
Fast Translated Simulation of ASIPs

Zdeněk Přikryl, Jakub Křoustek, Tomáš Hruška, and Dušan Kolář

Brno University of Technology, Faculty of Information Technology
Božetěchova 2, 612 66 Brno, Czech Republic
{iprikryl, ikroustek, hruska, kolar}@fit.vutbr.cz

Abstract
Application-specific instruction set processors are the core of nowadays embedded systems. There-
fore, the designers need to have powerful tools for the processor design. The tools should be
generated automatically based on a processor description. One of the most important tools is
the simulator. It is used during a testing phase of the processor design and during target software
development. The key feature of the simulator is its speed. The concept of a special simulation
type – translated simulation – is presented in this paper. This simulation exploits information
from a target C compiler. Both the simulator and the C compiler are generated based on the
processor description in an architecture description language ISAC. Experimental results of this
concept show very good simulation speed and fast generation of the simulator.
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1 Introduction

Embedded systems have become essential part of our nowadays lives. One can find them
almost everywhere. There can be one or more application-specific instruction set processors
(ASIPs) inside an embedded system. Each processor has usually dedicated functionality and
it is highly optimized for it. There are many trade-offs among which part of functionality
should be implemented directly in the processor and which part should be implemented in
software. The process of optimal solution searching is called design space exploration (DSE).
Therefore, the designer should have a good integrated desktop environment (IDE) for the
processor design. The IDE should provide automatic tool-chain generation based on the
processor description. The tool-chain consists of the tools for processor programming, such
as an assembler or C compiler, and of the tools for processor simulation, such as a simulator
or profiler.

The processor itself can be described using either hardware description language (HDL)
or architecture description language (ADL) (see [11]). Generally, ADLs are better for fast
DSE and rapid processor prototyping, since ADL hides hardware details. Those details can
be unknown at the beginning of the processor design or the designer does not want to take
care of them.

One of the tools used during the whole processor design is a simulator. Therefore, the
simulator has to be fast enough. Furthermore, the simulator is also used for the target
software development (often at the same time as the hardware is designed – hardware/software
co-design). There are several different types of simulators. Each of them is usually used in
different phase of the processor design (less accurate simulator during the first steps in DSE,
more accurate simulator during the preparation of final hardware realization). Various types
are discussed in the section 2, and advantages or disadvantages are highlighted.
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Our project running at Brno University of Technology is called Lissom (see [7]). It
provides whole IDE for the processor design and tools for multiprocessor system on a chip
design. In this paper, we present the concept of a block-accurate simulator called translated
simulator. It uses additional information of basic blocks from the target C compiler. It is
based on the LLVM (Low Level Virtual Machine) platform [8]. The compiler can be also
generated based on the processor description using the ISAC (Instruction Set Architecture
C) language. The ISAC language is inspired by the LISA (Language for Instruction Set
Architectures) language [5] and it has been developed within the Lissom project.

2 State of the Art

There are a few projects which try to give the developer a whole IDE for the processor design.
Each of them uses its own description language which has been developed within the project.
An open source project ArchC [1] uses ADL called ArchC. It is a description language for
pipeline systems based on SystemC. The processor description is composed of several parts.
The designer can describe resources, such as memories or registers, instruction set and its
behavior. The behavior is described with SystemC functions in shared libraries.

Another widely used ADL is LISA. The processor description in LISA language is composed
of several parts. In one part, resources are defined. In the other part, an instruction set with
behavior and processor microarchitecture is described. In both projects (ArchC and LISA),
the interpreted and compiled simulators are available, but none of them supports translated
simulator.

At the Vienna University of Technology, an ADL called xADL (see [2]) was developed.
The processor is described with hardware blocks which are interconnected. The xADL
language supports generation of the translated simulator. The LLVM platform is used for
simulator creation; therefore, the creation of simulator takes a long time since the whole
LLVM has to be compiled.

An introduction to the simulator terminology used in this paper is in the following text.
The basic type of simulator is an interpreted simulator. The run of interpreted simulator
is based on the following concept. It fetches an instruction then it decodes the instruction,
and executes it. Therefore, it is not dependent on simulated application and it allows
self-modifying code out of the box. On the other hand, it constantly fetches and decodes the
same instructions (e.g. instructions within a loop). Hence, this slows the simulator down.

Another type is a compiled simulator. Unlike the interpreted simulator, the compiled
simulator is created in two steps. In the first step, a simulated application is analyzed. In the
second step, based on the analysis, the simulator itself is created. It is clear that the basic
type of compiled simulator cannot simulate self-modifying code and it is dependent on the
analyzed application. Note that this is not true in the case of dynamic compiled simulators
(see [12]).

Other important feature of simulators is the simulator accuracy. Basically, the simulator
can be cycle-accurate, instruction-accurate or block-accurate. In the first type, the basic
step of the simulation is single clock cycle. Therefore, this type of simulator is very close to
hardware and gives the most relevant information about the behavior of a real processor. On
the other hand, the speed is not very good, since the whole microarchitecure is simulated.
Therefore, this type of simulator is used when the processor design is stable enough.

In the second type, the basic step of the simulation is single instruction. The processor
microarchitecture is not simulated. This type is used for target software development (i.e.
the software which will run on designed processor), or it can be used for virus detection where
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an instruction-accuracy is enough. Note that the cycle-accurate and instruction-accurate
simulators can be either interpreted or compiled [12].

The block-accurate simulator uses a whole basic block in a simulated application as a
basic step of the simulation. The basic block is an indivisible sequence of instructions with
one entry point (start address), one exit point (end address), and no branch instructions
within it. These addresses cannot be always determined during static analysis of a simulated
program. There can be (and in a real processors usually is) a branch instruction, which
gets a destination address from a register. Therefore, this address is known only during a
simulation. The start and end addresses of all basic blocks are known during a compilation,
so the compiler can save this information for further usage by simulator. Since we need to
preprocess this information, the block-accurate simulators are only compiled; therefore they
are dependent on particular simulated application.

3 ISAC Language

The ISAC language falls into so-called mixed architecture description languages. It means
that the processor instruction-set with processor microarchitecture is described in one model.
The processor model consists of two parts in the ISAC language. In the first part, the
processor resources, such as registers or caches, are described. In the second part, processor
instruction-set together with microarchitecture is described. The basic construction of the
second part is operation construction. The operation can have several sections. The section
describes either instruction-set or microarchitecture and forms one of the four basic models of
processor. Each model describes the processor from different point of view. The models are:
instruction-set model, timing model, model of instruction analyzers hierarchy and behavioral
model.

The instruction-set model is formed by the assembler and coding sections. The assembler
section describes the textual form of an instruction (assembly language). The coding section
describes the binary form of the instruction (machine code). The timing model is formed by
the activation section. This section denotes what and when is done in the microarchitecture
of processor (e.g. timing of processor pipeline). The model of instruction analyzers hierarchy
is formed by the section structure. This section describes timing of instruction decoding. The
behavior model is specified by sections expression and behavior, where the ANSI C language
is used (i.e. ANSI C descibes the behavior of instructions and processor microarchitecture).
Note that the expression section has the same meaning as the return statement in a function
(i.e. it is used for returning of a value if particular operation is used during instruction
decoding).

Operations can be grouped according to some criteria, such as similar functionality (e.g.
operations describing arithmetic instructions). The group construction is used for grouping
of that operations or other groups. An operation can use other operations or groups using
the instance statement (e.g. an operation describing move instruction uses another operation
describing immediate operand). The processor model consists of a resource description
and many operations and groups. There is one mandatory operation called main. This
special operation is used for synchronization (i.e. clock cycle generation). An example of two
operations is in Listing 1. There is an operation describing 8-bit immediate operand using
8-bits attribute and other operation describing move_acc instruction. The second operation
uses results from previous operations (i.e. it uses results from expression sections which is
the value of immediate operand). More information can be found in [9].

Basically, the processor can be described on instruction-accurate or cycle-accurate level
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Listing 1 Example of ISAC Language Source Code
// Operation with one attribute
// attr for 8 bit operand
OPERATION imm8 {

ASSEMBLER { attr=#U };
CODING { attr=0bx[8] };
EXPRESSION { attr; };

}
// Operation describing move
OPERATION move_acc {

INSTANCE imm8;
ASSEMBLER { "move_acc" imm8 };
CODING { 0b0101 imm8 };
BEHAVIOR { acc = imm16; };

}

by the ISAC language. Note that the processor model at instruction-accurate level has
operation main with the structure section.

4 Concept of Translated Simulation

The following notation is used in this section. A target C compiler is the generated C compiler.
It is generated from the processor model and it is based on the LLVM platform. A target
application is the application which will run on the designed processor. A host C compiler
is gcc compiler which compiles the generated simulator itself. The process of the simulator
generation has three parts. The processor description has to be on the instruction-accurate
level. The first part is performed only once for any particular processor description. The
next two parts are target application specific, so they have to be performed every time when
the target application is changed.

In the first part, the analyzer of the target application is generated. It is generated
only once and it is based on the processor description (i.e. it does not have to be re-
generated until the processor description has changed). This analyzer is similar to the
disassembler, so it accepts an application in the machine code. But instead of emitting the
assembly code, it emits C code. The analyzer itself is based on the enhanced formal models
coupled finite automata [6] and lazy finite automata. Lazy finite automaton M is septuple
M = (Q,Σ, δ, s, F, S, z), where Q is a finite set of states, Σ = {0, 1} is an input alphabet,
s ∈ Q is a starting state, F ⊆ Q is a set of final states, δ = Q× Σ∗ ×Q is a finite transition
relation, S is a set of semantic actions, and z is a relation z ⊆ δ × S. The relation z assigns
semantic actions to transition relations. The semantic action is indivisible sequence of a C
code which is executed when a particular transition is taken. Definitions of configuration,
move, and accepted language are analogical to definitions in normal lazy finite automaton.

Coupled finite automata C used in the analyzer is a triple C = (M1,M2, h), where Mi is
a lazy finite automaton for i = 1, 2, and h is a bijective mapping from δ1 to δ2. Definition of
bijective mapping h, and translation by coupled finite automata are analogical to definitions
in normal coupled finite automata (see [6] for more details). The automaton M1 is used as an
instruction parser (Σ1 = {0, 1}) and the automatonM2 is used as a C code generator. The set
S2 contains the modified C code from the behavior and expression sections, which are taken
from the processor description. The content of the behavior section is changed in a way that
the constants, which are represented by attributes, are replaced by their evaluation (values
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are obtained from the automaton M1 during translation). Furthermore, each statement
is encapsulated, so the C code is only printed into a file, not executed. Let’s assume the
behavior section from the Listing 1. In the simple case, the content of original expression
section of the imm8 operation, attr;, is changed to fprintf(fp, "imm8 = %d\n", attr);,
and the content of original behavior section of the move_acc operation, acc = imm8;, is
changed to fprintf(fp, "acc = imm8;");.

In the second part, the core of translated simulator is created (i.e. the analyzer generates
a C code based on the target application). The generated output C code has to be organized
somehow. If the output would be only one single function, then, in the the case of large target
application, the function would become uncompilable (e.g. problems with optimizations,
problems with virtual memory, etc.). Therefore, the address space of the designed processor
is divided into so-called segments. Each segment has the same fixed size, which is set during
the creation of an analyzer by the developer. The size has to be equal to some power of two
(e.g. 512 or 1024). The reason for that action is explained later. Functions are generated for
each segment. It simulates instructions within the segment. This function has one parameter.
It is used for passing the program counter. Each function contains single switch statement
which takes this parameter. The case statement is generated for each instruction within
the segment. Note that the case bodies are generated by the M2 automaton. In a straight
approach, each case is ended with a break statement. There are two main reasons why this
approach does not allow effective host compiler optimization. Firstly, each break ends the
function. That means that the computed values, which can be used in the next simulated
instruction, are swapped out from the host registers to the main memory. From the host
processor point of view, it would be better to keep these values in the registers. Secondly,
the case does not allow additional optimizations since it creates the end of basic block in
the simulator code. The side effect of the two mentioned constructions leads to worse cache
hit/miss ratio too. Therefore, the following improvement is used.

Since the analyzer knows the starting and ending addresses of basic blocks in the target
application (they are stored as debug info in the target application), the break is generated
only if an address of an analyzed instruction is equal to an ending address of some basic
block. Otherwise, the simulation of new clock cycle is performed (i.e. the behavior section
of main operation is executed). The case is generated only if an address of an analyzed
instruction is equal to a starting address of some basic block. The Fig. 1 shows previous
principle. Each instruction has 32 bits and the address space can be addressed by 8 bits in

Figure 1 Principle of a translated simulator generation
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this example. Note that there is no break for address 0 (it is not ending address) and there
it no case for the address 4 (it is not starting address). Therefore, the unmodified behavior
section of synchronize operation main is generated there.

The whole target application is represented by several functions. These functions are
stored in a table. The key to this table is created by the right bit shift of an instruction
address value. The count of bits needed for shifting is computed from the segment size
(square root of segment size). The limitation of the segment size (power of two) guarantees a
fast transformation from the addresses to the keys used in the table. Note that the valid
addresses are addresses of the start and end of basic blocks. The simulator itself is formed
by a loop which calls particular functions from the table together with the execution of the
unmodified behavior section of synchronize operation main.

In the third part, the simulator itself is created via a compilation of target application
independent parts, such as the representation of the resources, and target application
dependent part (i.e. functions generated by the analyzer).

5 Experimental Results and Future Research

Several experiments of translated simulation concept were performed. As testing processor
architectures we chose MIPS and VEX. Both processors are described on instruction-accurate
level in the ISAC language. MIPS is a 32bit RISC (reduced instruction set computer)
architecture developed by MIPS Computers Systems. The instruction-set of MIPS is in
version MIPS32 Release 1. VEX is a four-slot 32bit VLIW (very large instruction word)
architecture designed by HP [4]. Each slot is unique (i.e. each slot processes different types
of instructions).

MiBench test suite [10] was used for testing and simulation speed measuring. All
simulations were performed on the same host – Intel Core 2 Quad with 2.8 GHz, 1333 MHz
FSB and 4GB RAM running 64-bit Linux based operating system. The gcc (v4.4.4) compiler
with optimizations (–O3) was used for creation of simulator generators and simulators. All
results are the average values of several runs of each test (differences of values from average
are in tenths of a percent).

Fig. 2 shows the performance comparison of all simulator types for MIPS and VEX. As
we can see in this figure, the speed of translated simulation is approximately 70% faster than
compiled simulation and up to four times faster than interpreted simulation.

In average, the times needed for creation of compiled simulator generators are 5.03s
for MIPS and 17.42s for VEX. The creation of translated simulator generators takes 4.93s

Figure 2 Performance comparison of all simulator types
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Figure 3 Simulator generation time

for MIPS and 17.17s for VEX. In Fig. 3, we can see generation times of simulators based
on a target application (for the compiled and translated simulation). The time needed for
generation of an interpreted simulator is constant because it is application independent. The
sum of times needed for creation of translated simulator generator and simulator itself is
lower than creation time of interpreted simulator, based on target application complexity.
This is another advantage of this simulator type.

Our concept of translation simulation is fully competitive. For example, our solution is
in average 40% faster than the concept of translated simulation created at Vienna University
of Technology (according to results in [3]). The comparison was made on MIPS architecture
and the set of five MiBench algorithms.

6 Conclusion

The concept of translated simulation is presented in this paper. The simulator is generated
based on a processor description and a target application. A processor is described using
the architecture description language ISAC. The generator of simulator needs to know all
starting and ending addresses of all basic blocks in the target application. This information
is obtained from the C compiler. It is based on LLVM platform and it is generated from the
same processor description. The generator of a simulator is based on several formal models.
The same formal models are also used in other generators, such as hardware description
generator. Hence, no additional huge verification of hardware realization is needed. The
experimental results show very good simulation speed and the time needed for a creation of
the simulator itself is low. All mentioned features provide the powerful platform for ASIP
and target software development.
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