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Abstract
In order to meet performance/low energy/integration requirements, parallel architectures (multi-
threaded cores and multi-cores) are more and more considered in the design of embedded systems
running critical software. The objective is to run several applications concurrently. When applic-
ations have strict real-time constraints, two questions arise: a) how can the worst-case execution
time (WCET) of each application be computed while concurrent applications might interfere?
b) how can the tasks be scheduled so that they are guarantee to meet their deadlines? The second
question has received much attention for several years [4, 8]. Proposed schemes generally assume
that the first question has been solved, and in addition that they do not impact the WCETs. In
effect, the first question is far from been answered even if several approaches have been proposed
in the literature. In this paper, we present an overview of these approaches from the point of
view of static WCET analysis techniques.
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1 Introduction

Parallel architectures, including multithreaded processors (MT) and multi-cores (MC), are
being increasingly used in embedded systems because they fulfill various requirements like high
performance, reduced energy consumption and thermal dissipation, and high integration. This
is achieved through resource sharing among tasks: space sharing in instruction queues (MT)
or caches (MT&MC), and time sharing in the pipeline (MT) or on the shared bus to the
memory hierarchy (MC).
Now, in hard real-time systems, some tasks have strict deadlines and they must be carefully
scheduled to meet them. Task scheduling algorithms rely on the knowledge of the WCET of
each task. Research on timing analysis has been carried out for more than fifteen years. The
proposed approaches range from testing techniques, that estimate the worst-case execution
time from observed execution times (either on the target hardware or on a cycle-accurate
simulator) which is clearly unsafe for critical software, to solutions based on static software
analysis techniques that compute safe WCETs provided the model of the target hardware is
correct. In this paper, we focus on static WCET analysis which is the most appropriate when
considering hard real-time tasks but also the most sensible to non deterministic instructions
timings.

Until recently, static WCET analysis has assumed that the task under analysis could
not be impacted by any external event (either related to another task or to hardware-level
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devices like timer interrupts or memory refreshes). Unfortunately, resource sharing in a
parallel architecture questions this assumption since it induces tasks interferences that are
likely to impact instructions timings. Such interferences include conflicts to access a shared
resource, which are solved by stalling all the requesting tasks but one, as well as corruption
in memories when a task invalidates part of the contents that was used by another task.

Recent work has focused on these issues and different kinds of approaches have been
proposed: some intend to take the possible interferences into account when computing the
WCET of a task, others aim at controlling the interactions to make the WCET analysis
easier. In the latter category, some solutions require detailed knowledge of all the tasks that
may execute concurrently to the task to be analyzed, while other solutions make it possible
to determine the WCET without knowing anything about the concurrent tasks. In this
paper, we review all these approaches and we discuss their relevance from the point of view
of static WCET analysis.

The paper is organized as follows. Section 2 gives a short overview of static WCET
analysis techniques with special focus on hardware-specific parts and shows how resource
sharing may impact instruction timings. A general overview of the approaches that have
been proposed to deal with inter-task interferences is given in Section 3. In Sections 4
and 5, techniques related to handling storage and bandwidth resource sharing respectively
are presented. Concluding remarks are given in Section 6.

2 Static WCET analysis and impact of resource sharing

2.1 Static WCET analysis
Techniques for static WCET analysis have been investigated for the last fifteen years. The
proposed solutions rely on a number of assumptions: the WCET is computed for a task
considered alone, that is not impacted by any other task or external event, that cannot be
preempted by the system scheduler (except for specific works on the effects of preemptions,
like [3]) and that cannot be interrupted.

Static WCET analysis typically requires three steps. The flow analysis builds the Control
Flow Graph of the application from its executable code, and determines flow facts like
loop bounds and infeasible paths from the source code [10, 15, 21]. The low-level analysis
computes the worst-case execution costs of basic blocks taking into account the specifications
of the target hardware and will be detailed below. Finally the WCET computation combines
the flow facts and the execution costs to find out the longest path and its execution time: one
popular method for this computation is the Implicit Path Enumeration Technique (IPET) [17]
based on integer linear programming techniques.

The low-level analysis step breaks down into two sub-steps. The first one examines the
behavior of history-based components, mainly the instruction and data caches: the most
popular approaches are based on abstract interpretation techniques [6] and assign a category
to each access to the cache (ALWAYS_MISS, ALWAYS_HIT, PERSISTENT or NOT_CLASSIFIED).
Existing solutions consider set-associative instruction and data caches [11], or multi-level
cache hierarchies [13]. The second part of low-level analysis computes the execution cost of
each basic block when executed in the pipeline [34, 18, 32]. When examining the way a basic
block is processed through the pipeline, any possible context (initial pipeline state) must be
considered. The existing algorithms differ in how this context is expressed: as a worst-case
pipeline state [18], as an abstract state built by abstract interpretation [34] or as a set of
parameters that represent the availability of every pipeline resource [32]. But they are in
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agreement on the fact that they derive block costs from relative (instead of absolute) start
and finish times. The impact of the cache latencies (related to the previously determined
categories) may be taken into account when estimating the block costs or considered globally
in the WCET computation step (which is likely to be less precise, and even unsafe for
processors that make timing anomalies [20, 31] possible).

2.2 Impact of resource sharing on instructions timings

Simultaneous multithreading (SMT) processors execute several threads concurrently to
improve the usage of hardware resources (mainly functional units) [38]. Common resources
(instruction queues, functional units, but also instruction and data caches and branch pre-
dictor tables) are shared between concurrent threads. Some of these resources (instruction
queues and buffers, caches) are referred to as storage resources because they keep information
for a while, generally for several cycles. On the contrary, bandwidth resources (e.g. functional
units or commit stage) are typically reallocated at each cycle [5]. A similar terminology can
be used for the shared resources in a multicore architecture: a cache that is shared among
the cores is a storage resource while a common bus to the memory hierarchy is a bandwidth
resource.

Resource sharing is likely to impact the instructions timing. For a bandwidth resource,
possible conflicts between concurrent threads to access the resource may delay some of the
threads. As a result, some instruction latencies are lengthened. In an SMT core, delayed
instructions may spend more time than expected in some of the pipeline stages. In a multicore,
the latency of an access to the main memory may be increased because of the waiting time
to the bus.
The effects of sharing storage resources are two-fold. On the one hand, the resource capacity
that is usable by a thread may be less than expected since some entries may be occupied by
other threads. In an SMT core, this may result in instructions being stalled in a pipeline
stage because their destination queue is full. On the other hand, shared memories like
caches or branch predictor tables may have their contents corrupted by other threads which
could produce either destructive or constructive effects. A destructive effect is observed
when another thread degrades the memory contents from the point of view of the thread
under analysis: for example, another thread replaces a cache line that had been loaded by
the analyzed thread and is still useful. On the contrary, a constructive effect improves the
situation for the thread under analysis: for example, a cache line that it requires has been
brought into the cache by another thread (this may happen when the threads share parts of
code or data). However, even what is seen as constructive in the average case might impair
the results of WCET analysis if the processor suffers from timing anomalies [20, 31] (in that
case, a miss in the cache does not always lead to the worst-case execution time).

It is absolutely unsafe to ignore the effects of resource sharing when computing WCETs.
Although we focus on static WCET analysis throughout this paper, we also insist that it is at
least equally unsafe to rely on measurement-based timing analysis on a parallel architecture
since it is very unlikely that all the possible threads interferences can be observed. In the
next section, we review various approaches that have been investigated to cope with these
difficulties.



Christine Rochange 35

3 General approaches to WCET analysis/analysability of concurrent
applications

We have found three kinds of approaches to the problem of accounting for parallel tasks
interferences when computing the WCET of one of these tasks. They differ from each other
by the way they consider that the impact of concurrent tasks should be taken into account.
In the following, τ represents a task under WCET analysis while T stands for the set of its
concurrent tasks.

In this section, we give the main principles of these approaches. How they have been
instantiated in the literature is described later in the paper.

3.1 Joint WCET analysis of tasks
A first category of approaches to the WCET analysis of a task executed in parallel to other
tasks includes the solutions that consider the set of tasks altogether in order to determine
their possible interactions. As far as storage resources are concerned, this means analyzing
the code of each task in T ∪ {τ} to determine possible conflicts, and then accounting for
the impact of these conflicts on τ ’s WCET. For bandwidth resources, identifying conflicts
generally requires considering all the possible task interleavings which is likely to be complex
with fine-grained interleavings (e.g. at instruction- or memory access-level).

The feasibility of joint analysis techniques relies on all the co-running tasks being known
at analysis time. This might be an issue when considering a mixed-criticality workload for
which non critical tasks are dynamically scheduled (then any non critical tasks in the system
should be considered as a potential opponent). In addition, it may happen that the non
critical tasks have not been developed with WCET-analysis in mind and they may not be
analyzable, e.g. due to tricky control flow patterns. Also, even with an homogeneously
critical workload, the set of tasks that may be co-scheduled with the task under analysis
depends on the schedule which, in turn, is determined from the tasks WCETs. This issue
might be tackled through an iterative process but we are not aware of any work on this topic.

3.2 Statically-controlled resource sharing
Acknowledging the difficulty of analyzing storage and bandwidth conflicts accurately, a
number of solutions have been proposed to statically master the task interferences so that
they might be more easily taken into account in the WCET analysis. The techniques in this
category all require having knowledge of the complete workload.

Controlling interferences in storage resources generally consists in limiting such inter-
ferences by restricting accesses to the shared resource. As we will see in the next sections,
the proposed techniques of this kind really tend to meet the requirements of static WCET
analysis techniques in terms of reduced complexity, but the solutions basic on static control
proposed for bandwidth resources do not fit the principles of static WCET analysis.

3.3 Task isolation techniques
The third category of approaches includes all those that intend to make it possible to analyze
the WCET of a task/thread without any knowledge about the concurrent tasks/threads.
This is achieved through the design of hardware schemes that exhibit predictable behavior
for shared resources. For storage resources, a common approach is to partition the storage
among the tasks, so that each critical task has a private partition. For bandwidth resources,
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an appropriate arbitration is needed, that guarantees upper bound delays independently of
the workload.

In the following, we review the techniques that have been proposed so far and that belong
to these three categories.

4 Approaches to analyze storage resource sharing

4.1 Joint analysis of memories
Several recent papers focus on the analysis of the possible corruption of L2 shared instruction
caches by concurrent tasks [40, 41, 12]. The general process is the following: L1 and L2
instruction cache analysis is first performed for each task in T ∪ {τ} independently, ignoring
interferences, using usual techniques [11]; then the results of the analysis of the L2 cache for
task τ are modified considering that each cache set used by another task in T is likely to be
corrupted. For a direct-mapped cache, as studied by Yan and Zhang [40], any access to a
conflicting set is classified as ALWAYS_MISS (should be NOT_CLASSIFIED if timing anomalies
may occur). For a set-associative cache, as considered by Li et al. [41] and Hardy et al. [12],
possible conflicts impact the ages of cache lines.

The main concern with this general approach is its scalability to large tasks: if the
number of possible concurrent tasks is large and if these tasks span widely over the L2
cache, we expect most of the L2 accesses to be NOT_CLASSIFIED which may lead to an
overwhelmingly overestimated WCET. For this reason, Li et al. [41] refine the technique by
introducing an analysis of tasks lifetimes, so that tasks that cannot be executed concurrently
(according to the scheduling algorithm, which is non-preemptive and static priority-driven
in this paper, and to inter-tasks dependencies) are not considered as possibly conflicting.
Their framework involves an iterative worst-case response time analysis process, where each
iteration (i) estimates the BCET and WCET of each task according to expected conflicts in
the L2 cache; (ii) determines the possible tasks schedules, which may show that some tasks
cannot overlap (the initial assumption is that all tasks overlap). This approach is likely to
reduce pessimism but may not fit independent tasks with a more complex scheduling scheme.
Another solution to the complexity issue has been proposed by Hardy et al. [12]: they
introduce a compiler-directed scheme that enforces L2 cache bypassing for single-usage
program blocks. This sensibly reduces the number of possible conflicts. Lesage et al. [16]
have recently extended this scheme to shared data caches.

4.2 Storage partitioning and locking schemes
Cache partitioning and locking techniques have first been proposed as a means to simplify
the cache behavior analysis in single-core non-preemptive systems [27, 26, 30, 25]. Recently,
these techniques have been investigated by Suhendra and Mitra [37] to assess their usability
in the context of shared caches in multicore architectures. They consider combinations of
(static or dynamic) locking schemes and (core-based or task-based) partitioning techniques.
They find out that (i) core-based partitioning strategies (where each core has a private
partition and any task can use the entire partition of the core it is running on) outperform
task-based algorithms; (ii) dynamic locking techniques, that allow reloading the cache during
execution, lead to lower WCETs than static approaches.

Paolieri et al. [23] investigate software-controlled hardware cache partitioning schemes.
They consider columnization (each core has a private write access to one or several ways in a
set-associative cache) and bankization (each core has a private access to one or several cache
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banks) techniques. In both cases, the number of ways/banks allocated to each core can be
changed by software, but it is assumed to be fixed all along the execution of a given task.
They show that bankization leads to tighter WCET estimates.

Techniques to achieve timing-predictability in SMT processors are also based on parti-
tioning instructions queues [1, 22].

5 Approaches to analyze bandwidth resources sharing

5.1 Joint analysis of conflict delays
Crowley and Baer have considered the case of a network processor running pipelined packet
handling software [7]. The application includes several threads, each one implementing one
stage of the computation. The processor features fine-grained multithreading: it provides
specific hardware to store the architectural state of several threads, which allows fast context
switching, and switches to another thread whenever the current thread is stalled on a long-
latency operation. The time during which a thread is suspended depends on the time the
other threads can execute before, in turn, yielding control so that the first thread can resume
its execution. The proposed approach consists in determining the overall WCET of the
application (set of concurrent threads) by considering the threads altogether. The Control
Flow Graphs used for static WCET analysis are augmented with yield nodes at the points
where the threads will yield control. Yield edges link each yield node of a given thread to
all the return-from-yield nodes of any other thread that is likely to be selected when it is
suspended. This results in a complex global Control Flow Graph which, in addition to the
control flow of each thread, expresses the possible control flow from one thread to another.
From this CFG, an integer linear program is built and used to determine the overall WCET
of the application, using the IPET method [17]. Our feeling is that such an approach is not
scalable and cannot handle complex applications.

5.2 Statically-scheduled access to shared bandwidth resources
To improve the analysability of latencies to a shared bus in a multicore architecture,
Rosén et al. [33] introduce a TDMA-based bus arbiter. A bus schedule contains a number of
slots, each allocated to one core, and is stored in a table in the hardware. At run-time, the
arbiter periodically repeats the schedule and grants the bus to the core the current slot has
been assigned to. The idea behind this scheme is that a predefined bus schedule makes the
latencies of bus accesses predictable for WCET analysis. This relies on the assumption that
it is possible, during the low level analysis, to determine the start time of each node (basic
block) in the CFG so that it can be decided whether an access to the bus is within a bus slot
allocated to the core or is to be delayed. This assumption does not hold for static WCET
analysis techniques. It would require unrolling all the possible paths in the CFG which
clearly goes against the root principles of static analysis. Moreover, in the case of multiple
possible paths (which is the common case), a block is likely to exhibit a large number of
possible start times which will noticeably complicate the WCET computation. Alternatively,
the delay to get access to the bus could be upper bounded by the sum of the other slots
lengths. This would come to the simple round-robin solution discussed below if slots are as
short as the bus latency, but would probably severely degrade the worst-case performance
with longer slots. For these reasons, we believe that static WCET analysis can get advantage
of static bus scheduling only for applications that exhibit a very limited number of execution
paths, as targeted by the single-path programming paradigm [28].
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5.3 Task-independent bandwidth partitioning schemes
Solutions to make the latencies to shared bandwidth resources predictable reside in bandwidth
partitioning techniques. This is what we call task isolation: an upper bound of the shared
resource latency is known (it does not depend on the nature of the concurrent tasks) and
can be considered for WCET analysis.

Mische et al. [22] introduce CarCore, a multithreaded embedded processor that supports
one hard real-time thread (HRT) together with non critical threads. Temporal thread
isolation is ensured for the HRT only, in such a way that its WCET can be computed as if it
was executed alone in the processor (i.e. its execution time cannot be impacted by any other
thread).

When considering multiple critical threads running simultaneously either in an SMT
core or in a multi-core architecture (with one hard real-time thread per core), most of the
approaches are based on Round-Robin-like arbitration which allows considering an upper
bound on the latency to the shared resource: D = N × L− 1 where L is the latency of the
resource and N is the number of competing tasks. Barre et al. [1] propose an architecture
for an SMT core supporting several critical threads: to provide time-predictability, the
storage resources (e.g. instruction queues) are partitioned and the bandwidth resources (e.g.
functional units) are scheduled by such a round-robin scheme. Paolieri et al. [23] propose a
round-robin-like bus arbiter to the shared memory hierarchy in a multi-core architecture. This
scheme is completed by a time-predictable memory controller [24] that also guarantees upper
bounds on the main memory latencies. Bourgade et al. [2] introduce a multiple-bandwidth
bus arbiter where each core is assigned a priority-level that defines its upper-bound delay to
get access to the bus. This scheme better fits workloads where threads exhibit heterogeneous
demands to the main memory.

The MERASA project [39] funded by the European Community (FP7 program) has
designed a complete time-predictable multicore architecture with SMT cores, that implements
some of the mechanisms mentioned above.

The PRET architecture [19] is built around a thread-interleaved pipeline: it includes
private storage resources for six threads and each of the six pipeline stages processes an
instruction from a different thread. To prevent long-latency instructions from stalling the
pipeline and thus impacting the other threads, these instructions are replayed during the
thread’s slots until completion. Each thread has private instruction and data scratchpad
memories and the off-chip memory is accessed through a memory wheel scheme where each
thread has its own access window.

6 Conclusion

Parallel architectures are more and more frequently used in embedded system designs.
However, they raise timing-analysability issues for critical applications for which worst-case
execution time must be computed. Recent research on WCET analysis techniques and
real-time systems design address this topic.

We have found three kinds of approaches in the literature. Some of them intend to consider
the concurrent tasks altogether to get insight into their possible interferences. Unfortunately,
these techniques would probably not be feasible for a real-size system. The second category
of approaches includes those that exploit the knowledge of the whole set of concurrent tasks
to statically partition accesses to storage and bandwidth resources. This seems to be sound
for storage resources, even if it requires a preliminary analysis of conflicts that may be
costly in time. But fine-grained static-scheduling schemes for bandwidth resources do not
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fit static WCET analysis techniques. For these reasons, approaches belonging to the third
category, that aim at making the WCET of one task computable independently of the nature
of concurrent tasks, seem to be the most relevant today. However, existing schemes probably
do not scale well and will have to be improved to allow wider parallelism.

Research on WCET analysis and WCET-aware design of parallel architectures is still in
early stages. We expect these topics to receive more and more attention in the next years. We
believe that future critical system designs will favor task isolation at various levels to keep the
problem of determining the WCETs of tasks tractable even on large-scale architectures. Task
isolation may be enforced using hardware arbitration schemes in a hierarchical architecture
where each resource is shared by only a limited number of nodes. In addition, the software
should be designed in such a way that conflicts can only occur in well-delimited parts of
the task codes. Such a behavior can be achieved considering appropriate resource access
models, where a task can access a shared resource only in dedicated phases, as proposed
in [36]. Provided the hardware and software conjunctly limit the conflicts between tasks, the
techniques that have been proposed to analyse the WCETs considering the possible task
interaction may be usable and useful to take into account the remaining possible conflicts.
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