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Abstract

Recently, almost uncontrolled technological progress allows so called high-throughput data
collection for sophisticated and complex experimental biological systems analysis. Especially,
it concerns the whole cellular genome. Therefore it becomes more and more vital to suggest
and elaborate gene network models, which can be used for more complete interpretation of large
and complex data sets. The presented paper concerns modeling of interactions in yeast genome.
With the reference to previously published papers concerning the same subject, our paper presents
a significant improvement in calculation procedure leading to very effective reduction of time
of calculation.

1998 ACM Subject Classification I.5.1 Models, I.5.4 Applications

Keywords and phrases Fuzzy network, gene expression, time optimization

Digital Object Identifier 10.4230/OASIcs.MEMICS.2010.32

1 Introduction

Immediate technological evolution allows the analysis of more and more composite biological
systems. The creation of elaborate gene network models involves widely developed analyses,
which allows the better utilization of biological interpretation of medical data packages,
particularly data concerning gene expression measurements. An example of a very effective
modeling of gene network was previously presented by Sokhansanj et al. in BMC Bioinformat-
ics [1]. This algorithm, which takes advantage of the theory of fuzzy sets, allows the creation
of a model of intergenetic interactions. Input data for the described fuzzy system are gene
expression measurements obtained as a result of a biological experiment using GeneChip
microarray technology.

The huge advantage of the described method is that it receives the exact model of inter-
actions in the result of the analysis. However, the time of account is its main defect. In the
article, we present a detailed description of the algorithm with modifications on the significant
correction of the speed of calculation (over 95% time reduction) to obtain almost identical
results in comparison with the original exhaustive algorithm.

2 Original Algorithm Idea

In this study, measurement data of gene expression, obtained during the whole cellular cycle,
are used. Results are collected in the I matrix, in which the following rows expressions

© Artur Gintrowski;
licensed under Creative Commons License NC-ND

Sixth Doctoral Workshop on Math. and Eng. Methods in Computer Science (MEMICS’10)—Selected Papers.
Editors: L. Matyska, M. Kozubek, T. Vojnar, P. Zemčík, D. Antoš; pp. 32–39

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62916157?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/OASIcs.MEMICS.2010.32
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/


Artur Gintrowski 33

of individual Gi genes are included:

I =


e1,1 e1,2 · · · e1,N
e2,1 e2,2 · · · e2,N
...

. . .
eM,1 eM,2 · · · eM,N

 =


G1
G2
...

GM

 (1)

Gi = [e1, e2, . . . , eN ] (2)

2.1 Data Preparation
Raw data are processed non-linearly at the beginning according to (Eq. 3). This transforma-
tion conducts the standardization of the input data in the interval < −1; 1 >, as it is possible
that data are collected from different microarray experiments.

Î = arctan(I)
π
2

(3)

Data prepared this way are entered into the fuzzy system, which initially affects their
fuzzification for sets with low, medium, and high expression respectively (Eq. 4,5 and 6).
In the destination of further calculations, fuzzy data arrays FL, FM and FH are concatenated
in the third dimension of the F matrix (Eq. 7).

FLi,j
=

{
−êi,j êi,j < 0

0 êi,j > 0 (4)

FMi,j
= 1− |êi,j | (5)

FHi,j
=

{
0 êi,j < 0
êi,j êi,j > 0 (6)

F = {FL, FM , FH} (7)

2.2 Fuzzy Rules
The database in the described fuzzy system consists of three basic fuzzy rules in the following
form:

if input is LOW then output is ExpressionLevel
if input is MEDIUM then output is ExpressionLevel
if input is HIGH then output is ExpressionLevel

where: ExpressionLevel ∈ {LOW, MEDIUM, HIGH}.
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Figure 1 Linear functions used to fuzzify gene expression data

With a view to enable calculations, a relevant notation of the record is provided in the form
of the r vector:

r = [l1, l2, l3] (8)

where l1 is the output expression if input is LOW, l2 is the output expression if input is ME-
DIUM, l3 is the output expression if input is HIGH and li ∈ {1, 2, 3} (output expression is 1
– low, 2 – medium or 3 – high).

Example: The following exemplary rule database

if input is LOW then output is HIGH
if input is MEDIUM then output is MEDIUM
if input is HIGH then output is LOW

can be described using the following vector:

rexample = [3, 2, 1]

2.3 Iteration Issue
The fuzzy system is used repeatedly to model the initial vector of the expression, based on
the chosen input genes and the chosen linguistic fuzzy rules.

For every choice of initial genes and combination of linguistic rules (combination of vectors
r), the result of a vector being compared with the original vector of the expression of the initial
gene is obtained. The optimum combination of input genes and linguistic rules is chosen using
a certain rate of error described hereinafter. This guarantees gaining the highest resemblance
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Figure 2 Example of the connections to an output gene in the fragment of the network modeled
using four input genes per output

between the vector obtained as a result of the modeling and the original vector of the initial
gene created.

Due to the huge amount of iterations, limiting the number of genes considered in the ana-
lysis to be initial genes is intentional. An optimum number of four initial genes is suggested.

Determining the huge number of iterations discarded is worthwhile. In the analysis
of the discussed microarray of the 12 genes of yeast, conducting the analysis of the effect
of the 11 remaining genes is necessary for each of them. To establish the recommended
number of four entries, conducting calculations for the following number of the combinations
of input genes is necessary:

C1
11 combinations for tests of influence of one gene on the network output

C2
11 combinations for two inputs

C3
11 combinations for three inputs

C4
11 combinations for four inputs.

These values are calculated in (Tab. 1). In the case of testing the influence of one gene,
for each output the test of the 27 combinations of linguistic rules is necessary. For two
input genes, there are 272 = 729 combinations of rules; and for three input genes, there are
273 = 19683 combinations. The case with four input genes gives 274 = 531441 combinations.
The total number of iterations included in the elaborated software during the single yeast
microarray analysis gives

Loryg = 12 · C1
11 · 27 + C2

11 · 272 + C3
11 · 273 + C4

11 · 274 = 2143963404.

They require compound accounts from the disposed implementation programme on time
optimization executable for over two billion cases of the described procedures. The final
modification of the conclusion process contributes to the progress through the introduction
of additional ratios of error in the analysis of the combinations of input genes. This most
significantly limits the number of selected fuzzy rules.

2.4 Inference Engine

The described fuzzy system concludes each iteration of the algorithm, that is, for each
combination of the fuzzy input genes FC (see Eq. 7) as well as the combination of linguistic

MEMICS’10



36 Modeling Gene Networks using Fuzzy Logic

Table 1 Number of analyzed combinations of rules for each combination of input genes

C1
11 =

(11
1

)
= 11!

(11−1)!·1! = 11!
10! = 11

C2
11 =

(11
2

)
= 11!

(11−2)!·2! = 11!
9!·2! = 55

C3
11 =

(11
3

)
= 11!

(11−3)!·3! = 11!
8!·3! = 165

C4
11 =

(11
4

)
= 11!

(11−4)!·4! = 11!
7!·4! = 330

rules included in the matrix RC (Eq. 8).

RC =


r1
r2
...
rn

 (9)

F̃i,j,k = FCi,j,RCi,k
(10)

D1,j,k =
n∑
i=1

F̃i,j,k (11)

D = {Dlow, Dmedium, Dhigh} (12)

As a result, the fuzzy output set D is created.

2.5 Dealing with the Fuzzified Output
To obtain ultimate modeling results, the fuzzy result of inference is transmitted for defuzzific-
ation according to equations (Eq. 13 and 15). Equation (Eq. 14) is the graphic interpretation
of the conclusion mechanism presented in (Fig. 3).

Õ1,i = D1,i,3 −D1,i,1

D1,i,1 +D1,i,2 +D1,i,3
(13)

Õ = Dhigh −Dlow

Dlow +Dmedium +Dhigh
(14)

O = tan(Õ · π2 ) (15)

The expression model O obtained through the presented algorithm on the output gene is com-
pared with the original expression vector of the output gene GO according to the following
formula:

E =

N∑
i=1

(GOi
−Oi)2

N∑
i=1

(GOi −GO)2

(16)
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Figure 3 Inference scheme using the exemplary rule matrix. Inputs – genes G1, G2, . . . , GM .
Fuzzified output – D matrix.

where GOi
is the i–th expression measurement of the original output gene, Oi is the i–th

expression vector measurement obtained as a modeling result and GO represents the mean
of the expression vector obtained as a result of modeling. In the comparison between
the obtained identical model and the real expression vector of the output gene, the error
coefficient E takes a value of zero. Hence, the better the choice of input genes and their
respective linguistic rules, the lower the value of error coefficient is.

3 Time Optimization

As shown in (Sec. 2.3), computational complexity of the algorithm results mainly from
the necessity for the continuous repetition of the fuzzy conclusion procedure for the huge
number of combinations of the applied input data. To reduce that amount in the conclu-
sion mechanism, several modifications are applied using three additional error coefficients
constructed analogously to the main error coefficient (Eq. 16). However, they work inside
the fuzzy system and on the fuzzified data of input genes, as well as in the fuzzy interpretation
of the original output gene.

EL =

N∑
i=1

(FLOi
−Dlow)2

N∑
i=1

(FLOi
− FLO

)2

(17)
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EM =

N∑
i=1

(FMOi
−Dmedium)2

N∑
i=1

(FMOi
− FMO

)2

(18)

EH =

N∑
i=1

(FHOi
−Dhigh)2

N∑
i=1

(FHOi
− FHO

)2

(19)

The modified algorithm has four steps. In the first three, the k best linguistic rules with
respect to the smallest coefficients EL, EM and EH are stored in particular fuzzy sets. Next,
in the fourth step, the analysis of the original algorithm is subsequently performed, taking
only k3 of all the best combinations of the linguistic rule vectors stored in the first three
steps.

For comparison, the number of fuzzy conclusion procedure calls in case of the optimized
algorithm for the described yeast microarray is equal to

Lopt = 12 · C1
11 · (3 · 3 + k3) + C2

11 · (3 · 32 + k3) + C3
11 · (3 · 33 + k3) + C4

11 · (3 · 34 + k3).

The number for k = 25 takes the value of

Lopt

∣∣∣
k=25

= 106329168.

Therefore, the reduction of the fuzzy conclusion mechanism calls is:

(1− Lopt
Loryg

) · 100% = 95.04%

The same percentage of time reduction is also observed.

4 Results

The introduced modifications allow for calculations in a much shorter time. Table (Tab.
2) presents the comparison of the calculation times between the original algorithm and
the modified one depending on the constant k of the best rules in the fuzzy sets. As can
be seen in the case of the 15 rules, it is possible to obtain the first solution for more than
half of the genes using only 1.12% of the original calculation time. For 25 best rules, the
calculation time is reduced to 4.9% of the exhaustive search time. Thus, we can obtain the
best results for three-fourths of the analyzed genes.
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Table 2 Results for the time optimized algorithm

Gene 5 best rules 10 best rules 15 best rules 20 best rules 25 best rules
k = 5 k = 10 k = 15 k = 20 k = 25

time: 0.1% time: 0.39% time: 1.12% time: 2.55% time: 4.9%

SIC1 1 1 1 1 1
CLN1 24 11 1 1 1
CLN2 2 2 1 1 1
CLN3 236 18 18 18 5
SWI4 3359 1047 12 12 10
SWI6 293 23 1 1 1
CLB5 121 121 121 121 121
CLB6 7 7 2 1 1
CDC6 1 1 1 1 1
CDC20 4 4 1 1 1
CDC28 58579 12313 722 246 49
MBI1 14 1 1 1 1
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