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Abstract
Modern simulation and measurement methods tend to produce meshfree data sets if modeling
of processes or objects with free surfaces or boundaries is desired. In Computational Fluid
Dynamics (CFD), such data sets are described by particle-based vector fields. This paper presents
a summary of a selection of methods for the extraction of geometric features of such point-based
vector fields while pointing out its challenges, limitations, and applications.
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1 Introduction

Computational Fluid Dynamics simulations allow the mathematically and scientifically
well-founded modeling of fluid flow. Results of such simulations include the generation of
pressure, velocity and temperature fields in domains with pre-defined boundary geometry
for given liquids. While previous simulation techniques are mainly based on grids to
construct computational meshes, modern particle-based methods, such as Smoothed Particle
Hydrodynamics (SPH) and Finite Pointset Methods (FPM) [25], avoid the use of an explicit
neighborhood relation in the simulation domain to cope with dynamic, rapidly changing
boundary geometry and free surfaces. Due to these capabilities, grid-less methods are able
to overcome challenges of industrial simulations such as stirring or mixing of multi-phase
or heterogeneous liquids, without the need of frequent updates of neighborhood structures.
This new generation method of flow field data poses interesting questions to the visualization
community, as common visualization techniques often rely on structured data for feature
extraction and rendering. In this paper, we give an overview of the main challenges arising
from the lack of a pre-defined neighborhood and summarize existing work on moving-
least-squares-based [16, 29] grid-less vector field segmentation. The main focus lies on the
extraction of geometric flow features [24, 27, 2, 10] that can be used to segment point-based
vector fields, covering an important topic of flow visualization, as (topological) segmentation
[19, 30] is a key question in many of the affected application areas of meshfree CFD. Moving
Least Squares (MLS) as the chosen reconstruction method is well accepted in the area of
surface, object, and point-cloud reconstruction [1] and is also suitable for the problems posed
in flow field approximation.

Section 2 gives an overview of challenges in grid-less vector field processing, proposes
appropriate solutions, and discusses the concept of integral feature extraction in meshfree
vector fields. In sections 3 and 4 we detail existing work on MLS-based stationary and
time-varying vector field segmentation. Section 5 briefly recapitulates application areas and
results of the presented papers. This paper is concluded in Section 6.
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2 Challenges

Challenges in the context of geometric feature extraction from grid-less fields rise from two
different fields, namely i) reconstruction of a continuous field function and ii) extraction
of feature geometry. On the one hand, the lack of an explicit neighborhood structure in
the data set itself poses questions about the method of field approximation and domain
decomposition, on the other hand, the defined geometric segmentation structures are desired
to provide means for binary classification and should therefore hold information in the form
of tessellations. We regard the following challenges to be the main questions to be answered
in the context of point-based vector field feature extraction:

Interpolation/Approximation schemes (Section 2.1)
Domain decomposition (Section 2.2)
Robust and correct boundary treatment (Section 2.3)
Efficient visibility querying (Section 2.4)
Definition of grid-less feature extraction methods (Section 2.5)

These challenges are detailed and discussed in the following.

2.1 Field Reconstruction
In most standard flow fields, the given grid-based simulation data implies the use of trilinear,
barycentric, or higher order geometric interpolation based on the underlying cell types [26].
In contrast, the absence of a computational mesh in point-based fields requires the use of
scattered data interpolation schemes [29], which can be adapted for the interpolation or
approximation of grid-less flow fields [17]. A common property of these methods is the
use of implicit local neighborhoods in the form of appropriate weighting functions. As
such, Radial Basis Functions (RBF) and related techniques [6] implicitly define a spherical
neighborhood around the point of evaluation. One polynomial reconstruction method is the
MLS approximation scheme [16], where the quadratic distance of a polynomial f of a given
degree to a set of n discrete function-values fi at p = (x y z)T is minimized with respect to
a pre-defined weighting function ω:

min

{
n∑
i

ω(p, pi)||f(pi)− fi||2
}

(1)

The central advantage of grid-less approximation is the independence of a computational
grid, i.e. that solutions are governed by the field’s value rather than by the choice and
characteristics of a (static) neighborhood structure. Moreover, concrete neighborhood
structures for a field may not be defined in a unique way (cf.: decomposition of cubes
into tetrahedra). However, faithful reconstruction of a data set is only possible, if the
same interpolation method is used during creation, i.e. simulation of the phenomenon,
and visualization of the data set. Reconstruction properties of MLS, for example, depend
heavily on the chosen weighting function. In the case of ω being a two-dimensional Gaussian
function, changes in the variance parameter, shape or radius of the smoothing function
have great impact on the output with respect to scale space [28]. Especially in data sets
with inhomogeneous particle densities, choice of the appropriate smoothing radius has an
influence on the reconstructed function and is also a major factor contributing to increased
computation times. The reconstructed functions are highly sensitive to changes in smoothing
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length, as too small radii introduce noise or lead to singular systems, and too large radii blur
important features of the field and reduce reconstruction accuracy.
One of the main reasons why grid-less approximation techniques are outperformed by grid-
based methods is the computationally expensive gathering and weighting step of particle
neighbors. As discussed in the next section, caching of particle data contributes to faster field
approximation. In the case of MLS with a linear polynomial of the form f(p) = c · (1 x y z)T ,
the following linear system of equations needs to be solved for c:

 n∑
i

ω(p, pi)


1 xi yi zi
xi x2

i xiyi xizi
yi xiyi y2i yizi
zi xizi yizi z2i


 c =

n∑
i

ω(p, pi)


1
xi
yi
zi

 fi (2)

We note, that the symmetric matrices resulting from a product of base-vectors on the
left side of (2) is independent of the point of evaluation and is completely determined by the
position of a data point pi. Following this observation, matrix creation can be relocated to
a pre-processing step, pre-computing one such matrix for each data point, thus removing
the expensive matrix creation step from approximation. It is notable, that MLS matrices
of higher order include those of lower order. Advantages of MLS over other scattered data
approximation techniques are mathematical simplicity, and ease of control over polynomial
degree and approximation error.

2.2 Domain Decomposition
Mesh-free data sets miss the data clustering property of a computational mesh that is
available in grid-based fields. The use of local scattered data approximation techniques for
function reconstruction suggests the utilization of suitable domain decomposition schemes to
reduce computational complexity by restricting the processed point set during approximation
[20, 9, 13]. The most important reason for using a domain decomposition scheme is locality
during the neighbor gathering step of approximation with compactly supported kernels. An
ideal domain decomposition scheme should have the following properties:

1. Fast identification of enclosing/neighboring cells
2. Good caching properties of it contents
3. A small memory footprint
4. Support of parallelization
5. Adaptivity with respect to particle densities

When used in time-varying vector fields, a fast reorganization of the decomposition scheme
is desired as well. Properties 1.-4. can be guaranteed by a simple uniform grid layer. The
memory footprint of the grid consists of storing the grid implicitly in the form of grid origin,
a number of cells for each dimension and uniform values for cell width, height and length.
Further memory is used by a list of indices of the points contained in every cell. Identification
of relevant cells during field evaluation is as low as three division operations. Parallelization
of particle advection or clustering of the domain is straight-forward in the case of the data
set being shared between processes. Parallelization with distributed memory requires the
inclusion of neighboring grid-cells in the form of ghost cells. Improved caching is obtained by
reordering points’ memory locations according to their cell membership.
This straightforward approach is however not able to fully incorporate varying particle
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densities. While small variations in particle densities can be handled by reducing the width
of the approximation kernel as long as the maximal radius does not exceed cell size, large
variations lead to gathering of unnecessarily large particle sets in areas with high densities.
Multiple layers of uniform grids, as in Adaptive Mesh Refinement [5], or even more adaptive
data structures such as kd-trees [29] can be used in this context to allow adaptive cell sizes,
if the increased time in cell identification is justified by shorter gathering times.

2.3 Boundary Treatment
There are different types of boundaries in point-based CFD [18]. Type one is the triangulated
boundary geometry defined by the device or object which is subject to fluid simulation, such
as parts of stirring machines, planes or vehicles. Triangulated boundaries are commonly
used to represent more static behavior than free surfaces, especially their topology tends to
be stationary. Type two are fluid boundaries, i.e. free surfaces, where the simulated fluid
moves without being restricted by a solid geometry. This often appears in simulations of
stirring devices, where liquid is moved by mixing blades and is bound to a device by gravity
or viscous force only. The third type of boundary is a multi-phase or fluid interface between
different liquids. Boundaries of the latter two cases are generally free surface boundaries/field
discontinuities and require special treatment [18].
During feature extraction and field approximation, a position outside of the data set is
detected either by a boundary collision or visibility test with a triangulated boundary as
described in the next section, or by analysis of the neighboring data points. In the latter
case, statistics [15] like a large empty angular segment in the neighborhood or a point (the
domain of the filter kernel) indicates, that the current point of evaluation is outside of the
data set, see Figure 1 (a). While this covers most convex boundary shapes, accuracy in
boundary detection decreases near concave regions. Similarly, smoothness measures [11] can
be used to approximate free boundaries.

2.4 Visibility Queries
In grid-based visualization, visibility queries in vector fields play a minor role, since the
computational mesh defines data set boundaries and effectively separates the domain of the
flow field from flow obstacles. However, in meshfree particle systems, visibility queries have
to be executed prior to the particle gathering step during field approximation to avoid that
particles located on opposing sides of obstacles influence each other [23] as shown in Figure 1
(b). Such visibility queries can either be performed during neighborhood-finding [4, 3] or rely
partly on a pre-computed visibility data structure, subdividing the field volume into regions
with homogeneous visibility properties, as provided by Binary Space Partitioning or related
schemes [7]. The former method is based on run time ray-triangle intersections to determine
visibility of a certain data point from a point of evaluation. As higher order approximation
techniques require a large number of neighboring points, the amount of required visibility
tests for one vector field approximation often has a large impact on performance. Thus,
visibility tests have to be both reduced to a minimum number and optimized performance wise.

2.5 Extraction and Segmentation Techniques
Geometry extraction in vector fields is often motivated by industrial mixing applications,
where domain experts need to be able to analyze mixing quality of different devices. While
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Figure 1 (a) Point of evaluation (red) outside of a free surface. (b) Visibility querying by ray
testing. One query (green) is omitted, as affected cells do not contain obstacles. Two other rays are
checked for intersection, one of which detects an obstacle (red).

certain other aspects of mixing, such as pressure and temperature are subject to optimization
as well, velocity defines the central criterion for parameter optimization, as it directly
influences the behavior of real and virtual material interfaces. Real interfaces between
different liquids, as well as virtual interfaces defined by the user, device geometry or field
topology and their evolution over time and space need to be analyzed in stationary fields and
time-varying vector fields in order to be able to interpret the output of a complex mixing
process. As demonstrated in the remainder of this paper, a selection of flow structures can
be captured by the definition of integral flow features.
Integral flow features [12] are traces described by infinitesimal particles as they are advected
through a vector field f : Rn × R → Rn. Positions p on these traces are defined by the
solution of the basic governing differential equation dpdt = f(p(t), t), with p(t0) = p0. Work
summarized in the following sections is concerned with feature extraction using integral line
or surface geometry S at time t as defined by (3).

S(r, s, t) = c(s) +
∫ t
t−r
f(S(r − (t− x), s, x), x)dx (3)

where c : R→ Rn is a univariate point seeding curve parametrized by s. For integral lines,
c is a point. Individual instances of lines or stream particles are identified by their age
parameter r ∈ [0, t]. The following sections summarize a selection of existing work in the
context of MLS based grid-less vector field processing that rely on the methods presented in
the previous sections.

3 Extraction and Segmentation I: Stationary Flows

The boundary of instantaneous vector fields is static by definition. The work by Obermaier et
al. [23] focuses on the topological segmentation of stationary mixing processes, see Figure 2. It
is observed, that in stationary fields of mixing processes, flow obstacles such as mixing blades
are the primary source of flow separation due to the lack of critical points or lines in practical
applications. Thus, separation and attachment lines on inner flow obstacles are detected
on the projected two-dimensional flow field by the criteria defined by Kenwright et al. [14]
and used as source for the generation of integral separation structures. As such, separation
and attachment lines define lines, where flow meets an obstacle or separates from it, stream
surfaces integrated in forward or backward direction at these rakes represent three-dimensional
separatrices. Modifications [23] to previous stream surface integration techniques [12, 10] to
accommodate data set boundaries that violate no-slip conditions to allow line integration on
triangulations as well as surface splitting caused by different flow obstacles yield a set of such
separation surfaces. Identification and processing of different surface-surface intersections
allows the geometry-based computation of surface segmentation. The resulting sets of stream
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surface segments are reorganized and combined to form distinct, non-overlapping stream
volumes that effectively segment the underlying domain into topologically homogeneous
volumes.

Figure 2 Steps of stationary stream volume extraction.

4 Extraction and Segmentation II: Time-Varying Flows

A more challenging and physically more realistic setting are time-varying data sets. In
time-varying fields, changing data set boundaries and particle sets usually require the
re-computation of domain decomposition or grid information for every time-step.

4.1 Two-Dimensional
In Obermaier et al. [22], a streak line based approach for the segmentation of two-dimensional,
time-varying flow simulations into continuous areas, so called streak areas is introduced.
Data set boundaries with non-vanishing velocities are incorporated in the streak line creation
process, as they can be the source of streak line stretching, attaching and separation behavior.
Streak lines are continuously seeded at user specified positions, indicating initial material
boundaries. As the streak line is advected by the flow field, individual segments of the line
are subdivided if either a maximal segment length is exceeded, or angles between neighboring
segments fall below a given threshold, thus achieving curvature adaptivity and maintaining
a pre-defined streak line resolution. Solid flow obstacles with non-zero boundary-velocity
require special attention during the line generation process. In every time step, all line
segments are tested for collisions with such obstacles. If a collision is detected at time step t1,
the affected segment is recursively split in half in t0 = t1 − 1 and the resulting two segments
are advected and again tested for collision with a boundary in time t1. This is repeated
until no more segment-obstacle collisions are detected. Streak particles whose trajectory hits
the boundary move along the projected field on the boundary, until they are released at
separation points [14].

4.2 Three-Dimensional
In the three-dimensional case, streak surfaces provide means for segmenting a time-varying
vector field when seeded at initial material interfaces or separation curves. A method
to generate curvature adaptive streak surface geometry in grid-less flow is presented in
[21], where MLS is used for vector field approximation as well as for surface curvature
approximation. Particles seeded at a rake in a time-varying vector field naturally define a
point-based streak surface. The true problem in accurate streak surface generation is to
guarantee a certain desired surface mesh resolution. One solution to this adaptivity problem
is to maintain a curved Delaunay-type surface mesh [8] by edge flipping as the surface is
advected and deformed by the flow field. Triangle circumradii of this streak surface mesh
serve as a measure of streak particle density and are used to insert new particles at regions
with high surface curvature. As large Delaunay triangles reflect a low particle density, high
MLS curvature at such regions indicates the need of additional particle insertion. In order to
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reduce surface artifacts resulting from bad particle insertion positions and increase accuracy
of adaptive surfaces when compared to high resolution streak surfaces, particle insertion
positions in highly curved regions are traced back in time until a time step with a sufficiently
low surface curvature is reached, before actual particle insertion is performed. Figure 5
shows four streak surfaces at different time-steps, parting a time-varying vector field into
two volumes.

Figure 3 Visualization of two single stream volumes and a volume pair (bottom). The data set
is segmented into a total of 64 distinct non-overlapping volumes.

Figure 4 A sequence of six consecutive streak areas. The data set is segmented by a user specified
material interface represented by a streak line. Intersections of the line with flow obstacles as well
as cases where the streak line separates from the boundary geometry can be observed.

Figure 5 Four consecutive renderings of a segmenting streak surface colored according to seed
time.

5 Results and Applications

The given examples demonstrate integral line and surface generation as tool to segment data
sets for further analysis, processing and as general visualization method. Figure 3 depicts
instantaneous flow in an industrial mixing process, however in reality time-dependent vector
fields as shown in Figures 4 and 5 are more common, while sharing properties with stationary
fields with respect to segmentation techniques. The shown results provide information about
flow segmentation and allow domain experts to perform parameter optimization of mixing
devices. The presented solutions to the main challenges of grid-less vector field segmentation
are robust and applicable in stationary, as well as time-varying cases. Distinct segments
of the data set that are bounded by integral feature geometry allow the computation of
volumina, facilitate geometric intersection of different overlapping segments and form a basis
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for binary classification of points in the data set and voxel based visualization techniques
such as volume rendering.

6 Conclusions and Outlook

We have given an overview of advances in the field of MLS-based grid-less flow visualization
and pointed out its challenges and capabilities. It was shown, that segmentation of such
vector-fields is of extreme importance for certain industrial applications, providing insights
about mixing and interface evolution. While the advantages of grid-less flow fields such as
meshless modeling of boundaries and interfaces and grid independence carry over to the
field of visualization by avoiding cell identification and reconstruction artifacts caused by
grid characteristics, the drawback of expensive field approximation and visibility querying
remains a hurdle on the way to real-time surface generation in point-based vector fields. The
presented challenges of grid-less vector fields are subject to ongoing research and new solutions
are expected to improve expressiveness and performance of approximation, extraction, and
visualization techniques. Further work is required in the field of domain decomposition and
distribution techniques, furthermore, a promising direction of future research is the study of
topology changes caused by parameter variations in scattered data interpolation schemes.
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