
Hijacking the Linux Kernel
Boris Procházka1, Tomáš Vojnar2, and Martin Drahanský3

1 Faculty of Information Technology, Brno University of Technology
Božetěchova 2, 61266 Brno, Czech Republic
iprochaz@fit.vutbr.cz

2 Faculty of Information Technology, Brno University of Technology
Božetěchova 2, 61266 Brno, Czech Republic
vojnar@fit.vutbr.cz

3 Faculty of Information Technology, Brno University of Technology
Božetěchova 2, 61266 Brno, Czech Republic
drahan@fit.vutbr.cz

Abstract
In this paper, a new method of hijacking the Linux kernel is presented. It is based on analysing
the Linux system call handler, where a proper set of instructions is subsequently replaced by a
jump to a different function. The ability to change the execution flow in the middle of an existing
function represents a unique approach in Linux kernel hacking. The attack is applicable to all
kernels from the 2.6 series on the Intel architecture. Due to this, rootkits based on this kind of
technique represent a high risk for Linux administrators.

Digital Object Identifier 10.4230/OASIcs.MEMICS.2010.85

1 Introduction

We propose a new attack on the Linux kernel based on changing the control flow in the
system call handler. The attack is applicable to all members of the 2.6 family on the Intel
architecture. The main idea, changing the control flow in the middle of the system call
handler, has not been to the best of our knowledge considered before and hence rootkits (tools
setting up an environment for an attacker and hiding his/her activities) are not detectable
using current detection tools. To compensate for the newly proposed attack, we also provide
a new detection tool capable of detecting the new attack.

Application

Libraries

System call interface

Kernel subsystems

Hardware

User mode
→ user space
→ subset of instructions

Kernel mode
→ kernel space
→ all instructions

Figure 1 Operating system hierarchy

Basically, attacks can be divided into two main groups according to the operating system
hierarchy (Fig. 1)[1, 2]:

© Boris Procházka, Tomáš Vojnar, and Martin Drahanský;
licensed under Creative Commons License NC-ND

Sixth Doctoral Workshop on Math. and Eng. Methods in Computer Science (MEMICS’10)—Selected Papers.
Editors: L. Matyska, M. Kozubek, T. Vojnar, P. Zemčík, D. Antoš; pp. 85–92

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62916134?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/OASIcs.MEMICS.2010.85
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

86 Hijacking the Linux Kernel

1. Attacks on user mode. Attacks against user’s and system’s applications and libraries.
In this case, the attack is usually performed by a simple substitution of binaries, where
the attacker swaps the originals with the corrupted. Fortunately, these kind of attacks
are quite easy to detect thanks to checksums. There is also a possibility to use private,
static-compiled binaries.

2. Attacks on kernel mode. Most of nowadays attacks are oriented towards kernel space,
especially against kernel interfaces like system call interface or virtual file system. The
main reason why these kind of attacks are so popular is because the attacker is able
to gain control of the whole system with no mercy. We can easily imagine that if we
change the behaviour of kernel interfaces, we will change the behaviour of the whole
system (because user space programs rely on them). The attacker usually wants to hide
his activity in the system so he modifies the interfaces to publish only a subset of real
results. In the case of kernel space attacks, there is no reliable method how to reveal the
attacker in the system. We can only hope that he was not skilled enough to masquerade
all side effects of his activities.

In the rest of the paper, we will focus solely on the system call interface. We will discuss
existing types of attacks on this mechanism and later on, an original attack will be revealed.
Our idea will be to inject jump code in the middle of the system call handler.

2 System Call Interface

The system call interface forms an interface for switching between user and kernel mode. An
application raises a query through the system call interface and the kernel tries to satisfy it.
The system call interface is probably the most important interface in the system as it creates
an abstract layer between users and the kernel.

In Linux (on the IA-321), system calls are identified by numbers and their invocation is
realized by a software interrupt. Parameters are passed through CPU’s registers in a strict
order: eax, ebx, ecx, edx, esi, edi and ebp. The eax register is used to hold the system
call number. Let us see how system calls work on the case of the setuid()2 call (Fig. 2).

First of all, an application (or a wrapped routine in a library) has to fill CPU’s registers
with expected values. Then, an exception is risen by the int $0x80 instruction which will
cause the switch-over to the kernel mode and a system call handler activation. The address
of the system call handler is saved in the interrupt table and is determined by an index into
this table (0x80 in this case).

The system call handler (implemented in system_call()) first saves the number of the
system call and then the contents of all CPU’s registers (SAVE_ALL macro). All passed
arguments are saved and the CPU is released for further computing. Then, some basic tests
are performed (we will cover this in detail in Subsection 4.1). If everything is alright, the
system call number saved in the eax register is used as an index into the system call table to
invoke a system call function (sys_setuid() in the described example).

System call functions perform the executive code. Their purpose is to change the system
state or return system values. All system call functions are implemented as asmlinkage,
which means that their arguments are saved exclusively on the stack.

When the system call function finishes, the return value is saved on the stack in the
place of the $eax register. The system call handler continues with disabling interrupts

1 Intel architecture, 32bit. Known also as i386 or x86.
2 Setuid() sets the effective user ID of the current process.

Boris Procházka, Tomáš Vojnar, and Martin Drahanský 87

Interrupt table

divide_error

debug

...

system_call0x80

…

0x01

0x00

System call table

sys_restart_syscall
sys_exit
sys_fork
sys_read3

2
1
0

......
sys_setuid23

…
mov $UID,%ebx
mov $23,%eax
int $0x80
...

Application / Library

system_call:
pushl %eax
SAVE_ALL
…
cmpl $(nr_syscalls), %eax
jae syscall_badsys
call *sys_call_table(,%eax,4)
movl %eax,PT_EAX(%esp)
cli
movl TI_flags(%ebp), %ecx
testw $_TIF_ALLWORK_MASK, %cx
jne syscall_exit_work
…
RESTORE_REGS
addl $4, %esp
iret

 System call handler

asmlinkage long sys_setuid
(uid_t uid)
{
 int old_euid = current­>euid;
 int retval;
 …
 return retval;
}

System call function
idtr

CPU
register

......

Figure 2 The Linux system call interface

and performing additional tests. On success, all CPU’s registers are restored from the
stack (RESTORE_REGS macro) and the function is finished with the iret instruction. This
instruction causes a controlled switch-over back to the user mode and a continuation of the
application.

The system calls are used very frequently and the implementation by software interrupt
is not very efficient. Due to this, processors Intel Pentium II and older contain an additional
instruction called a “fast system call” (the sysenter instruction). Although this instruction
calls another handler (sysenter_entry()), the results (and even the body of the function)
is almost the same as in the case of a system call handler (system_call()). So we do not
have to distinguish between these two methods in the rest of the paper—the impact will be
the same.

3 State of the Art

Attacks against the system call interface are relatively old and widespread. In this section,
we will briefly describe existing types of such attacks:

1. Attacks on the system call table. The oldest and the most widely used way of
intrusion. Its aim is to change an original record in the system call table with another
version of the system call function [3]. This function is then used instead of the original.
In most cases it acts like a wrapper for the original function filtering its results. The
system call table is usually checked by administrators nowadays, so attackers had to
develop more sophisticated ways of attacks.

2. Attacks on the system call function. If we do not want to change records in the
system call table, we can move one step forward and change the prologue of the system
call function [4]. The basic idea is to rewrite the entry point of the original function
with a jump to a different function. The usage is the same as in the previous with one
exceptions—if we want to use the original function, we have to repair its prologue or an
infinite loop threatens.

MEMICS’10

88 Hijacking the Linux Kernel

3. Attacks on the system call handler. Another method how to redirect the execution
flow without touching the system call table is to leave off using it. To do so, we have
to copy the original system call table to a new location and change the pointer in the
system call handler [5]. When it is done, the old system call table is not used anymore
and we can modify our private one, just like in the first case.

4. Attacks on the interrupt table. If we take a closer look at Fig. 2, we can reveal that
a second table is used in the subsystem—the interrupt table. The attacker can change
records even in this table and forge the handler routine [6]. This attack is not trivial as
the attacker needs to build up his own handler function and the interrupt subsystem is
closely associated with the computer architecture.

5. Attacks on the idtr register. The interrupt table is located thanks to the idtr
register. The value of the register can be modified by the sidt instruction. The attacker
can do the same trick as in the attack on the system call handler—make a copy of the
table and change the value in the idtr register to pointer on it [7].

4 The New Approach

In this section, we will focus on changing an execution flow in the middle of an existing
function. The idea is motivated by attacks on the system call function, where the prologue is
rewritten by a jump code. We will try to generalize this technique to be applicable even in
the middle of functions.

If we want to hijack an execution flow in the middle of an existing function, we have to
rewrite its code. This is quite easy. The biggest problem is to ensure the original behaviour
of the corrupted function. If we write down all the problems we have, we will get these three
issues:

1. Seven bytes of space. For hijacking the execution flow, we have to rewrite the existing
code with a jump or call instruction. The easiest way is to fill one of the CPU’s registers
with the destination address and then perform an absolute jump3. If we write it down in
assembly, we will get something like this:

movl $0,%eax --> \xb8\x00\x00\x00\x00
jmp *%eax --> \xff\xe0

The code is compiled as shown on the right side. The result is seven bytes long machine
code. This means that we will need to rewrite at least two instructions as the Intel
architecture uses a variable instruction length.

2. Keep valid code. We have to keep the code valid after overwriting it. If we produce an
invalid instruction, the CPU rises an exception and immediately terminates the process.
Due to this, we have to respect the beginnings and ends of instructions and do not
overwrite code containing the labels.

3. Keep the original semantics. We will change the structure of the considered function
by injecting some code. As we want to keep the original behaviour, we have to compensate
the rewritten code to sustain the original semantics. This is the most difficult condition
and requires a data analysis because when the hijacking is completed, the function must
continue in its execution with no restrictions.

3 It is not possible to do an absolute jump by jmp $address.

Boris Procházka, Tomáš Vojnar, and Martin Drahanský 89

We will now demonstrate how to solve the above problems for the particular case of the
system call handler.

4.1 Where to Hijack Control Flow in the System Call Handler
In this subsection, we will study the code of the system call handler and try to determine
best places for hijacking. The handler is a low-level subsystem thus it is completely written
in assembler4:

system_call:
pushl %eax //Storing of system call number
SAVE_ALL //Storing of all CPU’s registers
movl $0xffffe000, %ebx //Calculation of the pointer to
andl %esp, %ebx //current process

The function starts its activity by storing the system call number and all CPU’s registers
in the stack. Afterwards, a pointer to the current process is calculated and saved in the ebx
register.

In a above code fragment, we now try to find a candidate place for hijacking. We
cannot rewrite the beginning instructions which are saving data from the user space (we
would probably loose some data). However, when all data from the user space is saved,
the CPU is released and there is an ideal opportunity for hijacking the control flow. If we
measure the number of bytes of two instructions calculating the pointer to the current process
(movl, andl), we will get seven bytes. The calculation of the pointer is also standalone and
independent and it can be easily reproduced.

testw $_TIF_WORK_SYSCALL_ENTRY,TI_flags(%ebp) //Process traced?
jnz syscall_trace_entry //If so, jump to trace function
cmpl $(nr_syscalls), %eax //eax >= number of system calls?
jae syscall_badsys //If so, abort

The system call handler continues with two tests. The first one checks whether the
running process is being traced. If the trace flag is set, the process is stopped and made
available to the debugger. The second test checks the validty of system call number in eax
register. As the number in eax register represents an index into the table, it cannot be
greater than total number of system calls in the system.

We can leave studying of the fragment above very briefly. We would break code containing
relative jumps (jnz, jae) which would be very difficult to compensate.

call *sys_call_table(0, %eax, 4) //Calling sys_call_table[eax]
movl %eax,PT_EAX(%esp) //Storing of return value

The core of the system call handler. The eax register is used as an index into the system
call table to call the system function. The return value is saved into the stack in the position
of the eax register for the user space.

Despite the core of the system call handler is suitable for hijacking, we will leave it off.
The reason is that the pointer to the system call table is also modified by attacks on the
system call handler and the system scanners generally test this value.

4 This code can be found in Linux kernel source: arch/x86/kernel/entry_32.S.

MEMICS’10

90 Hijacking the Linux Kernel

cli //Clear Interrupts
movl TI_flags(%ebp), %ecx //Copy process flags in ecx
testw $_TIF_ALLWORK_MASK, %cx //Is needed extra work?
jne syscall_exit_work //If so, do extra work

When the system function returns, all interrupts are masked and the process is tested
against additional work requirements (unserved signal, process is traced).

The code fragment above offers another opportunity for hijacking. The length of the
movl and testw instructions is eight bytes, which is enough for jumping out. These two
instructions are also standalone so we can reproduce them.

RESTORE_REGS //CPU’s registers restoration
addl $4, %esp //Clearing up system call number from stack
iret //Return from interrupt

The end of the system call handler prepares the system to switch back to the user mode.
All CPU’s registers are restored from the stack (filled with results of the system call), the
system call number is cleared and the iret instruction is triggered.

The hijacking of this terminating fragment is possible too. The main problem is when
the process is traced and so does not use this code fragment.

4.2 Changing the Control Flow in the System Call Handler
So far, we have located two suitable places for hijacking the control flow in the system call
handler. Both of them are occurring in the whole 2.6 kernel and thus offering a very good
portability and usability.

Our goal is to modify the return values from the system call functions which are available
after their invocations. Due to this, we will focus on the second place suitable for hijacking
the control that we have identified in the system call function.

system_call:
pushl %eax
SAVE_ALL
…
cmpl $(nr_syscalls), %eax
jae syscall_badsys
call *sys_call_table(,%eax,4)
movl %eax,PT_EAX(%esp)
cli
movl TI_flags(%ebp), %ecx
testw $_TIF_ALLWORK_MASK, %cx
jne syscall_exit_work
…
RESTORE_REGS
addl $4, %esp
iret

 System call handler

 trampoline:
 pushl %esp
 call hijack
 popl %esp
 movl FLAGS(%ebp), %ecx
 testw $MASK, %cx
 jmp comeback

 movl trampoline,%eax
 jmp *%eax

asmlinkage void hijack
(struct pt_regs* regs) {
 switch(regs­>orig_ax) {
 case __NR_read:
 ...
 }
}

 7B jump code

 Trampoline

 Hijack function

Figure 3 Hijack implementation

We will rewrite selected part of the code by an unconditional jump into the trampoline
function (trampoline()). The trampoline has several tasks. First, it saves the top of the
stack to ensure a convenient access to the system call results. Subsequently, it calls the hijack
function (hijack()), which modifies these results on the basis of the system call number

Boris Procházka, Tomáš Vojnar, and Martin Drahanský 91

(deleting records about hidden directories in the ls program, for example). When the hijack
function returns the execution back to the trampoline, the system has to be set back to the
original state. To do so, the stack is cleared, instructions used for the hijacked jump are
compensated and the execution is returned just after the kidnapped place. The attack is
over.

5 Experiments

To verify all the presented facts and ideas, two rootkits based on this new technique were
implemented. The first one, called MoleKit, is able to infiltrate the system through writing
into the /dev/mem file5. Molekit provides only basic services like process and directory
hiding. It is because attacking the system through /dev/mem file is quite complicated due
to many heuristics needed (finding code patterns in the memory), but it represents a way
how to infiltrate a system even without a loadable kernel module support (see [8] for more
information).

The second rootkit is called Powerkit and infiltrates the system using a kernel module.
The main advantage of kernel modules is the access to the kernel API. This makes it possible
to implement advanced features such as keylogging or escalation of privileges.

As these two rookits use the new method of hijacking, no current anti-rootkit or validity
scanner can detect them. Because of that, we implemented Sentinel scanner [9]. Sentinel is a
tool which periodically checks integrity of the interrupt subsystem, the system call interface
(including the new method presented in this paper) and the virtual file system. The detection
is based on testing key values of these subsystems (tables, pointers to tables, system call
handler code, function prologues, ...) against their reference values obtained after system
instalation.

6 Conclusion

In this paper, a new method of hijacking the Linux kernel was presented. The attack
was successfully verified on the whole 2.6 kernel series and two rootkits based on this new
technique were implemented. Because these two rookits would represent a serious security
risk for Linux administrators, a tool for their detection was published.

Acknowledgements This work was supported in part by the the Czech Ministry of Educa-
tion (projects MSM 0021630528) and the internal BUT FIT grant FIT-10-1.

References
1 R. Love. Linux Kernel Development. Novell Press, Indiana 46240, USA, 2006,

ISBN 0-672-32720-1
2 P.D. Bovet, M. Cesati. Understanding the Linux Kernel. O’Reilly, USA, 2005,

ISBN 0-596-00565-2
3 P. Sobolewski. Hakin9 Nr 2/2005. Software-Wydawnictwo Sp. z o.o., Warszawa, Poland,

2005, ISBN 1214-7710
4 S. Cesare. SYSCALL REDIRECTION WITHOUT MODIFYING THE SYSCALL TABLE.

http://www.ouah.org/stealth-syscall.txt

5 It is a character device providing access to the main memory

MEMICS’10

92 Hijacking the Linux Kernel

5 Devik, Sd. Linux on-the-fly kernel patching without LKM.
http://www.phrack.org/issues.html?issue=58&id=7#article

6 Kad. Handling Interrupt Descriptor Table for fun and profit.
http://www.phrack.org/issues.html?issue=59&id=4#article

7 B. Prochazka. Methods of Linux Kernel Hacking. FIT BUT, Brno, 2008, bachelor’s thesis
8 A. Lineberry. Malicious Code Injection via /dev/mem.

http://www.blackhat.com/presentations/bh-europe-09/Lineberry/BlackHat-Europe-
2009-Lineberry-code-injection-via-dev-mem.pdf

9 B. Prochazka. Program Sentinel.
http://www.stud.fit.vutbr.cz/ xproch63/conference/memics2010/sentinel.zip

	Introduction
	System Call Interface
	State of the Art
	The New Approach
	Where to Hijack Control Flow in the System Call Handler
	Changing the Control Flow in the System Call Handler

	Experiments
	Conclusion

