-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by Dagstuhl Research Online Publication Server

Towards the Implementation and Evaluation of
Semi-Partitioned Multi-Core Scheduling

[Work in Progress |

Yi Zhang!, Nan Guan?, and Wang Yi?

1 Northeastern University, China
2 Uppsala University, Sweden

—— Abstract

Recent theoretical studies have shown that partitioning-based scheduling has better real-time
performance than other scheduling paradigms like global scheduling on multi-cores. Especially,
a class of partitioning-based scheduling algorithms (called semi-partitioned scheduling), which
allow to split a small number of tasks among different cores, offer very high resource utilization,
and appear to be a promising solution for scheduling real-time systems on multi-cores. The major
concern about the semi-partitioned scheduling is that due to the task splitting, some tasks will
migrate from one core to another at run time, and might incur higher context switch overhead
than partitioned scheduling. So one would suspect whether the extra overhead caused by task
splitting would counteract the theoretical performance gain of semi-partitioned scheduling.

In this work, we implement a semi-partitioned scheduler in the Linux operating system, and
run experiments on a Intel Core-i7 4-cores machine to measure the real overhead in both par-
titioned scheduling and semi-partitioned scheduling. Then we integrate the obtained overhead
into the state-of-the-art partitioned scheduling and semi-partitioned scheduling algorithms, and
conduct empirical comparison of their real-time performance. Our results show that the extra
overhead caused by task splitting in semi-partitioned scheduling is very low, and its effect on the
system schedulability is very small. Semi-partitioned scheduling indeed outperforms partitioned
scheduling in realistic systems.

1998 ACM Subject Classification C.3 [Special-purpose and application-based systems]: Real-
time and embedded systems

Keywords and phrases real-time operating system, multi-core, semi-partitioned scheduling

Digital Object Identifier 10.4230/OASIcs.PPES.2011.42

1 Introduction

It has been widely believed that future real-time systems will be deployed on multi-core pro-
cessors, to satisfy the dramatically increasing high-performance and low-power requirements.
There are two basic approaches for scheduling real-time tasks on multiprocessor/multi-core
platforms [3]: In the global approach, each task can execute on any available processor at
run time. In the partitioned approach, each tasks is assigned to a processor beforehand and
during the run time each task can only execute on this particular processor. Recent studies
showed that the partitioned approach is superior in scheduling hard real-time systems, for
both theoretical and practical reasons. However, partitioned scheduling still suffers from
resource waste similar to the bin-packing problem: a task would fail to be partitioned to any
of the processors when the total available capacity of the whole system is still large. When
?Yi Zhang, Nan Gu.an, Wang Yi; .

Y _ND icensed under Creative Commons License ND
Workshop on Bringing Theory to Practice: Predictability and Performance in Embedded Systems (PPES 2011).
Editors: Philipp Lucas, Lothar Thiele, Benoit Triquet, Theo Ungerer, Reinhard Wilhelm; pp. 4246

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://core.ac.uk/display/62916167?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/OASIcs.PPES.2011.42
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

Yi Zhang, Nan Guan, and Wang Yi

the individual task utilization is high, this waste could be significant. In the worst-case only
half of the system resource can be utilized in partitioned scheduling.

To overcome this problem, recently researchers proposed semi-partitioned scheduling
[1, 2,4, 5,6, 7], in which most tasks are statically assigned to a corresponding fixed processor
as in partitioned scheduling, while a few number of tasks are split into several subtasks, which
are assigned to different processors. Theoretical studies have shown that semi-partitioned
scheduling can significantly improve the resource utilization over partitioned scheduling, and
appears to a promising solution for scheduling real-time systems on multi-cores.

While there have been quite a few works on implementing global and partitioned scheduling
algorithms in existing operating systems and studying their characterizations like run-time
overheads, the study of semi-partitioned scheduling algorithms is mainly on the theoretical
aspect. The semi-partitioned scheduling has not been accepted as a mainstream design
choice due to the lack of evidences on its practicability. Particularly, in semi-partitioned
scheduling, some tasks will migrate from one core to another at run time, and might incur
higher context switch overhead than partitioned scheduling. So one would suspect whether
the extra overhead caused by task splitting would counteract the theoretical performance
gain of semi-partitioned scheduling.

In this work, we consider the implementation and characterization of semi-partitioned
scheduling in realistic systems. We implement a semi-partitioned scheduler in Linux 2.6.32.
Then we measure its realistic run-time overhead on an Intel Core-i7 4-cores machine. Fi-
nally we integrate the measured overhead into empirical comparison of the state-of-the-art
partitioned scheduling and semi-partitioned scheduling algorithms. Our experiments show
that semi-partitioned scheduling indeed outperforms partitioned scheduling in the presence
of realistic run-time overheads.

2 Implementation of Semi-Partitioned Scheduler

Several semi-partitioned algorithms have been proposed [4]. In this work we adopt a
recent developed algorithm FP-TS [4], which is based on Rate-Monotonic Scheduling. FP-
TS has both high worst-case utilization guarantees (can achieve hight utilization bounds)
and good average-case real-time performance (exhibits high acceptance ratio in empirical
evaluations). A detailed description of FP-TS can be found in [4]. Our semi-partitioned
scheduler implementation can be easily extended to support a wide range of semi-partitioned
algorithms based on both fixed-priority and EDF scheduling.

Now we introduce our semi-partitioned scheduler implementation in Linux 2.6.32. The
basic framework of our semi-partitioned scheduler is as follows: Each core has its own Ready
queue, which records the tasks have been released but not finished on this core. When a task
is released, it will be inserted into the ready queue, and trigger the scheduler. The scheduler
decides the task to be executed according to the priority order. The timing parameters of
each task are stored in the date structure task struct when the task is created.

There are two types of tasks in the system: (1) normal tasks, which execute on a fixed
core, and (2) split tasks, which will migrate among different cores. The main challenge of
the semi-partitioned scheduling is to support splitting tasks to correctly execute on different
cores, and to migrate from one core to another core with the timing constraint (obtained
from the partitioning algorithm) with as small as possible run-time overhead.

In our implementation, each core maintains its own sleep queue, which records tasks on
this core that are currently not active, and its own ready queue, which records tasks on this
core that are currently active. The ready queue is implemented by a binomial heap and the

43

PPES 2011

44 Towards the Implementation and Evaluation of Semi-Partitioned Multi-Core Scheduling

task 1 released
A

task 2 rls sch cntl task 1 sch cnt2 cache task 2

time
»

\

a b o d e f g h

Figure 1 An example to illustrate the run-time overhead.

sleep queue is implemented by a red-black tree. For a split task, we need to control when a
subtask on one core will migrate to another. This is done by recording the time budget in
the split task’s task_ struct data structure. The main difference between normal tasks and
split tasks is in the scheduling action after their budgets on this core are run out. If it is a
normal task, the scheduler will put this task to the sleep queue of this core. If it is a split
task, the scheduler will: (1) if it is a body subtask, the scheduler will insert the next subtask
into the ready queue of the migration destination core, and trigger the scheduling on the
destination core; (2) if it is a tail subtask, the scheduler will put this task back to the sleep
queue of the core hosting the first subtask of this split task.

3 Overhead Measurement

We use the example in Figure 1 to illustrate the overhead that may happen at runtime. We
assume at time a a lower-priority task 75 is executing, and at time b, a higher-priority task
71 is released. The time between b and e is the overhead due to the release of 71 and context
switch from 75 to 71. Task 71 finishes its execution at time f, and the time between f and ¢
is the overhead due to the context switch from 71 and 75. From time 4, 75 continue to execute
the unfinished work. Now we introduce different parts of the overhead one by one.

rls: This is the overhead due to the task release: When a task is released, the function
release() is invoked to insert this task into the ready queue. rls includes the delay from
requesting the access to getting access to the ready queue, and the time of doing the
insert operation on the ready queue.

sch: This is the overhead due to the scheduling actions, which is in the function sch().
It may happen in two cases: (1) Task release. In this case, sch() will select the highest-
priority task from the ready queue. If there happens a preemption, sch() will put the
current running back to the ready queue. (2) Task finish. In this case, sch() will select
the highest-priority task from the ready queue.

cntl: This is the overhead due to the context switch from the preempted task to the
preempting task, which is in the function ent__swth(). It will store the preempted task’s
context and load the preempting tasks’s context.

ent2: This overhead is also in the function ent_swth(). It may happen in three cases:
(1) The current task is a normal task, and has finished its work. In this case, ent__swth()
will load the context of the task to run (the highest-priority task selected by sch()), then
insert the finished task into the sleep queue. (2) The current task is a split task, and it has
run out of its budget on this core and will migrate to another. In this case, cnt_ swth()
will reload the context of the task to run next, then insert this task to the ready queue of
the destination core. (3) The current task is a split task, and it has finished its execution.
In this case, ent__swth() will reload the context of the task to run next, then insert this
task into the sleep queue of core which hosts the first subtask of this split task.

Yi Zhang, Nan Guan, and Wang Yi

Operation local (N =4) remote (N =4) | local (N =64) remote (N = 64)
sleep queue — add 2.5 2.9 4.3 4.4
sleep queue — delete 3.3 N/A 5.8 N/A
ready queue — add 1.5 3.3 4.4 4.6
ready queue — delete 2.7 N/A 4.6 N/A

Table 1 The measured queue operation durations, all in us

cache: The preempted task’s working space would be (partially) replaced out from the
cache, and when it resumes execution, it needs to reload its working space.

The table shows the maximal measured duration of a single ready queue operation and
sleep queue operation. We set 6 and § to be the worst-case value among them: when N = 4,
0 =3.3us and 6 = 3.3us; when N = 64, § = 4.6us and 0 = 5.8us (N is the maximal number
of tasks in the queue, i.e., the number of tasks on this core). Apart from the delay due to
the access to the ready and sleep queues, we also measure the pure execution time of the
functions relase(), sch() and ent__swth(), they are 3us, bus and 1.5us respectively.

The last overhead we measured is the cache-related overhead. This overhead is highly
dependent on the application memory characters. An important issue is the difference
between local context switches and task migrations between cores. Our measurement shows
that in general the cache-related overhead due to task migrations and local context switches
is in the same order of magnitude. This is due to the shared lower-hierarchy caches (L3 cache
in our case): in both local context switches and task migrations, most of the working space
of the preempted/to-migrate task will be replaced out from the private cache (L1 and L2
cache in our case), and stay in the shared lower-hierarchy caches. Of course, if an application
has generally very small working space (much smaller than the size of private cache, which is
rather rare in realistic applications), the cache-related delay of local context switches would
be significantly smaller than task migrations, since there is a better chance for the working
space of the preempted task to stay in the private cache, until it resumes execution.

4 Results and Conclusion

We conduct comparison of the performance in terms of acceptance ratio of FP-TS and two
widely used fixed-priority partitioned scheduling algorithm FFD (first-fit decreasing size
partitioning) and WFED (worst-fit decreasing size partitioning), with randomly generated task
sets, taking into account the measured overheads shown in last section. Our experiments
show that semi-partitioned scheduling indeed outperforms partitioned scheduling in the
presence of realistic run-time overheads.

—— References

1 B. Andersson, K. Bletsas, and S. Baruah. Scheduling arbitrary-deadline sporadic task
systems multiprocessors. In RTSS, 2008.

2 B. Andersson and E. Tovar. Multiprocessor scheduling with few preemptions. In RTCSA,
2006.

3 J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. Anderson, and S. Baruah. A Categor-
ization of Real-Time Multiprocessor Scheduling Problems and Algorithms. 2004.

4 N. Guan, M. Stigge, W. Yi, and G. Yu. Fixed-priority multiprocessor scheduling with Liu
& Layland’s utilization bound. In RTAS, 2010.

45

PPES 2011

46 Towards the Implementation and Evaluation of Semi-Partitioned Multi-Core Scheduling

5 S. Kato and N. Yamasaki. Portioned EDF-based scheduling on multiprocessors. In EM-
SOF'T, 2008.

6 S. Kato and N. Yamasaki. Semi-partitioned fixed-priority scheduling on multiprocessors.
In RTAS, 20009.

7 S. Kato, N. Yamasaki, and Y. Ishikawa. Semi-partitioned scheduling of sporadic task
systems on multiprocessors. In ECRTS, 2009.

	Introduction
	Implementation of Semi-Partitioned Scheduler
	Overhead Measurement
	Results and Conclusion

