] resulting in C and D, i.e., a case analysis whether
o2’s value is null. Refinement edges are denoted by dashed lines. In C, we assume that o2’s
value is not null. Thus, we replace o2 by a fresh3 reference o4, which points to List(n = o5).
Hence, we can now evaluate ifnonnull and jump to instruction 26 in state M .

In D, we assume that o2’s value is null , i.e., “o1 : List(n = o2)” and “o2 : null”. To
ease the presentation, in such states we simply replace all occurrences of o2 with null . After
evaluating the instruction “ifnonnull 26”, in the next state (which we omitted from Fig. 2
for space reasons), the instruction “iload_1” loads the value of i on the operand stack. This
results in state E. Now again we do not have enough information to evaluate ifgt. Thus,
we perform an integer refinement [5, Def. 1], leading to states F (if i <= 0) and H.

3 We rename references that are refined to ease the formal definition of the refinements, cf. [5].

Marc Brockschmidt, Carsten Otto, and Jürgen Giesl 159

o1, i3 | 0 | t :o1,i : i3 | ε
o1:List(n=o2) i3:Z
o2:List(?)

A

o1, i3 | 4 | t :o1,i : i3 | o2
o1:List(n=o2) i3:Z
o2:List(?)

B

o1, i3 | 4 | t :o1,i : i3 | o4
o1:List(n=o4) i3:Z
o4:List(n=o5) o5:List(?)

C
o1, i3 | 4 | t :o1,i : i3 | null
o1:List(n=null) i3:Z

D

o1, i3 | 8 | t :o1,i : i3 | i3
o1:List(n=null) i3:Z

E

o1, i6 | 8 | t :o1,i : i6 | i6
o1:List(n=null) i6: [≤ 0]

F

o1, i6 | 11 | t :o1,i : i6 | ε
o1:List(n=null) i6: [≤ 0] G

o1, i7 | 8 | t :o1,i : i7 | i7
o1:List(n=null) i7: [> 0]

H
o1, i7 | 12 | t :o1,i : i7 | ε
o1:List(n=null) i7: [> 0]

I

o1, i7 | 20 | t :o1,i : i7 | o8, o1
o1:List(n=null) i7: [> 0]
o8:List(n=null)

J

o1, i7 | 23 | t :o1,i : i7 | ε
o1:List(n=o8) i7: [> 0]
o8:List(n=null)

K

o1, i7 | 26 | t :o1,i : i8 | ε
o1:List(n=o8) i8: [≥ 0]
o8:List(n=null) i7: [> 0]

L

o1, i3 | 26 | t :o1,i : i3 | ε
o1:List(n=o4) i3:Z
o4:List(n=o5) o5:List(?)

M

o1, i9 | 26 | t :o1,i : i10 | ε
o1:List(n=o4) i9:Z i10:Z
o4:List(n=o5) o5:List(?)

N

o1, i9 | 31 | t :o1,i : i10 | i10,o4
o1:List(n=o4) i9:Z i10:Z
o4:List(n=o5) o5:List(?)

O

o4, i10 | 0 | t :o4,i : i10 | ε
o1, i9 | 34 | t :o1,i : i10 | ε
o1:List(n=o4) i9:Z i10:Z
o4:List(n=o5) o5:List(?)

Po4, i10 | 0 | t :o4,i : i10 | ε
o4:List(n=o5) i10:Z
o5:List(?)

Q

o11, i12 | 11 | t :o11,i : i12 | ε
o1, i9 | 34 | t :o1,i : i12 | ε
o1:List(n=o11) i9:Z
o11:List(n=null) i12: [≤0]

R

o1, i9 | 34 | t :o1,i : i12 | ε
o1:List(n=o11) i9:Z
o11:List(n=null) i12: [≤0]

S

o14, i13 | 34 | t :o14,i : i15 | ε
o1, i9 | 34 | t :o1,i : i13 | ε
o1:List(n=o14) i9:Z
o14:List(n=o16) i13:Z
o16:List(n=null) i15: [≤0]

T

o1, i9 | 34 | t :o1,i : i13 | ε
o1:List(n=o14) i9:Z
o14:List(n=o16) i13:Z
o16:List(n=null)

U

o1, i9 | 34 | t :o1,i : i13 | ε
o1:List(n=o14) i9:Z
o14:List(n=o16) i13:Z
o16:List(?)

V

o17, i19 | 34 | t :o17,i : i21 | ε
o1, i9 | 34 | t :o1,i : i19 | ε
o1:List(n=o17) i9:Z i21:Z
o17:List(n=o18) i19:Z
o18:List(n=o20) o20:List(?)

W o1, i9 | 34 | t :o1,i : i19 |ε
o1:List(n=o17) o20:List(?)
o17:List(n=o18) i19:Z
o18:List(n=o20) i9:Z

X

i6≤0

i7>0

i8 = i7 − 1

with P

with P

with P

Figure 2 Termination Graph of appE

In F , we evaluate ifgt, leading to G. We label the edge from F to G with the condition
i6 ≤ 0 of this case. This label will be used when generating a TRS from the termination
graph. States like G that have only a single stack frame which is at a return position are
called return states. Thus, we reach a program end, denoted by �. From H, we jump to
instruction 12 in I and label the edge with i7 > 0. In I, o1 is pushed on the operand stack.
Afterwards, we create another list element o8, where we skipped the constructor call in Fig. 2.
In K, o8 has been written to the field n of o1. This is a side effect on an object that is visible
from outside the method (since o1 is an input argument). Hence, in K we set the boolean
flag for o1 to false (depicted by crossing out the input argument o1).

In L, the value of the 1-st local variable i is decremented by 1. In contrast to JBC,
we represent primitive data types by references. Hence, we introduce a fresh reference i8,
pointing to the adapted value. Since i7’s value did not change, i7 is not crossed out.

State L is similar to the stateM we obtained from the other branch of our first refinement.
To simplify the graph, we create a generalized state N , which represents a superset of all
concrete states represented by L or M . N is almost like M (up to renaming of references)
and only differs in the information about input arguments, which is taken from L. We draw
instance edges (double arrows) from L and M to N and only consider N in the remainder.

In O, we have loaded this.n and i on the operand stack and invoke appE on these values.

RTA’11

160 Modular Termination Proofs of Recursive JBC Programs by Term Rewriting

So in P , a second stack frame is pushed on top of the previous one. States like P that contain
at least two frames where the top frame is at the start of a method are call states.

We now introduce a new approach to represent call stacks of arbitrary size by splitting up
call stacks. Otherwise, for recursive methods the call stack could grow unboundedly and we
would obtain an infinite termination graph. So P has a call edge (thick arrow) to Q which
only contains P ’s top stack frame. Since Q is identical to A (modulo renaming), we do not
have to analyze appE again, but simply draw an instance edge from Q to A.

Up to now A only represented concrete states where appE was called “directly”. However,
now A can also be reached from a “method call” in P . Hence, now A and the other abstract
states s of appE’s termination graph also represent states where appE was called “recursively”,
i.e., where below the stack frames of s, one has the stack frames of P (only P ’s top frame
is replaced by the frames of s).4 For each return state we now consider two cases: Either
there are no further frames below the top frame (then one reaches a leaf of the termination
graph) or else, there are further frames below the top (which result from the method call
in P). Hence, for every return state like G, we now create an additional successor state R
(the context concretization of G with P), connected by a context concretization edge (a thick
dotted arrow). R has the same stack frame as G (up to renaming), but below we add the
call stack of P (without P ’s top frame that corresponded to the method call).

In R, appE’s recursive call has just reached the return statement at index 11. Here, we
identified o1 and i6 from state G with o4 and i10 from P and renamed them to o11 and i12.
We now consider which information we have about R’s heap. According to state G, the input
arguments of appE’s recursive call were not modified during the execution of this recursive
call. Thus, for the input arguments o11 and i12 in R, we can use both the information on
o1 and i6 in G and on o4 and i10 in P . According to G, o1 is a list of length 1 and i6 ≤ 0.
According to P , o4 has at least length 1 and i10 is arbitrary. Hence, in R we can take the
intersection of this information and deduce that o11 has length 1 and i12 ≤ 0. (So in this
example, the intersection of G’s and P ’s information coincides with the information in G.)

When constructing termination graphs, context concretization is only needed for return
states. But to formulate Thm. 2.3 on the soundness of termination graphs later on, in Def. 2.2
we introduce context concretization for arbitrary states s = (〈fr0, . . . , frn〉, h). So s re-
sults from evaluating the method in the bottom frame frn (i.e., frn−1 was created by a call
in frn, frn−2 was created by a call in frn−1, etc.). Context concretization of s with a call
state s = (〈fr0, . . . , frm〉, h) means that we consider the case where frn results from a call in
fr1. Thus, the top frame fr0 of s is at the start of some method and the bottom frame frn of
s must be at an instruction of the same method. Moreover, for all input arguments (r, τ, b) in
fr0 there must be a corresponding input argument (r, τ, b) in frn.5 To ease the formalization,
let Ref (s) and Ref (s) be disjoint. For instance, if s is G and s is P , we can mark the
references by G and P to achieve disjointness (e.g., oG1 ∈ Ref (G) and oP1 ∈ Ref (P)).

Then we add the frames fr1, . . . , frm of the call state s below the call stack of s to obtain
a new state s̃ with the call stack 〈fr0σ, . . . , frnσ, fr1σ, . . . , frmσ〉. The identification substi-
tution σ identifies every input argument r of fr0 with the corresponding input argument r
of frn. If the boolean flag for the input argument r in s is false, then this object may have
changed during the evaluation of the method and in s̃, we should only use the information

4 For example, A now represents all states with call stacks 〈frA, frP1 , frP1 , . . . , frP1 〉 where frA is A’s stack
frame and frP1 , frP1 , . . . , frP1 are copies of P ’s bottom frame (in which references may have been renamed).
So A represents states where appE was called within an arbitrary high context of recursive calls.

5 This obviously holds for all input arguments corresponding to formal parameters of the method, but
Sect. 2.3 will illustrate that sometimes fr0 may have additional input arguments.

Marc Brockschmidt, Carsten Otto, and Jürgen Giesl 161

from s. But if the flag is true, then the object did not change. Then, both the information in
s and in s about this object is correct and for s̃, we take the intersection of this information.
In our example, σ(oG1) = σ(oP4) = oR11 and σ(iG6) = σ(iP10) = iR12. Since the flags of the input
arguments oG1 and iG6 are true, for oR11 and iR12, we intersect the information from G and P .

If we identify r and r, and both point to Instances, then we may also have to identify
the references in their fields. To this end, we define an equivalence relation ≡ ⊆ Refs×Refs
where “r ≡ r” means that r and r are identified. Let r ≡ r and let r be no input argument in
s with the flag false. If r points to (cl, f) in s and r points to (cl, f) in s, then all references
in the fields v of cl and its superclasses also have to be identified, i.e., f(v) ≡ f(v).

To illustrate this in our example, note that we abbreviated the information on G’s heap
in Fig. 2. In reality we have “oG1 : List(n = oG2)”, “oG2 : null”, and “iG6 : [≤ 0]”. Hence, we
do not only obtain iG6 ≡ iP10 and oG1 ≡ oP4 , but since oG1 ’s boolean flag is not false, we also
have to identify the references at the field n of the object, i.e., oG2 ≡ oP5 .

Let ρ be an injective function that maps each ≡-equivalence class to a fresh reference. We
define the identification substitution σ as σ(r) = ρ([r]≡) for all r ∈ Ref (s) ∪Ref (s). So we
map equivalent references to the same new reference and we map non-equivalent references to
different references. To construct s̃, if r ∈ Ref (s) points to an object which was not modified
by side effects during the execution of the called method (i.e., where the flag is not false),
we intersect all information in s and s on the references in [r]≡. For all other references in
Ref (s) resp. Ref (s), we only take the information from s resp. s and apply σ.

In our example, we have the equivalence classes {oG1 , oP4 }, {oG2 , oP5 }, {iG6 , iP10}, {oP1 },
and {iP9 }. For these classes we choose the new references oR11, oR2 , iR12, o

R
1 , i

R
9 , and obtain

σ = {oG1 /oR11, o
P
4 /o

R
11, o

G
2 /o

R
2 , o

P
5 /o

R
2 , i

G
6 /i

R
12, i

P
10/i

R
12, o

P
1 /o

R
1 , i

P
9 /i

R
9 }. The information for oR11,

oR2 , and iR12 is obtained by intersecting the respective information from G and P . The
information for oR1 and iR9 is taken over from P (by applying σ).

Def. 2.2 also introduces the concept of intersection formally. If r ∈ Refs(s), r ∈ Refs(s),
and h resp. h are the heaps of s resp. s, then intuitively, h(r) ∩ h(r) consists of those
values that are represented by both h(r) and h(r). For example, if h(r) = [≥ 0] = (−1,∞)
and h(r) = [≤ 0] = (−∞, 1), then the intersection is (−1, 1) = [0, 0]. Similarly, if h(r) or
h(r) is null, then their intersection is again null. If h(r), h(r) are Unknown instances of
classes cl1, cl2, then their intersection is an Unknown instance of the more special class
min(cl1, cl2). Here, min(cl1, cl2) = cl1 if cl1 is a (not necessarily proper) subtype of cl2 and
min(cl1, cl2) = cl2 if cl2 is a subtype of cl1. Otherwise, cl1 and cl2 are called orthogonal. If
h(r) ∈ Unknown and h(r) ∈ Instances, then their intersection is from Instances using
the more special type. Finally, if both h(r), h(r) ∈ Instances with the same type, then their
intersection is again from Instances. For the references in its fields, we use the identification
substitution σ that renames equivalent references to the same new reference.

Note that one may also have to identify different references in the same state. For
example, s could have the input arguments (r, τ1, b) and (r, τ2, b) with the corresponding
input arguments (r1, τ1, b1) and (r2, τ2, b2) in s. Then r ≡ r1 ≡ r2. Note that if r1 6= r2
are references from the same state where h(r1) ∈ Instances, then they point to different
objects (i.e., then h(r1) ∩ h(r2) is empty). Similarly, if h(r1), h(r2) ∈ Unknown, then they
also point to different objects or to null (i.e., then h(r1) ∩ h(r2) is null).

I Definition 2.2 (Context Concretization). Let s = (〈fr0, . . . , frn〉, h) and let s = (〈fr0, . . . ,

frm〉, h) be a call state where frn and fr0 correspond to the same method. (So fr0 is at the
start of the method and frn can be at any position of the method.) Let inn resp. in0 be the
input arguments of frn resp. fr0, and let Ref (s) ∩ Ref (s) = ∅. For every input argument
(r, τ, b) ∈ in0 there must be a corresponding input argument (r, τ, b) ∈ inn (i.e., with the same

RTA’11

162 Modular Termination Proofs of Recursive JBC Programs by Term Rewriting

position τ), otherwise there is no context concretization of s with s. Let ≡ ⊆ Refs×Refs
be the smallest equivalence relation which satisfies the following two conditions:

if (r, τ, b) ∈ in0 and (r, τ, b) ∈ inn, then r ≡ r.
if r ∈ Ref (s), r ∈ Ref (s), r ≡ r, and there is no (r, τ, false) ∈ inn, then h(r) = (cl, f) and
h(r) = (cl, f) implies that f(v) ≡ f(v) holds for all fields v of cl and its superclasses.

Let ρ : Refs /≡ → Refs be an injective mapping to fresh references /∈ Ref (s) ∪ Ref (s) and
let σ(r) = ρ([r]≡) for all r ∈ Ref (s) ∪ Ref (s). Then the context concretization of s with s is
the state s̃ = (〈fr0σ, . . . , frnσ, fr1σ, . . . , frmσ〉, h̃). Here, we define h̃(σ(r)) to be

h(r1)∩ . . .∩h(rk)∩h(r1)∩ . . .∩h(rd), if [r]≡∩Ref (s) = {r1, . . . , rk}, [r]≡∩Ref (s) = {r1,

. . . , rd}, and there is no input argument (ri, τ, false) ∈ inn
h(r1) ∩ . . . ∩ h(rk), if [r]≡ ∩ Ref (s) = {r1, . . . , rk}, and there is an (ri, τ, false) ∈ inn

If the intersection is empty, then there is no concretization of s with s. Moreover, whenever
there is an input argument (r, τ, b) ∈ in0 with corresponding input argument (r, τ, false) ∈ inn,
then for all input arguments (r′, τ ′, b′) in lower stack frames of s where r′ reaches6 r in h,
the flag b′ must be replaced by false when creating the context concretization s̃. In other
words, in the lower stack frame of s̃, we then have the input argument (r′σ, τ ′, false).

Finally, for all s1, . . . , sk ∈ {s, s} where hi is the heap of si, and for all pairwise different
references r1, . . . , rk with ri ∈ Ref (si) where r1 ≡ . . . ≡ rk, we define h1(r1)∩ . . .∩ hk(rk) to
be h1(r1)σ if k = 1. Otherwise, h1(r1) ∩ . . . ∩ hk(rk) is

(max(a1, . . . , ak),min(b1, . . . , bk)), if all hi(ri) = (ai, bi) ∈ Integers and max(a1, . . . ,

ak) + 1 < min(b1, . . . , bk)
null, if all hi(ri) ∈ Unknown∪{null} and at least one of them is null
null, if all hi(ri) ∈ Unknown and there are j 6= j′ with sj = sj′

null, if k = 2, h1(r1) = (cl1, ?), h2(r2) = (cl2, ?) and cl1, cl2 are orthogonal
(min(cl1, cl2), ?), if k = 2, s1 6= s2, h1(r1) = (cl1, ?), h2(r2) = (cl2, ?), and cl1, cl2 are not
orthogonal
(cl, f), if k = 2, s1 6= s2, h1(r1) = (cl, f1), h2(r2) = (cl, f2) ∈ Instances. Here,
f(v) = σ(f1(v)) = σ(f2(v)) for all fields v of cl and its superclasses.
(min(cl1, cl2), f), if k = 2, s1 6= s2, h1(r1) = (cl1, ?), h2(r2) = (cl2, f2), and cl1, cl2 are
not orthogonal. Here, f(v) = σ(f2(v)) for all fields v of cl2 and its superclasses. If cl1 is
a subtype of cl2, then for those fields v of cl1 and its superclasses where f2 is not defined,
f(v) returns a fresh reference rv where h̃(rv) = (−∞,∞) if the field v has an integer
type and h̃(rv) = (clv, ?) if the type of the field v is some class clv. The case where
h1(r1) ∈ Instances and h2(r2) ∈ Unknown is analogous.

In all other cases, h1(r1) ∩ . . . ∩ hk(rk) is empty.

We continue with constructing appE’s termination graph. When evaluating R, the top
frame is removed from the call stack and due to the lower stack frame, we now reach a
new return state S. As above, for every return state, we have to create a new context
concretization T which is like the call state P , but where P ’s top stack frame is replaced by
the stack frame of the return state S. We use an identification substitution σ which maps
oS1 and oP4 to oT14, iS9 and iP10 to iT13, iS12 to iT15, oS11 to oT16, oP1 to oT1 , and iP9 to iT9 . The value
of oT14 (i.e., oS1 and oP4) may have changed during the execution of the top frame (as oS1 is

6 We say that r′ reaches r in h iff there is a position π1 π2 ∈ SPos(s) such that s|π1 = r′ and s|π1 π2 = r.

Marc Brockschmidt, Carsten Otto, and Jürgen Giesl 163

crossed out). Hence, we only take the value from S, i.e., oT14 is a list of length 2. For iT13, we
intersect the information on iS9 and on iP10. The information on iT15 is taken from iS12 and the
information on oT1 resp. iT9 is taken from oP1 resp. iP9 (where σ is applied).

When evaluating T , the top frame is removed and we reach a new return state U . If we
continued in this way, we would perform context concretization on U again, etc. Then the
construction would not finish and we would get an infinite termination graph.

To obtain finite graphs, we use the heuristic to generalize all return states with the same
program position to one common state, i.e., only one of them may have no outgoing instance
edge. Then this generalized state can be used instead of the original ones. In S, this is a list
of length 2, whereas in U , this has length 3. Moreover, i ≤ 0 in S, whereas i is arbitrary in
U . Therefore, we generalize S and U to a new state V where this has length ≥ 2 and i is
arbitrary. Now T and U are not needed anymore and could be removed.

As V is a return state, we have to create a new successor W by context concretization,
which is like the call state P , but where P ’s top frame is replaced by V ’s frame (analogous
to the construction of T). Evaluating W leads to X, which is an instance of V . Thus, we
draw an instance edge from X to V and the termination graph construction is finished.

In general, a state s′ is an instance of a state s (denoted s′ v s) if all concrete states
represented by s′ are also represented by s. For a formal definition of “v”, we refer to [5,
Def. 3] and [15, Def. 2.3]. The only condition that has to be added to this definition is that
for every input argument (r′, τ, b′) in the i-th frame of s′, there must also be a corresponding
input argument (r, τ, b) in the i-th frame of s, where b′ = false implies b = false.

However in [5, 15], s′ v s only holds if s′ and s have the same call stack size. In contrast,
we now also allow larger call stacks in s′ and define s′ v s iff a state s̃ can be obtained by
repeated context concretization from s, where s′ and s̃ have the same call stack size and
s′ v s̃. For example, P v A, although P has two and A only has one stack frame, since
context concretization of A (with P) yields a state Ã which is a renaming of P (thus, P v Ã).

2.3 Termination Graphs for Several Methods

static void cappE (int j) {
List a = new List ();
if (j > 0) {

a.appE(j);
while (a.n == null) {}

}}

Termination graphs for a method can be re-used whenever
the method is called. To illustrate this, consider a method
cappE which calls appE. It constructs a new List a, checks
if the formal parameter j is > 0, and calls a.appE(j) to
append j elements to a. Then, if a.n is null, one enters a

non-terminating loop. But as j > 0, our analysis can detect that after the call a.appE(j),
the list a.n is not null. Hence, the loop is never executed and cappE is terminating.

i1 | 14 | j : i1,a :o2 | i1, o2
o2:List(n=null) i1: [>0]

A′

o2, i1 | 0 | t :o2,i : i1 | ε
i1 | 17 | j : i1,a :o2 | ε
o2:List(n=null) i1: [>0]

B′

appE

. . .
G

. . .
V

o4, i3 | 34 | t :o4,i : i7 | ε
i3 | 17 | j : i3,a :o4 | ε
o4:List(n=o5) i3: [>0]
o5:List(n=o6) o6:List(?)

C′

i1 > 0

with B′

In cappE’s termination graph, after constructing the new
List and checking j > 0, one reaches A′. The call of appE
leads to the call state B′, whose top frame is at position 0 of
appE. As in the step from P to Q in Fig. 2, we now split the
call stack. The resulting state (with only B′’s top frame) is con-
nected by an instance edge to the initial state A of appE’s
termination graph, i.e., we re-use the graph of Fig. 2. Recall
that for every call state s that calls appE and each return state s
in appE’s termination graph, we perform context concretization
of s with s. In fact, one can restrict this to return states s
without outgoing instance edges (i.e., to G and V).

Now we have another call state B′ which calls appE. G
has no context concretization with B′, as the second input

RTA’11

164 Modular Termination Proofs of Recursive JBC Programs by Term Rewriting

argument is ≤ 0 in G and > 0 in B′ (i.e., the intersection is empty). Context concretization
of V with B′ yields state C ′. Here, iC′3 results from intersecting iV9 and iB′1 , whereas oC′4 is
taken over from oV1 (thus in C ′, a.n is not null and hence, the while loop is not executed).7

To define termination graphs formally, in [5, Def. 6] we extended JBC-evaluation to
abstract states, i.e., “s SyEv−→ s′” means that s symbolically evaluates to s′. We now extend
[5, Def. 6] to handle input arguments. Input arguments remain unchanged by symbolic
evaluation, except when evaluating putfield or invoking a method. If evaluation of a
putfield instruction changes an object at a position ini,τ π, then we set the boolean flag b
of the input argument (r, τ, b) in the i-th stack frame to false (cf. J SyEv−→ K in Fig. 2).

Now we explain how to create the input arguments for new stack frames which are
generated when invoking a method. In general, one may need more input arguments than
the method’s formal parameters. To see this, consider a variant of cappE, where before the
call of appE, we add the instruction “List b = a.n = new List();”. Thus, now a is a list
of length 2 and b also points to a’s second element. Hence, in state A′ we now have the local
variables “j : i1, a :o2, b :o3” where “o2 : List(n = o3)” and “o3 : List(n = null)”. As before,
appE is called with the arguments o2 and i1 and its execution modifies the object at o2 as a
side effect. However, due to this, the object at o3 is modified as well. We have to take this
into account, because after the execution of appE, the object at o3 is still accessible via the
local variable b. So here the execution of a called method has a side effect on objects that
are visible from lower frames of the call stack.

Recall that the purpose of the input arguments is to describe which objects may have
changed (as a side effect) during the execution of the method. Therefore in B′, we now
have to add o3 as an additional input argument when calling appE. More precisely, the
three input arguments of B′ would be (o2, lv0,0, true), (i1, lv0,1, true), and (o3, lv0,0 n, true)
(corresponding to the field n of appE’s first formal parameter).

Consequently, we now have to re-process the termination graph of appE to obtain a
variant where the states have three input arguments. The stack frame of V would then be
“o1, i9, o14, | 34 | t :o1, i : i13 | ε”. Hence, in the context concretization of V with B′ (where
oV14 is identified with oB′3), the information on oB′3 is longer valid, but instead one has to use
oV14. Thus in C ′, the value of b is no longer “o3 : List(n = null)”, but “o5 : List(n = oC

′

6)”,
where oC′6 ’s value is a copy of V ’s value for oV16, i.e., List(?).

So for any call state8 s, if there is a number i and a τ ∈ FieldIDs∗ such that s|lv0,i τ = r,
then (r, lv0,i τ, true) should be included in the input arguments of the top stack frame. The
only exception are references r that are no top references and where all predecessors of r can
also be reached from some formal parameter s|lv0,j of the called method. The reason is that
then r is only reachable from other input arguments of s and hence, their flags suffice to
indicate whether the object at r has changed. Here, r is a top reference iff s|π = r holds for
some position π with |π| = 1 (i.e., π has the form lvi,j , osi,j , or ini,τ). A reference r′ is a
predecessor of r iff s|π = r′ and s|π v = r for some π ∈ SPos(s) and some v ∈ FieldIDs.

For P in Fig. 2, o4, i10, and o5 are at positions of the form lv0,i τ . However, only o4 and

7 When methods modify objects as a side effect, the exact result of this modification is often not expressible
if objects are abstracted to integers. Therefore tools like Julia and COSTA often do not try to express
such modifications and fail if this would have been crucial for the termination proof. Indeed, for cappE’s
termination, one needs information about the object a after it was modified by a.appE(j). Therefore,
while Julia and COSTA can prove termination of appE, they fail on cappE (although in this example, the
effect of the modification would even be expressible when using the path-length abstraction to integers).

8 In fact, this requirement also has to be imposed for initial states of method graphs, i.e., states with just
one stack frame and program position 0 (i.e., at the start of a method).

Marc Brockschmidt, Carsten Otto, and Jürgen Giesl 165

i10 must be input arguments (o5 is not at a top position and its only predecessor is o4).
Finally, we can explain how to construct termination graphs in general:

Each call state (〈fr0, . . . , frm〉, h) is connected to (〈fr0〉, h) by a call edge.
Each return state s = (〈fr〉, h) has an edge to the program end (ε, h) and context concreti-
zation edges to all context concretizations of s with call states of the termination graph.
For all other states s, if s SyEv−→ s′, then we connect s to s′ by an evaluation edge.
If evaluation is impossible, we use integer or instance refinement (using refinement edges).
To get finite graphs,9 we use a heuristic which sometimes introduces more general states
(e.g., when a program position is visited twice). If s′ v s, then s′ can be connected to s
by an instance edge. However, all cycles of the graph must contain an evaluation edge.
In a termination graph, all nodes except program ends must have outgoing edges.

In [5, Thm. 10] we proved that on concrete states, our notion of symbolic evaluation
SyEv−→ is equivalent to evaluation in JBC. Thm. 2.3 shows that symbolic evaluation of abstract
states correctly simulates the evaluation of concrete states (and hence, of JBC).

I Theorem 2.3 (Soundness of Termination Graphs). Let c, c′ be concrete states where c can
be evaluated to c′ (i.e., c SyEv−→ c′). If a termination graph contains an abstract state s which
represents c (i.e., c v s), then the graph has a path from s to a state s′ with c′ v s′.

Paths in the termination graph that correspond to repeated evaluations of concrete states
are called computation paths. Note that Thm. 2.3 can be used to prove the soundness of
our approach: Suppose there is an infinite JBC-computation, i.e., an infinite evaluation of
concrete states c1

SyEv−→ c2
SyEv−→ . . . If c1 is represented in the termination graph, then by

Thm. 2.3 there is an infinite computation path in the termination graph. In Thm. 3.3, we
will show that then the TRS resulting from the termination graph is not terminating.

3 From Modular Termination Graphs to Term Rewriting

We now transform termination graphs into integer term rewrite system (ITRSs) [9]. These are
conditional TRSs where the booleans, integers, standard arithmetic operations ArithOp like
+, −, ∗, /, . . . , and standard relations RelOp like >, <, . . . are pre-defined by an infinite set
of rules PD. For example, PD contains 4 + 2→ 6 and 2 < 3→ true. The rewrite relation
↪→R of an ITRS R is defined as the innermost rewrite relation of R∪PD, where all variables
(including extra variables in conditions or right-hand sides of rules) may only be instantiated by
normal forms. So if R contains “f(x)→ g(x, y) | x > 2”, then f(4 + 2) ↪→R f(6) ↪→R g(6, 23).
TRS termination techniques can easily be adapted to ITRSs as well [9].

As in [15, Def. 3.2], a reference r in a state s with heap h is transformed into a term by
the function tr(s, r). If h(r) ∈ Unknown or h(r) is an integer interval of several numbers,
then tr(s, r) is a variable with the name r. If h(r) is a concrete integer like [5, 5], then tr(s, r)
is the corresponding constant 5. If h(r) = null , then tr(s, r) is the constant null.

The main advantage of our rewrite-based approach becomes obvious when transforming
data objects into terms (i.e., when h(r) ∈ Instances). The reason is that such data objects
essentially are terms and hence, our transformation can keep their structure. We use the
class names as function symbols, and the arguments of these symbols represent the values of

9 Indeed, our implementation uses heuristics which guarantee that we automatically generate a finite
termination graph for any JBC program.

RTA’11

166 Modular Termination Proofs of Recursive JBC Programs by Term Rewriting

fields. So to represent objects of the class List, we use a unary function symbol List whose
argument corresponds to the value of the field n. Thus, o1 in P from Fig. 2 is transformed
into the term tr(P, o1) = List(List(o5)).10 However, references r pointing to cyclic objects
are transformed to a variable r in order to represent an “arbitrary unknown” object.

Now we show how to transform states into terms. In [5, 15], for each state s we used a
function symbol fs which had one argument for each top position in the state. In contrast,
to model the call and return of methods, we now encode each stack frame on its own. Then
a state is represented by nesting the terms for its stack frames.

To encode a stack frame (in, pp, lv, os) of s to a term, we use a function symbol fs,pp
whose arguments correspond to the top positions in this frame. To represent the call stack,
fs,pp gets an additional first argument, which contains the encoding of the frame above the
current one, or eos (for “end of stack”) if there is no such frame. So the top stack frame is
always at an innermost position of the form 1 1 . . . 1. Thus, state P is encoded as the term

ts(P) = fP,34(fP,0(eos, List(o5)︸ ︷︷ ︸
o4

, i10, List(o5)︸ ︷︷ ︸
o4

, i10), List(List(o5))︸ ︷︷ ︸
o1

, i9, List(List(o5))︸ ︷︷ ︸
o1

, i10)

In Def. 3.1, for any sequence 〈r1, ..., rk〉, “tr(s, 〈r1, ..., rk〉)” stands for “tr(s, r1), . . . , tr(s, rk)”.

I Definition 3.1 (Transforming States). Let s=(〈fr0, . . . , frn〉, h) with fr i = (ini, ppi, lvi, osi)
and ini = {(ri,0, τi,0, bi,0), . . . , (ri,ki , τi,ki , bi,ki)}, for all i. We define ts(s) = ts(s, n), where

ts(s, i) =
{

fs,ppi
(

ts(s, i− 1), tr(s, 〈ri,0 . . . ri,ki〉), tr(s, lvi), tr(s, osi)
)
, if i ≥ 0

eos, otherwise

As in [15], the instance relation on states is related to the matching relation on the
corresponding terms. If s′ v s and the call stack of s has size n, then ts(s) matches the
subterm of ts(s′) that encodes the upper n frames of the call stack. Hence, if one generates
rewrite rules to evaluate ts(s), then they can also be applied to ts(s′). Here, one of course
has to label the function symbols in ts(s) and ts(s′) in the same way. To this end, let tss(s′)
be a copy of ts(s′) where all symbols are labeled by s instead of s′. Consider Fig. 2, where
P v A and where the call stacks of P and A have size 2 and 1, respectively. Here, ts(A) =
fA,0(eos, List(o2), i3, List(o2), i3) matches tsA(P)|1 = fA,0(eos, List(o5), i10, List(o5), i10).

To ease presentation,11 we assume that frames of the same method refer to the “same”
input arguments. More precisely, let fr = (pp, in, lv, os) and fr ′ = (pp′, in′, lv′, os′) be frames
with pp and pp′ in the same method. If in = {(r1, τ1, b1), . . . , (rk, τk, bk)}, then we assume
that in′ = {(r′1, τ1, b

′
1), . . . , (r′k, τk, b′k)} for the same positions τ1, . . . , τk. When encoding fr

and fr ′ to terms t and t′ in Def. 3.1, we fix a total order on positions τ1, . . . , τk. Then the
argument positions that correspond to (ri, τi, bi) in t and to (r′i, τi, b′i) in t′ are the same.

I Lemma 3.2. Let s′ v s and let i = |s′|− |s| be the difference of their call stack sizes. Then
there is a substitution σ with ts(s)σ = tss(s′)|1i . Here, “1i” means “1 1 . . . 1” (i times).

Now we construct ITRSs whose termination implies termination of the original programs.
To this end, we transform the edges of the termination graph into rewrite rules.

10 In general, tr also takes the class hierarchy into account. To simplify the presentation, we refer to [15,
Def. 3.3] for details and use the above representation in the illustrating examples.

11Without this assumption, s′ v s would not imply that ts(s) matches a subterm of tss(s′). Instead,
one first would have to expand tss(s′) by the additional input arguments of s that are missing in
s′. The remaining construction and Thm. 3.3 are easily adapted accordingly (but it complicates the
presentation).

Marc Brockschmidt, Carsten Otto, and Jürgen Giesl 167

If there is an evaluation edge from s to s̃, then we generate the rule ts(s)→ ts(s̃) which
rewrites any instance of s to the corresponding instance of s̃. As in [15], if this edge is labeled
with o1 = o2 ◦ o3 where ◦ ∈ ArithOp, then in ts(s̃) we replace o1 by tr(s, o2) ◦ tr(s, o3). If
the edge is labeled by o1 ◦ o2 where ◦ ∈ RelOp, then we add the condition tr(s, o1) ◦ tr(s, o2)
to the generated rule. So the edge from H to I in Fig. 2 results in

fH,8(eos, List(null), i7, List(null), i7, i7) → fI,12(eos, List(null), i7, List(null), i7) | i7 > 0

If there is an instance edge from s to s̃, then in the resulting rule we keep all information
that we already have for the specialized state s and continue rewriting with the rules we
already created for s̃. So instead of ts(s)→ ts(s̃), we generate the rule ts(s)→ tss̃(s). For
example, for the instance edge from L to N , we generate the rule

fL,26(eos, List(List(null)), i7, List(List(null)), i8) → fN,26(eos, List(List(null)), i7, List(List(null)), i8)

Similarly, if there is a refinement edge from s to s̃, then s̃ is a specialized version of s.
These edges represent a case analysis and hence, some instances of s are also instances of s̃,
but others are no instances of s̃. By Lemma 3.2, we can use pattern matching to perform the
necessary case analysis. Thus, instead of ts(s)→ ts(s̃) we generate the rule tss(s̃)→ ts(s̃).
As an example, the instance refinement from B to D results in the rule

fB,4(eos, List(null), i3, List(null), i3, null) → fD,4(eos, List(null), i3, List(null), i3, null)

If there is a call edge from s to s̃, then s̃ only contains the top frame of the call stack of
s. Here, we also generate the rule tss(s̃)→ ts(s̃). So for the edge from P to Q, we get

fP,0(eos, List(o5), i10, List(o5), i10) → fQ,0(eos, List(o5), i10, List(o5), i10)

Now this rule and the other appE-rules can be applied in terms like fP,34(fP,0(eos, . . .), . . .) to
rewrite the underlined subterm that represents a recursive call of appE. By applying all rules
corresponding to the edges from Q up to P , one then obtains fP,34(fP,34(fP,0(eos, . . .), . . .), . . .).
So the rules resulting from a termination graph can create call stacks of arbitrary size.

For a context concretization edge from s to s̃ with the call-state s, the left-hand side of
the corresponding rule should essentially represent the state where the method in the top
frame of s has been called and its execution reached the return statement in s. So the
left-hand side should be like ts(s), but the subterm at position π = 1|s|−1 (which encodes
the top stack frame of s) is replaced by ts(s). Hence, we obtain ts(s)[ts(s)]π. Note that in
the new state s̃, we used the identification substitution σ for the references from s and s, cf.
Def. 2.2. Therefore, in the corresponding rewrite rule, we should use the new names of these
references not only on the right-hand side of the rule (which results from encoding s̃), but
also on the left-hand side. In other words, we create the rule (ts(s)[ts(s)]π)σ → ts(s̃).

As an example, let s be the return state V , s be the call state P , and s̃ be the context
concretization W . We abbreviate “List” by “L”. Then for the edge from V to W , we get

fP,34(fV,34(eos, L(L(oW20)), iW19 , L(L(oW20)), iW21), L(L(oW5)), iW9 , L(L(oW5)), iW19) →
fW,34(fW,34(eos, L(L(oW20)), iW19 , L(L(oW20)), iW21), L(L(L(oW20))), iW9 , L(L(L(oW20))), iW19)

Note that on the left-hand side of this rule, for the lower stack frames of P , we still have
the values before the execution of the method (then, o1 had the value L(L(o5)) in P). The
reason is that when simulating the evaluation of states via term rewriting, our rules only
modify the subterm corresponding to the top stack frame, until the method of the top frame

RTA’11

168 Modular Termination Proofs of Recursive JBC Programs by Term Rewriting

reaches a return. At that point, we perform all side effects that were caused by the executed
method and modify the objects in lower stack frames accordingly. Therefore, the above rule
performs the side effect of changing the object at o1 from L(L(o5)) to L(L(L(o20))).12

As explained in [15], to simplify the resulting TRS, one can often merge rules (where
essentially, a rule `→ r | b is used to narrow all right-hand sides where it is applicable and
afterwards, the rule is removed). In this way, the termination graph for appE of Fig. 2 is
transformed into the following ITRS. The rules correspond to the paths from state A via D
and F to G (rule (1)), from A via D, H, and P back to A (rule (2)), from A via C and P
back to A (rule (3)), from G to V (rule (4)), and from V via W back to V (rule (5)). To
ease readability, we omitted “eos” and the arguments for local variables and operand stack
entries from the rules. Moreover, we abbreviated “null” by “n”.

fA,0(L(n), i6)→ fG,11(L(n), i6) |i6 ≤ 0 (1)
fA,0(L(n), i7)→ fP,34(fA,0(L(n), i7 − 1), L(L(n)), i7) |i7 > 0 (2)

fA,0(L(L(o5)), i3)→ fP,34(fA,0(L(o5), i3), L(L(o5)), i3) (3)
fP,34(fG,11(L(n), i12), L(L(n)), i9)→ fV,34(L(L(n)), i9) (4)

fP,34(fV,34(L(L(o20)), i19), L(L(o5)), i9)→ fV,34(L(L(L(o20))), i9) (5)

These rules are a natural representation of the original JBC algorithm as a TRS. Rules (1)
and (2) handle the case where the length of the input list is 1 (i.e., n == null). If the integer
parameter i is <= 0, then we immediately return (rule (1)). Otherwise, in rule (2) a new
element is attached to the input list (i.e., now the input list is L(L(n)), and the algorithm
is called recursively with the tail of the list (i.e., again with L(n)) and with i - 1. In rule
(3), the input list has length ≥ 2. Here, the algorithm is called recursively with the tail of
the list, whereas the integer parameter is unchanged. Rules (4) and (5) state that after the
execution of the recursive call n.appE(i), the list that results from this recursive call (e.g.,
L(L(o20)) in rule (5)) is written to the field n of the current list as a side effect (e.g., in rule
(5), the subterm L(o5) in the current list L(L(o5)) is replaced by L(L(o20))).

Termination of this ITRS can easily be proved automatically. In the only recursive rules
(2) and (3), either the number in the second argument or the length of the list in the first
argument of fA,0 decreases. As mentioned before, termination of appE can also be proved
by Julia and COSTA, because here it suffices to compare arguments by their path-length.
However, if lists or other data objects have to be compared in a different way, tools like Julia
and COSTA fail, whereas rewrite techniques can compare arbitrary forms of terms, cf. Sect. 4.

Note that in [5, 15], JBC was transformed into TRSs where defined symbols (except
pre-defined operations on integers and booleans) only occur on root positions. So instead of
a term like fP,34(fA,0(L(n), i7 − 1), L(L(n)), i7) on the right-hand side of rule (2), we would
generate a term fPA(L(n), i7− 1, L(L(n)), i7) for a new symbol fPA. The disadvantage is that
then it is not possible to re-use TRSs and their termination proofs for auxiliary methods
that are called in the current method (i.e., one cannot prove termination in a modular way).

So for cappE from Sect. 2.3, with our new approach the rule for the call of appE is
fA′,14(. . .)→ fB′,17(fA,0(L(n), i1), . . .) and the rule for its return is fB′,17(fV,34(L(L(o6)), i3), . . .)

12So for objects that were changed during the execution of the method, the information from s̃ may
not be used on the left-hand side of the resulting rewrite rule. However, one could improve the
generation of the left-hand-sides by allowing to use the information from s̃ for those references which
were not changed by the method (i.e., where the information in s̃ results from the intersection of
the corresponding information in s and s). Then for the edge from G to R, one would obtain a rule
where instead of the left-hand side fP,34(fG,11(. . .), L(L(oR2)), iR9 , L(L(oR2)), iR12) one has the left-hand side
fP,34(fG,11(. . .), L(L(null)), iR9 , L(L(null)), iR12). We used this improvement in rule (4) above.

Marc Brockschmidt, Carsten Otto, and Jürgen Giesl 169

→ fC′,17(fC′,34(. . .), . . .). The rules for fA,0 and the other function symbols from appE remain
unchanged and can be re-used. Hence, their (innermost) termination proof can also be
re-used. Since the remaining rules for cappE have no recursion, termination of the cappE-TRS
trivially follows from termination of the appE-TRS. This illustrates the advantages of our
modular approach which leads to TRSs that form hierarchical combinations. Hence, one can
benefit from termination methods like the dependency pair technique that prove innermost
termination of hierarchical combinations in a modular way, cf. [11, 12, 13]. Note that while
COSTA and Julia can prove termination of appE, they fail on cappE.

Using Lemma 3.2, we can now prove that every computation path in a termination graph
can be simulated by a rewrite sequence with the corresponding ITRS.

I Theorem 3.3 (Soundness of ITRS Translation). If the ITRS corresponding to a termination
graph G is terminating, then G has no infinite computation path.

As explained at the end of Sect. 2.3, by combining Thm. 3.3 with Thm. 2.3, we obtain
that termination of the resulting ITRS implies termination of the original JBC program for
all concrete states represented in the termination graph. Of course, the converse does not
hold, i.e., our approach cannot be used to prove non-termination of JBC. Future work will
be concerned with using our termination graphs also for non-termination analysis, as well as
for other analyses like absence of null pointer exceptions and side effect freeness.

4 Experiments and Conclusion

We presented a new approach to prove termination of JBC programs automatically. In contrast
to our earlier work [5, 15], we introduced a technique (based on context concretizations)
that abstracts from the exact form of the call stack. In this way, we can now also analyze
recursive methods, which were excluded in [5, 15]. Moreover, we obtain a modular approach,
since one can now generate termination graphs for different methods separately and re-use
them whenever a method is called. In contrast to [5, 15], we now also synthesize TRSs from
the termination graphs whose termination can be proved in a modular way.

We implemented our new approach in the termination tool AProVE [10] and evaluated it
on a collection of 83 recursive and 133 non-recursive JBC programs. These examples contain
the 172 JBC programs from the Termination Problem Data Base (used in the International
Termination Competition)13 as well as a number of additional typical recursive programs.14
Below, we compare AProVE 2011 (which contains all contributions of this paper), AProVE 2010
(which implements [5, 15]),15 Julia [16], and COSTA [2]. We used a runtime of 2 minutes for

recursion no recursion
Y F T R Y F T R

AProVE 2011 67 0 16 30 108 0 25 27
AProVE 2010 15 3 65 96 103 13 17 23
Julia 57 26 0 3 96 37 0 2
COSTA 47 35 1 6 73 60 0 5

each example. “Yes” indicates
how many examples could be
proved, “Fail” states how often
the tool failed in less than 2
minutes, “T” indicates how many
examples led to a Time-out, and
“R” gives the average Runtime
in seconds for each example.

So due to our new modular approach, AProVE 2011 yields the most precise results for the

13We removed one controversial example whose termination depends on the handling of integer overflows.
14Of course, we also included appE and cappE, and AProVE 2011 easily proves termination of them.
15 In addition, whenever a recursive method is called with fixed inputs, AProVE 2010 tries to evaluate it.

But it cannot prove termination of recursive method for (infinite) sets of possible inputs.

RTA’11

170 Modular Termination Proofs of Recursive JBC Programs by Term Rewriting

recursive JBC programs in the collection. (However, there are also several examples where
Julia or COSTA succeed whereas AProVE fails.) On non-recursive programs, AProVE 2010 was
already powerful (but the modularity of our new approach helps in large examples). Of course,
Julia and COSTA are significantly faster than AProVE. This is because Julia and COSTA
use a fixed abstraction from objects to integers, whereas AProVE applies rewrite techniques
to generate (potentially different) suitable well-founded orders in every termination proof.
Nevertheless, the experiments clearly show that rewrite techniques are not only powerful,
but also efficient enough for termination of JBC. So a fruitful approach for the future could
be to couple the rewrite-based approach of AProVE with the technique of Julia and COSTA
to combine their respective advantages. To experiment with our implementation via a web
interface and for details on the experiments, we refer to [1].

Acknowledgement. We are grateful to F. Spoto and S. Genaim for help with the experiments and
to the referees for many helpful suggestions.

References
1 http://aprove.informatik.rwth-aachen.de/eval/JBC-Recursion/.
2 E. Albert, P. Arenas, M. Codish, S. Genaim, G. Puebla, and D. Zanardini. Termination

analysis of Java Bytecode. In Proc. FMOODS ’08, LNCS 5051, pages 2–18, 2008.
3 J. Berdine, B. Cook, D. Distefano, and P. O’Hearn. Automatic termination proofs for

programs with shape-shifting heaps. In Proc. CAV ’06, LNCS 4144, pages 386–400, 2006.
4 M. Brockschmidt, C. Otto, and J. Giesl. Modular termination proofs of recursive Java

Bytecode programs by term rewriting. Technical Report AIB 2011-02, RWTH Aachen,
2011. Available at [1] and at http://aib.informatik.rwth-aachen.de.

5 M. Brockschmidt, C. Otto, C. von Essen, and J. Giesl. Termination graphs for Java
Bytecode. In Verification, Induction, Termination Analysis, LNCS 6463, pages 17–37, 2010.
Extended version (with proofs) available at [1].

6 M. Colón and H. Sipma. Practical methods for proving program termination. In Proc.
CAV ’02, LNCS 2404, pages 442–454, 2002.

7 B. Cook, A. Podelski, and A. Rybalchenko. Termination proofs for systems code. In Proc.
PLDI ’06, pages 415–426. ACM Press, 2006.

8 B. Cook, A. Podelski, and A. Rybalchenko. Summarization for termination: No return!
Formal Methods in System Design, 35(3):369–387, 2009.

9 C. Fuhs, J. Giesl, M. Plücker, P. Schneider-Kamp, and S. Falke. Proving termination of
integer term rewriting. In Proc. RTA ’09, LNCS 5595, pages 32–47, 2009.

10 J. Giesl, P. Schneider-Kamp, and R. Thiemann. AProVE 1.2: Automatic termination proofs
in the dependency pair framework. In Proc. IJCAR ’06, LNAI 4130, pages 281–286, 2006.

11 J. Giesl, T. Arts, and E. Ohlebusch. Modular termination proofs for rewriting using de-
pendency pairs. Journal of Symbolic Computation, 34(1):21–58, 2002.

12 J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing and improving
dependency pairs. Journal of Automated Reasoning, 37(3):155–203, 2006.

13 N. Hirokawa and A. Middeldorp. Automating the dependency pair method. Information
and Computation, 199(1,2):172–199, 2005.

14 T. Lindholm and F. Yellin. Java Virtual Machine Specification. Prentice Hall, 1999.
15 C. Otto, M. Brockschmidt, C. von Essen, and J. Giesl. Automated termination analysis

of Java Bytecode by term rewriting. In Proc. RTA ’10, LIPIcs 6, pages 259–276, 2010.
Extended version (with proofs) available at [1].

16 F. Spoto, F. Mesnard, and É. Payet. A termination analyser for Java Bytecode based on
path-length. ACM TOPLAS, 32(3), 2010.

http://aprove.informatik.rwth-aachen.de/eval/JBC-Recursion/
http://aib.informatik.rwth-aachen.de

	Introduction
	From Recursive JBC to Modular Termination Graphs
	States
	Termination Graphs for a Single Method
	Termination Graphs for Several Methods

	From Modular Termination Graphs to Term Rewriting
	Experiments and Conclusion

