
Randomness Efficient Testing of Sparse Black Box
Identities of Unbounded Degree over the Reals
Markus Bläser1 and Christian Engels2

1 Computer Science, Saarland University
Postfach 151150, 66041 Saarbrücken, Germany
mblaeser@cs.uni-saarland.de

2 Computer Science, Saarland University
Postfach 151150, 66041 Saarbrücken, Germany
engels@cs.uni-saarland.de

Abstract
We construct a hitting set generator for sparse multivariate polynomials over the reals. The seed
length of our generator is O(log2(mn/ε)) where m is the number of monomials, n is number of
variables, and 1− ε is the hitting probability. The generator can be evaluated in time polynomial
in logm, n, and log 1/ε. This is the first hitting set generator whose seed length is independent
of the degree of the polynomial. The seed length of the best generator so far by Klivans and
Spielman [16] depends logarithmically on the degree.

From this, we get a randomized algorithm for testing sparse black box polynomial identities
over the reals using O(log2(mn/ε)) random bits with running time polynomial in logm, n, and
log 1

ε .
We also design a deterministic test with running time Õ(m3n3). Here, the Õ-notation sup-

presses polylogarithmic factors. The previously best deterministic test by Lipton and Vishnoi
[18] has a running time that depends polynomially on log δ, where δ is the degree of the black
box polynomial.

1998 ACM Subject Classification F. Theory of Computation

Keywords and phrases Descartes’ rule of signs, polynomial identity testing, sparse polynomials,
black box testing

Digital Object Identifier 10.4230/LIPIcs.STACS.2011.555

1 Introduction

Polynomial identity testing is the problem of testing if a polynomial P is equal to zero.
Applications include primality testing [1] and testing if a graph has a perfect matching [21],
just to mention a few. There are also results in complexity theory which use identity testing
as an ingredient. This includes IP = PSPACE [23] and the PCP theorem [5, 6].

Of course, if we are given the coefficients of the polynomial, this is an easy problem. The
problem gets interesting if the polynomial is given in a compact form, either by a circuit
or by a black box. Though these two variants look similar, they are of a very different
nature. If we are given an arithmetic circuit C that computes the polynomial P , it is easy
to find a point ξ with P (ξ) 6= 0 provided that P 6≡ 0. For some constant c, the point
ξ = (22c·|C| , 222·c·|C|

, . . . , 22n·c·|C|) is such a point: First note that the degree d of P and the
size of the coefficients of P are bounded by 2|C| and 22|C| , resp. The Kronecker substitution,
which maps each variable Xi to Y d

i for 1 ≤ i ≤ n, is an injective mapping of the set of
n-variate polynomials of degree ≤ d to univariate polynomials such that the degree of the

© Markus Bläser and Christian Engels;
licensed under Creative Commons License NC-ND

28th Symposium on Theoretical Aspects of Computer Science (STACS’11).
Editors: Thomas Schwentick, Christoph Dürr; pp. 555–566

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62916098?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.STACS.2011.555
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


556 Randomness Efficient Testing over the Reals

univariate polynomial is bounded by dn+1 and the coefficients are preserved. It is easy to see
that for a nonzero univariate monic polynomial, every real number larger than the absolute
values of all coefficients cannot be a root. The point ξ is obtained by performing a Kronecker
substitution and then plugging in a large enough number.

This point ξ is too large to be constructed explicitly in polynomial-time but it can be
computed by a polynomial size circuit via repeated squaring. But we do not know how to
evaluate the circuit at this point. This means that in the circuit model, the polynomial
identity testing problem is equivalent to deciding whether a circuit that computes a number
computes the value zero, see [3]. There is an efficient randomized algorithm for this problem
which chooses a random prime with a polynomial number of bits and evaluates the circuit
modulo this prime. In particular, if RP = P, then there is an efficient deterministic algorithm
for this problem. On the other hand, derandomizing this algorithm implies circuit lower
bounds [14].

In the black box model, evaluation is of course no problem at all; the black box does it
for us. It is even sufficient that the black box only tells us whether the polynomial evaluated
at the query point is zero or not. In the black box model, randomization is inherently needed
for polynomial-time algorithms (see [16]). Why? First consider a deterministic algorithm.
We claim that when the only information that we have is that the polynomial in the black
box P has ≤ m monomials, then the algorithm has to query the black box at least m
times. This is shown by an adversary argument: Every query at a point ξ is answered
with zero. Each answer gives a linear equation P (ξ) =

∑m
µ=1 αµξ

eµ,1
1 · · · ξeµ,nn = 0 on the

coefficients α1, . . . , αm. As long as less than m queries are done, the system of equations has
a nontrivial solution. So the answer to the queries can be produced by two polynomials,
the zero polynomial and a nonzero polynomial given by the nontrivial solution above. If
now a polynomial-time randomized algorithm would use less than (1 − ε) · logm random
bits, then derandomizing it trivially by running over all choices for the random bits will
give a deterministic algorithm making less than m queries, which does not exist. (Note
that our adversary argument did not make any assumption about the running time of the
deterministic algorithm.)

We will focus on the problem in the black box model. Here we are given a black box
which we can query at specific points. This black box will evaluate our polynomial at
the points and return the value in one time step. For identity testing, it is of course
sufficient to know whether the polynomial evaluates at the query point to zero or not.
Since we cannot inspect the polynomial other than by querying values, we need a hitting
set, that is, a set H such that for every potential polynomial P in the black box, there
is a point x ∈ H with P (x) 6= 0 or, stronger, for some fraction of all x ∈ H, P (x) 6= 0.
A hitting set generator even allows us to sample from a hitting set at random. We will
call the number of random bits used by a hitting set generator its seed length. For a
formal definition, see Definition 2.4. The so-called Schwartz-Zippel test [22, 24] was one
of the first hitting set generators (see [20] for an alternative proof over finite fields). It
is designed for dense polynomials and works over arbitrary (large enough) fields. If the
polynomial has degrees δ1, . . . , δn in the variables X1, . . . , Xn, then the seed length of the
generator is

∑n
i=1dlog(δi + 1)e+ n logn. This seed length was improved by Chen and Kao

[13] to
∑n
i=1dlog(δi + 1)e. However, their test works only for integer coefficients and makes

some assumptions on the size of the coefficients. So strictly speaking, their generator is
incomparable. Lewin and Vadhan [17] extended the work by Chen and Kao to fields of
positive characteristic. Bläser, Hardt, and Steurer [12] constructed a hitting set generator
with asymptotically optimal seed length (1 + o(1))

∑n
i=1 log(δi + 1). Note that a polynomial



Markus Bläser and Christian Engels 557

with degrees δ1, . . . , δn can have (δ1 + 1) · · · (δn + 1) monomials, so we get a matching lower
bound on the seed length by the argument outlined above. Prior to this, Agrawal and Biswas
[1] achieved the same seed length, but only if the polynomial is given by a circuit.

Klivans and Spielman [16] considered the case of sparse polynomials. This means that the
number of monomials is bounded by some parameter m. For polynomials with a bound of δ
on the total degree, the running time of their algorithm is polynomial in logm, n, log δ, and
log 1

ε . The algorithm needs O(log(mnδ/ε)) random bits and has error probability bounded
by ε. In this paper, we focus on sparse polynomials over the reals. Here Descartes’ rule of
signs says that a univariate polynomial with at most m monomials has a most m− 1 positive
real roots. This gives an efficient hitting set generator (“plug in a random integer between 1
and 2m”) for univariate polynomials with optimal seed length, which is independent of the
degree. This suggests that there should also be hitting set generators for sparse multivariate
polynomials over the reals that are independent of the degree. There are multivariate versions
of Descartes’ rule of signs like Khovanskii’s theorem [15] (see also [9, 10] for improvements).
However, the size of the resulting hitting set is exponential in the number of variables, which
is far too large.

In this work, we give an efficient hitting set generator for sparse polynomials over the reals
with running time and seed length independent of the degree of the polynomial. This results
in a faster algorithm for real polynomials with high degree but few monomials. In particular,
we obtain a randomized algorithm that uses O(log2(mn/ε)) = O(log2 m + log2 n + log2 1

ε )
random bits, has running time polynomial in logm, n, and log 1/ε, and error probability
≤ 1/ε. So compared to the algorithm by Klivans and Spielman, the dependence on logm and
logn is slightly worse but we are completely independent of the degree δ. We also construct
a deterministic algorithm with running time Õ(m3n3). Here, the Õ-notation suppresses
polylogarithmic factors. The previously best deterministic test by Lipton and Vishnoi [18]
has a running time that depends polynomially on log δ (see also [11]).

We conclude by pointing out that the situation over the reals is a special one. Over
arbitrary fields, the runtime dependence on the degree is necessary. A short example will show
this. Given a field Fpk for some prime p and a polynomial P (X) = Xpck−X, P (X) ∈ Fpk [X].
The polynomial is not equal to 0 ∈ Fpk [X]; however, it evaluates to zero at every a ∈ Fpk
and even at every b ∈ Fpck . Hence, the running time and number random bits will depend
on the degree of the polynomial. Otherwise, we could not distinguish P (X) from zero.

2 Hitting Set Generators and Transformations

I Definition 2.1. We will denote by Rm[X1, . . . , Xn] the set of all polynomials with at most
m monomials in the variables X1, . . . , Xn.

We consider the polynomial identity testing problem restricted to sparse polynomials.

I Definition 2.2. PIT (n,m) is the problem of deciding if a polynomial in Rm[X1, . . . , Xn]
given by a black box is identically zero.

I Definition 2.3. A set H ⊆ Rn is a hitting set for PIT (n,m) with hitting probability 1− ε,
if for all nonzero P ∈ Rm[X1, . . . , Xn],

Pr
x∈H

[P (x) 6= 0] ≥ 1− ε.

In the definition above, x is drawn uniformly at random from H. While a hitting set is
nice, we also want to be able to efficiently generate elements from the hitting set. Furthermore,

STACS’11



558 Randomness Efficient Testing over the Reals

the elements in the hitting set should be integers (or from any other subset from R that can
be efficiently represented. But for our purposes, Z is fine.)

I Definition 2.4. A function H : {0, 1}ρ → Zn is called a hitting set generator for PIT (n,m)
with hitting probability 1− ε and seed length ρ if the image of H is a hitting set with hitting
probability 1 − ε. We denote the image of H, that is, the hitting set generated by H, by
im(H).

Of course, we would like to have hitting set generators for PIT (n,m) for each choice of n
and m. We call this a uniform hitting set generator. It gets three inputs: n, m, and a seed r
of length ρ(n,m). Instead of H(n,m, r) we will often write Hn,m(r). If we keep n and m
fixed and run over all seeds r, we get a hitting set for PIT (n,m). The evaluation time of a
hitting set generator is the maximal time needed to compute Hn,m(r) for all r ∈ {0, 1}ρ(n,m).
The evaluation time is a function of n and m.

I Theorem 2.5. If there is a uniform hitting set generator for PIT (n,m) with hitting
probability 1− ε > 0, seed length ρ(n,m), and evaluation time t(n,m), then there is
1. a deterministic algorithm for PIT (n,m) with running time O(2ρ(n,m) · t(n,m)) and
2. a randomized algorithm for PIT (n,m) using ρ(n,m) random bits with running time

O(t(n,m)) and error probability 1− ε.

Proof. For the deterministic algorithm, we just run over all seeds r, compute Hn,m(r) for
each r and check whether the black box polynomial evaluates to zero at Hn,m(r) for all r. If
not, P is of course not identically zero. Otherwise, P is identically zero by the definition
of hitting set. In the randomized case, we just take a random seed r and evaluate P at
Hn,m(r). J

I Definition 2.6. A function T : {0, 1}ρ × Zn′ → Zn is called a hitting set transformation
from PIT (n′,m′) to PIT (n,m) with success probability 1− β if for every hitting set H for
PIT (n′,m′) with hitting probability 1− ε,

{T (r, x) | r ∈ {0, 1}ρ, x ∈ H}

is a hitting set with hitting probability ≥ (1− β)(1− ε).

A hitting set transformation transforms a hitting set for PIT (n′,m′) into a hitting set
for PIT (n,m). It gets an additional random string r of length ρ. The size of the hitting set
is extended by a factor of at most 2ρ and we need an additional ρ random bits to draw a
sample from the transformed hitting set. The parameter β measures the loss of “quality”.

Of course, we again want uniform transformations, that is, T gets n and m as additional
inputs and ρ(n,m), n′(n,m) and m′(n,m) are functions depending on n and m. There is one
algorithm that computes T for all choices of n and m. Again, we will write Tn,m(r, x) instead
of T (n,m, r, x). For fixed n and m, T is a hitting set transformation in the sense of the
definition above. For fixed n and m, the time needed to evaluate a hitting set transformation
depends on the size of the elements in the hitting set we apply the transformation to. For a
hitting set H ⊆ Zn′ , the size of an element x ∈ H is the bit length of an encoding of x. (We
use some standard encoding here, e.g., integers are encoded by a signed binary representation,
thus the size is log |x|+ O(1). The size of tuples of integers is the sum of the sizes of the
integers in it.)

I Theorem 2.7. Let Hn′,m′ : {0, 1}ρ′ → Zn′ be a uniform hitting set generator for
PIT (n′,m′) with hitting probability 1− ε the evaluation time of which is bounded by t(n′,m′).



Markus Bläser and Christian Engels 559

Let Tn,m : {0, 1}ρ × Zn′ → Zn be a uniform hitting set transformation from PIT (n′,m′) to
PIT (n,m) with success probability 1− β which can be computed in time g(n,m, s) where s
is the maximal size of an element in the input hitting set. Then there are
1. a deterministic algorithm for PIT (n,m) the running time of which is O(2ρ(n,m)+ρ′(n′,m′) ·

(g(n,m, t(n′,m′)) + t(n′,m′))) and
2. a randomized algorithm for PIT (n,m) using ρ(n,m)+ρ′(n′,m′) random bits with running

time O(g(n,m, t(n′,m′)) + t(n′,m′)) and success probability (1− β)(1− ε).
Above, n′ and m′ are functions of n and m.
Proof. We start with the randomized algorithm. By the definition of hitting set transforma-
tion,

{Tn,m(r, x) | r ∈ {0, 1}ρ, x ∈ im(Hn′,m′))

will be a hitting set for PIT (n,m) with hitting probability (1− β)(1− ε). To sample from
this set, we choose two seeds r ∈ {0, 1}ρ(n,m) and r′ ∈ {0, 1}ρ′(n′,m′) uniformly at random.
We evaluate P at Tn,m(r,Hn′,m′(r′)) and claim that P is identically zero if the result is zero.
Otherwise, P is obviously not identically zero. By the definition of hitting probability, this
algorithm succeeds with probability (1− β)(1− ε).

For the running time, note that we evaluate Hn′,m′ once (in time O(t(n′,m′)) and Tn,m
once (in time O(g(n,m, t(n′,m′)). Note that the size of Hn′,m′(r′) can be at most t(n′,m′).

We get the deterministic algorithm by derandomizing this algorithm in a straight forward
manner: Just run over all seeds. J

Let X1, . . . , Xn and Y1, . . . , Yn′ be two sets of variables. A monomial substitution σ is
a mapping that maps each Xν to a monomial in Y1, . . . , Yn′ . Such a substitution naturally
induces a ring homomorphism, which we also call σ, from R[X1, . . . , Xn] to R[Y1, . . . , Yn′ ].
Since a monomial substitution cannot increase the number of monomials of a polynomial, this
ring homomorphism maps polynomials in Rm[X1, . . . , Xn] to polynomials in Rm[Y1, . . . , Yn′ ],
too. A randomized monomial substitution gets an additional seed r ∈ {0, 1}ρ and maps each
Xi to a monomial σr(Xi) in Y1, . . . , Yn′ that depends on the chosen r.
I Lemma 2.8. If there is a randomized monomial substitution as above such that for every
nonzero polynomial P ∈ Rm[X1, . . . , Xn],

Pr
r∈{0,1}ρ

[σr(P ) 6≡ 0] ≥ 1− β

then there is a hitting set transformation from PIT (n′,m) to PIT (n,m) with seed length ρ
and success probability 1− β.
Proof. Let H ′ be a hitting set for PIT (n′,m) with hitting probability 1− ε. We claim that

H := {(σr(X1)(y), . . . , σr(Xn)(y)) | r ∈ {0, 1}ρ, y ∈ H ′}

is a hitting set with hitting probability (1− β)(1− ε). Let P ∈ Rm[X1, . . . , Xn] be nonzero.
Note that evaluating P (x) for some x ∈ H is the same as first computing σr(P ) and then
plugging in y, where r and y are chosen such that x = σr(X1)(y), . . . , σr(Xn)(y).

With probability ≥ 1 − β, σr(P ) is nonzero. In this case, σr(P )(y) is nonzero with
probability 1− ε. Therefore, H has hitting probability (1− β)(1− ε). J

The time needed to compute the transformation depends on the degree of the monomials
generated by the substitution (and on the time needed to compute the monomials, but this
will be negligible in the following). If we have a uniform monomial substitution, that is, a
substitution that gets n as an additional parameter and n′ depends on n, then we also get a
uniform hitting set transformation with m′ = m.

STACS’11



560 Randomness Efficient Testing over the Reals

3 Deterministic Algorithm

We continue with presenting our deterministic algorithm. It will have a running time
of Õ

(
m3n3), which is independent of the degree of the polynomial. We start with a

simple hitting set generator for PIT (1,m) and build a hitting set transformation from
PIT (1,m) to PIT (n,m). The running time of the transformation will depend polynomially
on m. Therefore, we only get a good deterministic algorithm with this approach but not a
randomized one (which should have a running time that is polynomial in logm).

Algorithm 1 Descartes Generator for PIT (1,m)

1: Input: Seed r ∈ {0, 1}log(m/ε)

2: Use the seed r to choose y ∈ {1, . . . , mε } uniformly at random.
3: Output: y

I Theorem 3.1. Algorithm 1 is a uniform hitting set generator for PIT (1,m) with hitting
probability 1− ε. The seed length is log m

ε , the evaluation time is O(log m
ε ) and the output

size is log m
ε + O(1).

Proof. A real polynomial P with m monomials can have at most m− 1 positive real roots
by Descartes’ rule of signs (see e.g., [8]). Hence, the hitting probability is ≥ m/ε−m

m/ε = 1− ε.
The other statements are clear from the construction. J

3.1 Hitting Set Transformation
Next, we design a hitting set transformation from PIT (1,m) to PIT (n,m). The construction
is based on results by Klivans and Spielman [16, Section 3]. However, the construction by
Klivans and Spielman depends on the degree. We refine the construction in such a way that
it becomes independent of the degree.

In the following, x · y denotes the standard inner product
∑n
ν=1 xνyν of two vectors x

and y in an n-dimensional vector space. Let N = mn
β and q be a prime with N < q ≤ 2N .

For 1 ≤ i ≤ N , let ai denote the vector
(
1, i mod q, i2 mod q, . . . , in−1 mod q

)T ∈ Znq . The
entries of ai are denoted by ai,1, . . . , ai,n.

I Lemma 3.2. Let N = mn
β and q be a prime such that N ≤ q ≤ 2N . Let b = (b1, . . . , bn)T ∈

Zn be a vector not equal to zero. Then ai · b is zero for at most n− 1 indices i.

Proof. Let e be the largest exponent such that qe|bν for every 1 ≤ ν ≤ n. Let cν = bν
qe and c

be the vector (c1, . . . , cn)T . We now reduce every entry of c modulo q and call this vector ĉ.
This is a nonzero vector by the choice of e.

Let i1, . . . , in be n pairwise distinct indices. Consider the matrix

M :=

 ai1,1 · · · ai1,n
...

. . .
...

ain,1 · · · ain,n

 .

This is a Vandermonde matrix over Zq. Since i1, . . . , in are pairwise distinct, M is invertible.
Hence M · ĉ is nonzero as ĉ is nonzero. This means that there exists an ` ∈ {1, . . . , n} such
that ai` · ĉ 6= 0 over Zq. Therefore ai` · c 6= 0 over Z. This implies ai` · b = ai` · qec 6= 0. Thus,
we found at least one i, namely i`, for which ai` · b is not equal to zero. Since i1, . . . , in were
arbitrary, the claim of the lemma follows. J



Markus Bläser and Christian Engels 561

Algorithm 2 Transformation from PIT (1,m) to PIT (n,m)

1: Input: Seed r ∈ {0, 1}log(mn/β), y ∈ Z
2: Let N = mn

β and N < q ≤ 2N be a prime.
3: Use the seed r to choose i ∈ {1, . . . , N} uniformly at random.
4: Compute yai,ν for every 1 ≤ ν ≤ n.
5: Output: (yai,1 , yai,2 , . . . , yai,n)

Algorithm 2 is our hitting set transformation. It implements a randomized monomial
substitution: We pick one ai uniformly at random and replace every variable Xν in our
polynomial by Y ai,ν . Our substitution is similar to the one by Klivans and Spielman; however,
our choice of the prime q is independent of δ.

I Lemma 3.3 (Correctness). Algorithm 2 is a uniform hitting set transformation from
PIT (1,m) to PIT (n,m) with success probability 1− β.

Proof. Let P =
∑m
µ=1 αµX

δµ,1
1 · · ·Xδµ,n

n be a nonzero polynomial in Rm[X1, . . . , Xn]. Let
bµ be the vector (δµ,1 − δ1,1, . . . , δµ,n − δ1,1)T for 2 ≤ µ ≤ m. These vectors are nonzero and
there are at most m− 1 of these vectors.

Let us now look at ai · bµ. Lemma 3.2 tells us that for every µ at most n− 1 choices of i
set this scalar product to zero. Therefore, for at most (m− 1)(n− 1) indices i, there is a µ
with ai · bµ = 0. There are N possible values for i.

For a randomly chosen i the probability that ai · bµ 6= 0 for all µ is at least

N − (m− 1)(n− 1)
N

≥ 1− β.

So with probability ≥ 1− β, ai · bµ 6= 0 for 2 ≤ µ ≤ m. Let us denote by δµ the vector
(δµ,1, . . . , δµ,n)T . By the definition of bµ, ai · δµ 6= ai · δ1 for 2 ≤ µ ≤ m. This means that our
monomial α1X

δ1,1
1 · · ·Xδ1,n

n is not canceled by αµX
δµ,1
1 · · ·Xδµ,n

n for every 2 ≤ µ ≤ m. This
implies that the image P̂ of P under the monomial substitution Xν 7→ Y ai,ν , 1 ≤ ν ≤ n, is
nonzero with probability 1 − β. Hence, the algorithm computes a randomized monomial
substitution. Lemma 2.8 finishes the proof. J

I Lemma 3.4 (Runtime and Randomness). Algorithm 2 has a seed length of log mn
β and a

running time of O
(
mn
β log2 mn

β log log mn
β + mn2

β log y
)
, where y is the input.

Proof. Let us start with the runtime. We need O(N log2 N log logN) bit operations to
find all primes from 2 to 2N by the Sieve of Eratosthenes (see e.g., [7]). Hence, we need
O(mnβ log2 mn

β log log mn
β ) steps for finding our prime number.

A prime q with N < q ≤ 2N exists by Bertrand’s postulate. The entries of one ai have
at most log(mnβ ) + O(1) bits. To compute the entries, we need to multiply two numbers of
at most log(mnβ ) + O(1) bits because we compute modulo q. We do n multiplications of this
form. Hence the computation of one vector ai takes at most O(n log2 mn

β ) steps. The values
yai,ν are numbers with mn

β log y bits. By using repeated squaring, we can compute one of
the entries in time O(mnβ log y) and all values yai,ν , 1 ≤ ν ≤ n, in time O(n · mnβ log y).

The number of random bits used is clear from the construction. J

3.2 Final Algorithm
We now have all the necessary pieces to construct our deterministic algorithm.

STACS’11



562 Randomness Efficient Testing over the Reals

I Theorem 3.5. There exists a deterministic algorithm which tests if a polynomial given as
a black box is equivalent to the zero polynomial in Õ

(
m3n3) steps.

Proof. We take Algorithm 1 and Algorithm 2 to construct a deterministic algorithm for
PIT (n,m) using Theorem 2.7. Choose arbitrary ε, β, both smaller than 1

4 . Plugging theses
values into Theorem 2.7 yields an algorithm with a running time of

O
(
2logmn+logm · (mn log2 mn log logmn+mn2 logm+ logm)

)
= Õ

(
m3n3) .

Note that t (1,m) is logm. J

This construction gives us an efficient deterministic algorithm which has a runtime
independent of the degree.

4 Randomized Algorithm

Let us continue with our randomized algorithm. Instead of starting with univariate poly-
nomials, as in the deterministic case, we start with multivariate polynomials that have a
significantly smaller number of variables, namely dlog qe + 1. Note that log q is roughly
logm+ logn.

Our transformation from PIT (dlog qe+ 1,m) to PIT (n,m) will be very helpful as the
number of random bits that the hitting set generator uses is linear in the number of variables.
With the transformation mentioned above, we can efficiently reduce the number of variables
our underlying hitting set generator has to work on.

Again, we divide the construction into three parts. First, we present a hitting set generator
for multivariate polynomials. We continue with our transformation which uses the vectors ai
defined in the previous section. Finally, we combine the generator and the transformation
yielding a hitting set generator with runtime polynomial in n, logm and log 1

ε and seed
length O(log2 mn

ε ).

4.1 Hitting Set Generator for Multiple Variables

Our hitting set generator is a modified version of the Schwartz-Zippel generator. We adapt
it to sparse polynomials over the reals in such a way that the runtime and the seed length
become independent of the degree.

I Lemma 4.1. Let P ∈ Rm[X1, . . . , Xn] be a nonzero polynomial. Let zν , 1 ≤ ν ≤ n, be
drawn independently and uniformly at random from Z ⊆ Z and let z = (z1, . . . , zn). Then

Pr
z∈Zn

[P (z) = 0] ≤ mn

|Z|
.

Proof. We prove the lemma by induction in n, in a similar fashion to the proof of the original
lemma. If n = 1 then the claim follows from Descartes’ rule of signs.

If n > 1, we can write P as
∑m′

µ=1 X
δµ,1
1 Pµ (X2, . . . , Xn) where m′ ≤ m. We look at the

polynomial as a polynomial in R[X2, . . . , Xn][X1], a polynomial in X1 with coefficients from
R[X2, . . . , Xn].



Markus Bläser and Christian Engels 563

We have

Pr
z

[P (z) = 0] = Pr
z

[P (z1, . . . , zn) = 0|P1 (z2, . . . , zn) = 0] · Pr
z

[P1 (z2, . . . , zn) = 0]

+ Pr
z

[P (z1, . . . , zn) = 0|P1 (z2, . . . , zn) 6= 0] · Pr
z

[P1 (z2, . . . , zn) 6= 0]

≤ Pr
z

[P1 (z2, . . . , zn) = 0] (1)

+ Pr
z

[P (z1, . . . , zn) = 0|P1 (z2, . . . , zn) 6= 0] . (2)

We can bound (1) using the induction hypothesis and (2) by Descartes’ rule of signs, as P ,
after plugging in z2, . . . , zn, is a nonzero univariate polynomial with at most m monomials.
This yields the bound

Pr
z

[P (z) = 0] ≤ (n− 1)m
|Z|

+ m

|Z|
= nm

|Z|
,

which proves the lemma. J

Algorithm 3 Schwartz-Zippel Hitting Set Generator
1: Input: Seed r ∈ {0, 1}n log(mn/ε)

2: Use the seed r to choose z ∈ {1, . . . , mnε }
n

3: Output: z

I Theorem 4.2. Algorithm 3 is a uniform hitting set generator for PIT (n,m) with hitting
probability 1− ε. The seed length is n log mn

ε , the evaluation time is O
(
n log mn

ε

)
and the

output size is O
(
n log mn

ε

)
.

Proof. The running time and randomness used are clear from the construction. We can use
Lemma 4.1 for bounding the error probability: For nonzero P ,

Pr
z

[P (z) = 0] ≤ mn

|Z|

which in our case can be bounded by mn
mn/ε = ε. J

As it is, the Schwartz-Zippel hitting set generator is very inefficient. The number of
random bits used depends linearly on the number of variables. The reason for this is that in
the proof, we assume that P1 has m monomials but also P as a univariate polynomial in X1
has m monomials. If we knew tighter bounds then we would be able to reduce the number
of random bits used. However, we cannot assume that we know such bounds in the black
box model. Therefore, we will try to reduce the number of variables instead by a suitable
monomial substitution.

4.2 Hitting Set Transformation
We will use our ai as previously defined. Let ai = (ai,1, . . . , ai,n), N , and q be as in Lemma 3.2.
We define ai,ν,κ by

ai,ν =
dlog qe∑
κ=0

ai,ν,κ2κ,

that is, ai,ν,κ, 0 ≤ κ ≤ s is the binary expansion of ai,ν . For the rest of the paper let
s = dlog qe.

STACS’11



564 Randomness Efficient Testing over the Reals

Algorithm 4 Transformation from PIT (s+ 1,m) to PIT (n,m)

1: Input: Seed r ∈ {0, 1}log(mn/β), y0, . . . , ys
2: Let N = mn

β and N < q ≤ 2N be a prime.
3: Use the seed r to choose i ∈ {1, . . . , N} uniformly at random.
4: Set zν to yai,ν,00 · · · yai,ν,ss for every 1 ≤ ν ≤ n.
5: Output: (z1, . . . , zn)

I Lemma 4.3 (Correctness). Algorithm 4 is a uniform hitting set transformation from
PIT (s+ 1,m) to PIT (n,m) with success probability 1− β.

Proof. Let T be our transformation and let P be a nonzero polynomial. T essentially
implements the following monomial substitution: Xν 7→ Y

ai,ν,0
0 · · ·Y ai,ν,ss , 1 ≤ ν ≤ n. If we

now replace each Yj by Y 2j , then Xν 7→ Y

∑s

j=1
ai,ν,j2j = Y ai,ν , 1 ≤ ν ≤ n and we get the

same substitution as used in the transformation for the deterministic algorithm in Section 4.1.
Since for this combined substitution, the probability that P is mapped to zero is at most β,
this has to be true for the substitution Xν 7→ Y

ai,ν,0
0 · · ·Y ai,ν,ss , too. Now the claim follows

from Lemma 2.8. J

Before we prove the bounds on our transformation we need to take a short excursion on
finding prime numbers. We state a proof of this well-known result for the sake of completeness.

I Lemma 4.4 (Finding primes with few random bits). We can find a prime q of size N < q ≤
2N with success probability 1 − ε in time poly

(
logN, log 1

ε

)
steps using O

(
logN + log 1

ε

)
random bits.

Proof. We construct log2 N pairwise independent bit strings of length logN . We can do this
using only 2 logN random bits as stated by Luby and Wigderson [19]. We deterministically
test whether each number is prime by using the algorithm developed by Agrawal, Kayal and
Saxena [2] using O(log6 N) steps. By the Chebyshev bound, one of these number is prime
with probability 1− o(1).

We can increase the probability to 1− ε (think of ε being a small function) by doing a
random walk on an expander graph which costs us O

(
log 1

ε

)
extra random bits [4]. J

I Lemma 4.5 (Runtime and Randomness). Our hitting set transformation has a seed
length of O(log mn

β ) bits and a runtime polynomial in logm, n, log 1
β , and log y, where

y = max{|y0|, . . . , |ys|}

Proof. If we want to have an overall error probability of β we have to set the error for the
prime finding algorithm to β/2 and adjust our choice of β in the transformation to β/2.

Let us take a closer look at the runtime bounds. We need

O
(

log8 2mn
β

+ log 2
β

)
= O

(
log8 mn

β

)
steps for finding the prime number. Computing the ai takes us, as seen in the previous
transformation, O(n log2 2mn

β ) steps. To calculate the zν , we multiply at most s+ 1 numbers
with log y bits. This needs total time of O(n · s · log y). Since s = O(logm+ logn+ log 1

β ),
the total running time is poly(logm,n, log 1

β , log y).
The randomness used is clear. We need O(log mn

β ) random bits for generating the ai as
in Lemma 3.4. Our prime finding needs O(log mn

β ) random bits as well. J



Markus Bläser and Christian Engels 565

4.3 Final Algorithm
Again, we combine our hitting set generator with our hitting set transformation to get our
randomized algorithm.

I Theorem 4.6. There exists a probabilistic algorithm for PIT (n,m). It has success proba-
bility ≥ 1 − ε, uses O(log2 mn

ε ) random bits, and has runtime polynomial in n, logm and
log 1

ε .

Proof. We combine Algorithm 3 with Algorithm 4 and use again Theorem 2.7. We set both
error parameters to be ε

2 . Let us look at the running time. Note that Algorithm 3 now works
on s+ 1 variables which is dlog qe+ 1. This is of course in O

(
log mn

ε

)
. The total running

time is

poly
(

logm,n, log 1
ε
, s, log y

)
+ O(s log ms

ε
).

In our case log y is at most logN . This gives us a runtime bound of poly
(
logm,n, log 1

ε

)
.

The algorithm uses

O
(

(s+ 1) log 2m (s+ 1)
ε

+ log mn
ε

)
random bits. It is easy to see that this O(log2 mn

ε ), as s = O(log mn
ε ). J

Note that our algorithm also allows for a so-called time-randomness tradeoff like some of
the previous tests mentioned in the introduction do. When ε > 1

mn , then we just run the
algorithm with some constant error probability and decrease the error probability to 1

mn

by doing a random walk on an expander with an additional O(logmn) random bits. When
ε ≤ 1

mn then increase the success probability by just spending more time instead of more
random bits by just running over all choices for the extra O(log2 1

ε ) random bits and doing a
majority vote. The running time in the second case is only quasipolynomial in 1

ε , however.
It remains an open problem whether we can bring down the number of random bits to

O(logm), which would match the lower bound of (1 − ε) · logm. One approach could be
to decrease the number of random bits used in the Schwartz-Zippel Hitting Set Generator.
While it is clear that we do an overapproximation on the number of monomials for many
polynomials in the proof, it is not clear how we can use this fact.

References
1 Manindra Agrawal and Somenath Biswas. Primality and identity testing via chinese re-

maindering. In FOCS, pages 202–209, 1999.
2 Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. Primes is in P. Ann. of Math, 2:781–

793, 2002.
3 Eric Allender, Peter Bürgisser, Johan Kjeldgaard-Pedersen, and Peter Bro Miltersen. On

the complexity of numerical analysis. SIAM J. Comput., 39(3):1987–2006, 2009.
4 Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cam-

bridge University Press, New York, NY, USA, 2009.
5 Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof

verification and the hardness of approximation problems. J. ACM, 45(3):501–555, 1998.
6 Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new characterization

of NP. J. ACM, 45(1):70–122, 1998.

STACS’11



566 Randomness Efficient Testing over the Reals

7 Eric Bach and Jeffrey Shallit. Algorithmic number theory. Vol. 1. Foundations of Comput-
ing Series. MIT Press, Cambridge, MA, 1996. Efficient algorithms.

8 Saugata Basu, Richard Pollack, and Marie-Françoise Roy. Algorithms in real algebraic
geometry, volume 10 of Algorithms and computation in mathematics. Springer, 2003.

9 Frédéric Bihan, J. Maurice Rojas, and Frank Sottile. On the sharpness of fewnomial bounds
and the number of components of fewnomial hypersurfaces. In Algorithms in algebraic
geometry, volume 146 of IMA Vol. Math. Appl., pages 15–20. Springer, New York, 2008.

10 Frédéric Bihan and Frank Sottile. New fewnomial upper bounds from Gale dual polynomial
systems. Mosc. Math. J., 7(3):387–407, 573, 2007.

11 Markus Bläser, Moritz Hardt, Richard J. Lipton, and Nisheeth K. Vishnoi. Determin-
istically testing sparse polynomial identities of unbounded degree. Inf. Process. Lett.,
109(3):187–192, 2009.

12 Markus Bläser, Moritz Hardt, and David Steurer. Asymptotically optimal hitting sets
against polynomials. In Luca Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M.
Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, editors, ICALP (1), volume 5125
of Lecture Notes in Computer Science, pages 345–356. Springer, 2008.

13 Zhi-Zhong Chen and Ming-Yang Kao. Reducing randomness via irrational numbers. In
STOC, pages 200–209, 1997.

14 Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial identity tests
means proving circuit lower bounds. In STOC, pages 355–364. ACM, 2003.

15 Askold Khovanskii. Fewnomials. AMS press, 1991.
16 Adam Klivans and Daniel A. Spielman. Randomness efficient identity testing of multivariate

polynomials. In STOC, pages 216–223, 2001.
17 Daniel Lewin and Salil P. Vadhan. Checking polynomial identities over any field: Towards

a derandomization? In STOC, pages 438–447, 1998.
18 Richard J. Lipton and Nisheeth K. Vishnoi. Deterministic identity testing for multivariate

polynomials. In SODA, pages 756–760, 2003.
19 Michael Luby and Avi Wigderson. Pairwise independence and derandomization. Founda-

tions and Trends in Theoretical Computer Science, 1(4), 2005.
20 Dana Moshkovitz. An alternative proof of the Schwartz-Zippel lemma. Technical report,

The Electronic Colloquium on Computational Complexity, 2010.
21 Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani. Matching is as easy as matrix

inversion. Combinatorica, 7(1):105–113, 1987.
22 Jacob T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities.

J. ACM, 27(4):701–717, 1980.
23 Adi Shamir. IP = PSPACE. J. ACM, 39(4):869–877, 1992.
24 Richard Zippel. Probabilistic algorithms for sparse polynomials. In Edward W. Ng, editor,

EUROSAM, volume 72 of Lecture Notes in Computer Science, pages 216–226. Springer,
1979.


	Introduction
	Hitting Set Generators and Transformations
	Deterministic Algorithm
	Hitting Set Transformation
	Final Algorithm

	Randomized Algorithm
	Hitting Set Generator for Multiple Variables
	Hitting Set Transformation
	Final Algorithm


