New Exact and Approximation Algorithms for the Star Packing Problem in Undirected Graphs

Maxim Babenko ${ }^{1}$ and Alexey Gusakov ${ }^{2}$

1 Moscow State University, Yandex
maxim.babenko@gmail.com
2 Moscow State University, Google agusakov@gmail.com

Abstract

By a T-star we mean a complete bipartite graph $K_{1, t}$ for some $t \leq T$. For an undirected graph G, a T-star packing is a collection of node-disjoint T-stars in G. For example, we get ordinary matchings for $T=1$ and packings of paths of length 1 and 2 for $T=2$. Hereinafter we assume that $T \geq 2$.

Hell and Kirkpatrick devised an ad-hoc augmenting algorithm that finds a T-star packing covering the maximum number of nodes. The latter algorithm also yields a min-max formula.

We show that T-star packings are reducible to network flows, hence the above problem is solvable in $O(m \sqrt{n})$ time (hereinafter n denotes the number of nodes in G, and m - the number of edges).

For the edge-weighted case (in which weights may be assumed positive) finding a maximum T-packing is NP-hard. A novel $\frac{9}{4} \frac{T}{T+1}$-factor approximation algorithm is presented.

For non-negative node weights the problem reduces to a special case of a max-cost flow. We develop a divide-and-conquer approach that solves it in $O(m \sqrt{n} \log n)$ time. The node-weighted problem with arbitrary weights is more difficult. We prove that it is NP-hard for $T \geq 3$ and is solvable in strongly-polynomial time for $T=2$.

1998 ACM Subject Classification G.2.2 Graph algorithms, G.1.2 Minimax approximation and algorithms

Keywords and phrases graph algorithms, approximation algorithms, generalized matchings, flows, weighted packings.

Digital Object Identifier 10.4230/LIPIcs.STACS.2011.519

1 Introduction

1.1 Preliminaries

Recall the classical maximum matching problem: given an undirected graph G the goal is to find a collection M (called a matching) of node-disjoint edges covering as many nodes as possible. Motivated by this definition, one may consider an arbitrary (possibly infinite) collection of undirected graphs \mathcal{G}, called allowed, and ask for a collection \mathcal{M} of node-disjoint subgraphs of G (not necessarily spanning) such that every member of \mathcal{M} is isomorphic to some graph in \mathcal{G}. Let the size of \mathcal{M} be the total number of nodes covered by the elements of \mathcal{M}. The generalized matching problem [8] asks for a \mathcal{G}-matching of maximum size.

Clearly, the tractability of the generalized problem depends solely on the choice of \mathcal{G}. The case when all graphs in \mathcal{G} are bipartite was investigated by Hell and Kirkpatrick [8]. Roughly speaking, in this case the maximum \mathcal{G}-matching problem is NP-hard unless $\mathcal{G}=$

$\left\{K_{1,1}, \ldots, K_{1, T}\right\}$ for some $T \geq 1$. (For a precise statement, see [8, Sec. 4].) This is exactly the case we study throughout the paper.

- Definition 1. A T-star is a graph $K_{1, t}$ for some $1 \leq t \leq T$. For an undirected graph G, a T-star packing in G is a collection of node-disjoint subgraphs in G (not necessary spanning) that are isomorphic to some T-stars.

Since 1-star packings are just ordinary matchings and are already extensively studied (see, e.g., [14]), we restrict our attention to the case $T \geq 2$.

The max-size T-star packing problem was addressed in $[13,1,8]$ and others. An $O(m n)$ time ad-hoc augmenting path algorithm (hereinafter $n:=|V G|, m:=|E G|$) and a min-max formula are known. In [8] it is noted that a faster $O(m \sqrt{n})$-time algorithm can be derived using the blocking augmentation strategy (see [2, 9]), but we are not aware of any publicly available exposition. A more restrictive variant of the problem, where the stars are required to be node-induced subgraphs, is presented in [12]. An extension to node capacities is given in [15].

1.2 Our Contribution

This paper presents an alternative treatment of T-star packings that is based on network flows. In Section 2 we show how the max-size T-star packing problem reduces to finding a max-value flow in a digraph with $O(n)$ nodes and $O(m)$ arcs. This immediately implies an $O(m \sqrt{n})$-time algorithm for the max-size T-star packing problem.

The above reduction serves two purposes. Firstly, it mitigates the need for ad-hoc tricks and fits star packings into a widely studied field of network flows. Secondly, this reduction provides interesting opportunities for attacking other optimization problems that are related to T-star packings.

Let G be an edge-weighted graph and the goal is to find a T-star packing such that the sum of weights of edges belonging to stars is maximum. This problem is NP-hard and in Section 3 we present a $\frac{9}{4} \frac{T}{T+1}$-factor approximation algorithm, which is based on max-cost flows.

Finally let G be a node-weighted graph and the objective function is the sum of weights of nodes covered by stars. This case is studied in Section 4. For non-negative weights, a divide-and-conquer approach yields a nice $O(m \sqrt{n} \log n)$-time algorithm. For general weights, the complexity of the resulting problem depends on T. For $T=2$, we give a strongly-polynomial algorithm that employs bidirected network flows. If $T \geq 3$, the problem is NP-hard.

2 Reduction to Network Flows

2.1 Auxiliary Digraphs

In this section we explain the core of our approach that relates star packings to network flows. We employ some standard graph-theoretic notation throughout the paper. For an undirected graph G we denote its sets of nodes and edges by $V G$ and $E G$, respectively. For a directed graph we speak of arcs rather than edges and denote the arc set of G by $A G$. A similar notation is used for paths, trees, and etc.

For $U \subseteq V G$, the set of arcs entering (respectively leaving) U is denoted by $\delta_{G}^{\mathrm{in}}(U)$ and $\delta_{G}^{\text {out }}(U)$. Also, $\gamma_{G}(U)$ denotes the set of arcs (or edges) with both endpoints in U and $G[U]$ denotes the subgraph of G induced by U, i.e. $G[U]=\left(U, \gamma_{G}(U)\right)$. When the (di-) graph is
clear from the context, it is omitted from notation. Also for a function $\varphi: U \rightarrow \mathbb{R}$ and a subset $U^{\prime} \subseteq U$, let $\varphi\left(U^{\prime}\right)$ denote $\sum_{u \in U^{\prime}} \varphi(u)$.

Let, as earlier, G be an undirected graph and $T \geq 2$ be an integer. Replace each edge in G by a pair of oppositely directed arcs and denote the resulting digraph by \vec{G}. The following definition is crucial:

- Definition 2. A subset of arcs $F \subseteq A \vec{G}$ is called T-feasible if for each node $v \in V G$ at most $T \operatorname{arcs}$ in F leave v and at most one arc in F enters v.

The above T-feasible arc sets are equivalent to T-star packings in the following sense:

- Theorem 3. The maximum size of a T-feasible arc set in G is equal to the maximum size of a T-star packing. Moreover, given a T-feasible arc set F one can turn it in linear time into a T-star packing of size at least $|F|$.

Before presenting the proof of Theorem 3, let us explain how a max-size T-feasible arc set size can be found. To this aim, split each node $v \in V \vec{G}$ into two copies, say v^{1} and v^{2}. Each $\operatorname{arc}(u, v) \in A \vec{G}$ is transformed into an $\operatorname{arc}\left(u^{1}, v^{2}\right)$. Two auxiliary nodes are added: a source s that is connected to every node $v^{1}, v \in V \vec{G}$, by $\operatorname{arcs}\left(s, v^{1}\right)$, and a $\sin k t$ that is connected to every node $v^{2}, v \in V \vec{G}$, by $\operatorname{arcs}\left(v^{2}, t\right)$. We endow each $\operatorname{arc}\left(s, v^{1}\right)$ with capacity equal to T, each $\operatorname{arc}\left(v^{2}, t\right)$ with unit capacity, and the remaining arcs with infinite capacities. The resulting digraph is denoted by H.

We briefly remind the basic terminology and notation on network flows (see, e.g., [5, 18] and [16, Ch. 10]). Let Γ be a digraph with a distinguished source node s and a sink node t. The nodes in $V \Gamma-\{s, t\}$ are called inner. Let $u: A \Gamma \rightarrow \mathbb{Z}_{+}$be integer arc capacities.

- Definition 4. An integer u-feasible flow (or just feasible flow if capacities are clear from the context) is a function $f: A \Gamma \rightarrow \mathbb{Z}_{+}$such that: (i) $f(a) \leq u(a)$ for each $a \in A \Gamma$; and (ii) $\operatorname{div}_{f}(v)=0$ for each inner node v.

Here $\operatorname{div}_{f}(v):=f\left(\delta^{\text {out }}(v)\right)-f\left(\delta^{\text {in }}(v)\right)$ denotes the divergence of f at v. The value of f is $\operatorname{val}(f):=\operatorname{div}_{f}(s)$. A max-value feasible integer flow can be found in strongly polynomial time (see [18] and [16, Ch. 10]).

Let f is a feasible integer flow in H (regarded as a network with a source s, a sink t, and capacities u). Then $f\left(u^{1}, v^{2}\right) \in\{0,1\}$ for each $(u, v) \in A \vec{G}$, since at most one unit of flow may leave v^{2}. (Hereinafter we abbreviate $f((u, v))$ to $f(u, v)$.) Define

$$
F:=\left\{(u, v) \in A \vec{G} \mid f\left(u^{1}, v^{2}\right)=1\right\}
$$

Then the u-feasibility of f implies the T-feasibility of F. Moreover, this correspondence between u-feasible integer flows f and T-feasible arc sets F is one-to-one.

The augmenting path algorithm of Ford and Fulkerson [5] computes a max-value flow in H in $O(m n)$ time. Applying blocking augmentations [9, 2], the latter bound can be improved to $O(m \sqrt{n})$. (In fact for networks of the above "bipartite" type, one can prove the bound of $O(m \sqrt{\Delta})$. Here $\Delta:=\min \left(\Delta_{s}, \Delta_{t}\right), \Delta_{s}$ is the sum of capacities of arcs leaving s, and Δ_{t} is the sum of capacities of arcs entering t.)

Therefore by Theorem 3, a maximum T-star packing can be found in $O(m \sqrt{n})$ time. (The clique compression technique [4] implies a somewhat better time bound; however, the speedup is only sublogarithmic.)

2.2 Proof of Theorem 3

The proof consists of two parts. For the easy one, let \mathcal{P} be a T-star packing in G. To construct a T-feasible arc set F, take every star $S \in \mathcal{P}$. Let v be its central node (i.e. a node of maximum degree) and u_{1}, \ldots, u_{t} be its leafs (i.e. the remaining nodes). For $S=K_{1,1}$ the notion of a central node is ambiguous but any choice will do. Add $\operatorname{arcs}\left(v, u_{1}\right), \ldots,\left(v, u_{t}\right)$ and also $\left(u_{1}, v\right)$ to F. Clearly F is T-feasible and its size coincides with the number of nodes covered by \mathcal{P}.

The reverse reduction is more involved. Consider a T-feasible arc set F. Then F decomposes into a collection of node-disjoint weakly connected components. We deal with each of these components separately and construct a T-star packing \mathcal{P} of size at least $|F|$. Let Q be one of the above components. One can easily see that two cases are possible:

Case I: Q forms a directed out-tree \mathcal{T} where each node has at most T children and the arcs are directed towards leafs. The following pruning is applied iteratively to \mathcal{T}. Pick an arbitrary leaf u_{1} in \mathcal{T} of maximum depth, let v be the parent of u_{1} and u_{2}, \ldots, u_{t} be the siblings of u_{1}. Clearly $t \leq T$. Remove nodes v, u_{1}, \ldots, u_{t} together with incident arcs from \mathcal{T} and add to \mathcal{P} a copy of $K_{1, t}$, where v is its center and u_{1}, \ldots, u_{t} are the leafs. Repeat the process until \mathcal{T} is empty or consists of a single node (the root r). Each time a star covering $t+1$ nodes is added to \mathcal{P}, either $t+1$ (if $u \neq r$) or t (if $u=r$) arcs are removed from \mathcal{T}. At the end one gets a T-star packing of size at least $|A Q|$ nodes, as required.

Case II: Q consists of a directed cycle Ω and a number (possibly zero) of directed outtrees attached to it (see Fig. 1(a) for an example). Let g_{0}, \ldots, g_{l-1} be the nodes of Ω (in the order of their appearance on the cycle). For $i=0, \ldots, l-1$, let \mathcal{T}_{i} be the directed out-tree rooted at g_{i} in Q. (If no tree is attached to g_{i}, then we regard \mathcal{T}_{i} as consisting solely of its root node g_{i}.) Each node in the latter trees has at most T children, and the roots of these trees have at most $T-1$ children. We process the trees $\mathcal{T}_{0}, \ldots, \mathcal{T}_{l-1}$ like in Case I and obtain a partial packing \mathcal{P}. Our final task is to modify \mathcal{P} to satisfy the following condition: each node $v \in V Q$ that has an incoming arc in F is covered by a star in \mathcal{P}. So far, the above condition is only violated for nodes in Ω that are not covered by \mathcal{P}.

Two subcases are possible. First, suppose that all nodes of Ω are not covered. Then one can cover Ω by a collection of node-disjoint (and also disjoint from \mathcal{P}) paths of lengths 1 and 2. Adding these paths to \mathcal{P} finishes the job. (Note that this is exactly where we use the condition $T \geq 2$.)

Second, suppose that Ω contains both covered and not covered nodes. Let g_{i}, \ldots, g_{j} be a maximal consecutive segment of uncovered nodes, i.e. g_{i-1} and g_{j+1} are covered (indices are taken modulo l). If $j-i$ is odd, then adding $(j-i+1) / 2$ disjoint copies of $K_{1,1}$ covering g_{i}, \ldots, g_{j} completes the proof. Otherwise let $j-i$ be even. Recall that g_{i-1} is covered by some star $S \in \mathcal{P}$ and g_{i-1} is its central node. Since the degree of g_{i-1} in S is at most $T-1$, one can augment S by adding a new leaf g_{i}. This way g_{i} gets covered and the case reduces to the previous one. An example is depicted in Fig. 1(b).

Clearly F can be converted into \mathcal{P} in linear time.

3 Edge-Weighted Packings

3.1 Hardness

Consider arbitrary edge weights $w: E G \rightarrow \mathbb{Q}$ and let the edge weight $w(S)$ of a star S be the sum of weights of its edges. In this section we focus on finding a T-star packing \mathcal{P} that maximizes $w(\mathcal{P}):=\sum_{S \in \mathcal{P}} w(S)$. Allowing negative edge weights is redundant since such

(a) Set F.

(b) Packing \mathcal{P}.

Figure 1 Transforming F into $\mathcal{P}(T=2)$.
edges may be removed from G without changing the optimum. Therefore we assume that edge weights are non-negative.

- Theorem 5. The problem of deciding, for given G, T, w, and $\lambda \in \mathbb{Q}_{+}$, if G contains a T-star packing of edge weight at least λ, is NP-hard even in the all-unit weight case.

Proof. It is known (see, e.g. [8]) that deciding if G admits a perfect (i.e. covering all the nodes) \mathcal{G}-matching is NP-hard for $\mathcal{G}=\left\{K_{1, T}\right\}$. We reduce the latter to the edge-weighted T-star packing problem as follows. If $|V G|$ is not divisible by $|T|+1$, then the answer is negative. Otherwise set $w(e):=1$ for all $e \in E G$. A T-star packing \mathcal{P} obeys $w(\mathcal{P})=\frac{n T}{T+1}$ if and only if all stars in \mathcal{P} are isomorphic to $K_{1, T}$. Hence solving the edge-weighted T-star packing problem enables to check if G has a perfect \mathcal{G}-matching.

3.2 Approximation

We show how to compute, in strongly-polynomial time, a T-star packing \mathcal{P} such that $w(\mathcal{P}) \geq$ OPT $\cdot \frac{4}{9} \frac{T+1}{T}$, where OPT denotes the maximum weight of a T-star packing in G. Let us extend the weights from G to \vec{G}, i.e. define $w(u, v):=w(v, u):=w(e)$ for $e=\{u, v\} \in E G$. Let OPT^{\prime} be the maximum weight of a T-feasible arc set in \vec{G}.

- Lemma 6. $\mathrm{OPT}^{\prime} \geq \mathrm{OPT} \cdot \frac{T+1}{T}$.

Proof. Fix a max-weight packing of T-stars $\mathcal{P}_{\mathrm{OPT}}$. Consider a star $S \in \mathcal{P}_{\mathrm{OPT}}$, and let $e_{1}=\left\{u, v_{1}\right\}, \ldots, e_{t}=\left\{u, v_{t}\right\}$ be the edges forming $S(t \leq T)$. We may assume that e_{1} is a maximum-weight edge (among e_{1}, \ldots, e_{t}).

Consider the arc set $\left\{\left(u, v_{1}\right),\left(v_{1}, u\right),\left(u, v_{2}\right),\left(u, v_{3}\right), \ldots,\left(u, v_{t}\right)\right\}$ (i.e. e_{1} generates a pair of opposite arcs while the other edges - just a single one). Taking the union of all these arc sets one gets a T-feasible arc set F obeying $w(F) \geq \sum_{S \in \mathcal{P}} \frac{T+1}{T} w(S)=$ OPT $\cdot \frac{T+1}{T}$, as claimed.

Applying the correspondence between feasible integer flows in H and T-feasible arc sets and regarding arc weights as costs, a max-weight T-feasible arc set F can be found by a max-cost flow algorithm in strongly-polynomial time, see [18, Sec. 8.4]. (For arc costs $c: A H \rightarrow \mathbb{Q}$ and a flow f in H, the cost of f is $\left.c(f):=\sum_{a} c(a) f(a).\right)$

We turn F into a T-star packing \mathcal{P} obeying $w(\mathcal{P}) \geq \frac{4}{9} w(F)$ as follows. Consider the weakly-connected components of F and perform a case splitting similar to that in the proof
of Theorem 3. For each component Q, we extract a T-star packing \mathcal{P}_{Q} covering some nodes of Q such that $w\left(\mathcal{P}_{Q}\right) \geq \frac{4}{9} w(Q)$ and then take the union $\mathcal{P}:=\bigcup_{Q} \mathcal{P}_{Q}$.

Case I: Q is a directed out-tree \mathcal{T} rooted at a node r. Call an $\operatorname{arc}(u, v)$ in \mathcal{T} even (respectively odd) if the length of the $r-u$ path in \mathcal{T} is even (respectively odd). Let E^{0} (respectively E^{1}) denote the set of edges (in G) corresponding to even (respectively odd) arcs of \mathcal{T}. Sets E^{0} and E^{1} generate T-star packings \mathcal{P}^{0} and \mathcal{P}^{1} in G. Choose from these a packing with the largest weight and denote it by \mathcal{P}_{Q}. Then $w\left(\mathcal{P}_{Q}\right) \geq \frac{1}{2}\left(w\left(\mathcal{P}^{0}\right)+w\left(\mathcal{P}^{1}\right)\right)=$ $\frac{1}{2} w(Q) \geq \frac{4}{9} w(Q)$.

Case II: Q is a directed cycle Ω with a number of out-trees attached to it. Let g_{0}, \ldots, g_{l-1} be the nodes of Ω (numbered in the order of their appearance) and $\mathcal{T}_{0}, \ldots, \mathcal{T}_{l-1}$ be the corresponding trees $\left(\mathcal{T}_{i}\right.$ is rooted at $\left.g_{i}, i=0, \ldots, l-1\right)$.

Subcase II.1: l is even. Choose an arbitrary node r on Ω and label the arcs of Q as even and odd as in Case I. (Note that for any node v in Q, there is a unique simple $r-v$ path in Q.) This way, a T-star packing \mathcal{P}_{Q} obeying $w\left(\mathcal{P}_{Q}\right) \geq \frac{1}{2} w(Q) \geq \frac{4}{9} w(Q)$ is constructed.

Subcase II.2: l is odd. We construct a collection of $3 l$ packings (each covering a subset of nodes of Q) of total weight at least $\frac{3 l-1}{2} w(Q)$. To this aim, label the arcs of $\mathcal{T}_{0}, \ldots, \mathcal{T}_{l-1}$ as even and odd like in Case I (starting from their roots). For $i=0, \ldots, l-1$, let E_{i}^{0} (respectively E_{i}^{1}) be the set of edges (in G) corresponding to even (respectively odd) arcs of \mathcal{T}_{i}. Also let $e_{i}=\left\{g_{i}, g_{i+1}\right\}$ be the i-th edge of Ω (hereinafter indices are taken modulo l). Consider the (edge sets of the) following l packings (taking $i=0, \ldots, l-1$):

$$
\begin{aligned}
& \left\{e_{i}, e_{i+1}\right\} \cup\left\{e_{i+3}, e_{i+5}, \ldots, e_{i+l-2}\right\} \cup \\
& \left(E_{i}^{1} \cup E_{i+1}^{1} \cup E_{i+2}^{1}\right) \cup\left(E_{i+3}^{0} \cup E_{i+4}^{1}\right) \cup\left(E_{i+5}^{0} \cup E_{i+6}^{1}\right) \cup \ldots \cup\left(E_{i+l-2}^{0} \cup E_{i+l-1}^{1}\right) .
\end{aligned}
$$

Also consider the (edge sets of the) following $2 l$ packings (taking each value $i=0, \ldots, l-1$ twice):

$$
\begin{aligned}
& \left\{e_{i+1}, e_{i+3}, e_{i+5}, \ldots, e_{i+l-2}\right\} \cup \\
& E_{i}^{0} \cup\left(E_{i+1}^{0} \cup E_{i+2}^{1}\right) \cup\left(E_{i+3}^{0} \cup E_{i+4}^{1}\right) \cup \ldots \cup\left(E_{i+l-2}^{0} \cup E_{i+l-1}^{1}\right) .
\end{aligned}
$$

By a straightforward calculation, one can see that the total weight of these $3 l$ packings is

$$
\begin{aligned}
& \frac{3 l-1}{2} \sum_{i=0}^{l} w\left(e_{i}\right)+\frac{3 l-1}{2} \sum_{i=0}^{l} w\left(E_{i}^{0}\right)+\frac{3 l+1}{2} \sum_{i=0}^{l} w\left(E_{i}^{1}\right) \geq \\
& \frac{3 l-1}{2}\left(\sum_{i=0}^{l} w\left(e_{i}\right)+\sum_{i=0}^{l} w\left(E_{i}^{0}\right)+\sum_{i=0}^{l} w\left(E_{i}^{1}\right)\right)=\frac{3 l-1}{2} w(Q) .
\end{aligned}
$$

Choosing a max-weight packing \mathcal{P}_{Q} among these $3 l$ instances, one gets $w\left(\mathcal{P}_{Q}\right) \geq \frac{1}{3 l}$. $\frac{3 l-1}{2} w(Q) \geq \frac{4}{9} w(Q)$ (since $l \geq 3$), as claimed.

The above postprocessing converting F into \mathcal{P} can be done in strongly-polynomial time. Together with Lemma 6 this proves the following:

- Theorem 7. $A \frac{9}{4} \frac{T}{T+1}$-factor approximation to the edge-weighted T-star packing problem can be found in strongly polynomial time.

4 Node-Weighted Packings

4.1 General Weights

Now consider a node-weighted counterpart of the problem. Let $w: V G \rightarrow \mathbb{Q}$ be node weights, and let the weight of a T-star packing \mathcal{P} be the sum of weights of nodes covered by \mathcal{P}.

Now one cannot freely assume that weights are non-negative. Indeed, removing a node with a negative weight may change the optimum (consider $G=K_{1, T}$, where the weight of the central node is negative while the weights of the others are positive). In fact, for $T \geq 3$ and arbitrary w, we get an NP-hard problem:

- Theorem 8. The problem of deciding, for given $G, T \geq 3$, w, and $\lambda \in \mathbb{Q}$, if G contains a T-star packing of node weight at least λ, is NP-hard.

Proof. Recall (see [11] and [14, Sec.12.3]) that the following perfect 3-uniform hypergraph matching problem is NP-hard: given a nonempty finite domain V, a collection of subsets $\mathcal{E} \subseteq 2^{V}$, where each element $X \in \mathcal{E}$ is of size 3 , and an integer μ, decide if V can be covered by at exactly $\mu:=|V| / 3$ elements of \mathcal{E}.

We reduce this problem to node-weighted 3 -star packings as follows. Construct a bipartite graph G taking V as the left part. For each $X=\left\{v_{1}, v_{2}, v_{3}\right\} \in \mathcal{E}$ add a node X to the right part and connect it to nodes v_{1}, v_{2}, v_{3} in the left part. The weights of nodes in the left part are set to M, where M is a sufficiently large positive integer; the weights of nodes in the right part are -1 .

Each subcollection $\mathcal{E}^{\prime} \subseteq \mathcal{E}$ obeying $\bigcup \mathcal{E}^{\prime}=V$ generates a packing \mathcal{P} of 3 -stars (with centers located in the right part and leafs - in the left one). Clearly $w(\mathcal{P})=M \cdot|V|-\left|\mathcal{E}^{\prime}\right|$.

Vice versa, consider a max-weight packing \mathcal{P} of 3 -stars. Assuming $\bigcup \mathcal{E}=V, \mathcal{P}$ must cover all nodes in the left part of G (since M is large enough). Let \mathcal{E}^{\prime} be the set of nodes in the right part of G that are covered by \mathcal{P}. Then $\bigcup \mathcal{E}^{\prime}=V$ and $w(\mathcal{P})=M \cdot|V|-\left|\mathcal{E}^{\prime}\right|$. Therefore V can be covered by μ elements of \mathcal{E} if and only if G admits a 3 -star packing of weight at least $\lambda:=M \cdot|V|-\mu$. The reduction is complete.

4.2 Non-Negative Weights

If node weights are non-negative then the problem is tractable. Recall the construction of the auxiliary network H and assign non-negative $\operatorname{arc} \operatorname{costs} c: A H \rightarrow \mathbb{Q}$ as follows: $c\left(v^{2}, t\right):=$ $w(v)$ for all $v \in V G$ and $c(a):=0$ for the other arcs a. Then by Theorem 3 computing a max-cost flow in H also solves the maximum weight T-star packing problem. The max-cost flow problem is solvable in strongly-polynomial time (see [6, 7] and also [16, Ch.12] for a survey) but using a general method here is an overkill. Note that the costs are non-zero only on arcs incident to the sink. This makes the problem essentially lexicographic.

In what follows, we employ an equivalent treatment, which involves multi-terminal networks. Namely, let Γ be a digraph endowed with arbitrary arc capacities u. Consider a set of sources S and a sink $t(S \subseteq V \Gamma, t \in V \Gamma, t \notin S)$. Nodes in $V \Gamma-S-\{t\}$ are called inner. The notion of feasible flows (see Definition 4) extends to multi-terminal networks. Sometimes we use the term $S-t$ flow to emphasize that f is a multi-source flow.

The value of an $S-t$ flow f is $\operatorname{val}(f):=\sum_{s \in S} \operatorname{div}_{f}(s)$. Also let $w: S \rightarrow Q_{+}$be weights of sources. The weight of f is defined as $w(f):=\sum_{s \in S} w(s) \operatorname{div}_{f}(s)$. The goal is to find a feasible $S-t$ flow f of maximum weight $w(f)$. When $S=\{s\}$ and $w(s)=1$, this coincides with the usual max-value flow problem.

Clearly this problem is equivalent to its multi-sink counterpart (where weights are assigned to sinks rather than sources). Consider the digraph H constructed in Section 2. Splitting the sink t into n copies (one for each node in $V G$) and assigning weights to these new sinks appropriately, one reduces the node-weighted star packing problem to the maxweight multi-sink flow problem.

In what follows, we deal with the max-weight multi-source flow problem in Γ. To solve the
latter, we present a divide-and-conquer algorithm, which is inspired by [17]. Our flow-based approach, however, is more general and is also much simpler to explain.

For $S^{\prime}, T^{\prime} \subseteq V \Gamma, S^{\prime} \cap T^{\prime}=\emptyset$, a subset $X \subseteq V \Gamma$ such that $S^{\prime} \subseteq X, T^{\prime} \cap X=\emptyset$, is called an $S^{\prime}-T^{\prime}$ cut. When S^{\prime} or T^{\prime} is singleton the notation is abbreviated accordingly. A cut X is called minimum (among all $S^{\prime}-T^{\prime}$ cuts) if $c\left(\delta^{\text {out }}(X)\right)$ is minimum. A u-feasible flow f is said to saturate X if $f(a)=u(a)$ for all $a \in \delta^{\text {out }}(X)$ and $f(a)=0$ for all $a \in \delta^{\text {in }}(X)$. In other words, $f\left(\delta^{\text {out }}(X)\right)=u\left(\delta^{\text {out }}(X)\right)$ and $f\left(\delta^{\text {in }}(X)\right)=0$.

Recall that for a u-feasible flow f in a digraph Γ, the residual graph $\Gamma_{f}=\left(V \Gamma_{f}:=\right.$ $V \Gamma, A \Gamma_{f}$) contains forward arcs $a=(u, v) \in A \Gamma$, where $f(a)<u(a)$ (endowed with the residual capacity $\left.u_{f}(a):=u(a)-f(a)\right)$, and also backward arcs $a^{-1}=(v, u)$, where $a=$ $(u, v) \in A \Gamma, f(a)>0$ (endowed with the residual capacity $u_{f}\left(a^{-1}\right):=f(a)$). For a u-feasible flow f is Γ and a u_{f}-feasible flow g in Γ_{f} the sum $f \oplus g$ is a u-feasible flow in Γ defined by $(f \oplus g)(a):=f(a)+g(a)-g\left(a^{-1}\right)$ (where terms corresponding to non-existent arcs are assumed to be zero).
W.l.o.g. no arc enters a source and no arc leaves a sink in Γ. Sort the sources in the order of decreasing weight: $w\left(s_{1}\right) \geq w\left(s_{2}\right) \geq \ldots \geq w\left(s_{k}\right)$. For $i=1, \ldots, k$, define $S_{i}:=\left\{s_{1}, \ldots, s_{i}\right\}$. We find a feasible $S-t$ flow f and a collection of cuts X_{1}, \ldots, X_{k} such that:
(1) (i) $X_{1} \subseteq X_{2} \subseteq \ldots \subseteq X_{k}$;
(ii) for $i=1, \ldots, k, X_{i} \cap S=S_{i}, t \notin X_{i}$, and f saturates X_{i}.

- Lemma 9. If (1) holds, then f is both a max-weight and a max-value flow.

Proof. Let $d_{i}:=w\left(s_{i}\right)-w\left(s_{i+1}\right)$ for $i=1, \ldots, k-1$ and $d_{k}:=w\left(s_{k}\right)$. For $i=1, \ldots, k$, define $v_{i}:=\operatorname{div}_{f}\left(s_{1}\right)+\ldots+\operatorname{div}_{f}\left(s_{i}\right)$. Applying Abel transformation, one gets $w(f)=d_{1} v_{1}+\ldots d_{k} v_{k}$.

Fix $i=1, \ldots, k$ and describe f as a sum $f^{\prime}+f^{\prime \prime}$, where f^{\prime} is a feasible $\left\{s_{1}, \ldots, s_{i}\right\}-t$ flow and $f^{\prime \prime}$ is a feasible $\left\{s_{i+1}, \ldots, s_{k}\right\}-t$ flow (such $f^{\prime}, f^{\prime \prime}$ exist due to flow decomposition theorems, see [5]). Clearly $\operatorname{val}\left(f^{\prime}\right)=v_{i}$, therefore $v_{i} \leq c\left(\delta^{\text {out }}\left(X_{i}\right)\right)$. Summing over $i=$ $1, \ldots, k$, we get $w(f) \leq d_{1} c\left(\delta^{\text {out }}\left(X_{1}\right)\right)+\ldots+d_{k} c\left(\delta^{\text {out }}\left(X_{k}\right)\right)$. By (1)(ii), the above inequality holds with equality, hence f is a max-weight flow. Also taking $i=k$ in (1)(ii), we see that X_{k} is an $S-t$ cut saturated by f. Therefore f is a max-value flow.

It remains to explain how one can find f and X_{i} obeying (1). Consider an instance $I=\left(\Gamma, S=\left\{s_{1}, \ldots, s_{k}\right\}, t\right)$ (the capacities u and the weights w remain fixed during the whole computation and are omitted from notation). If $k=1$, then solving I reduces to finding a max-value $s_{1}-t$ flow f and a minimum $s_{1}-t$ cut X_{1}.

Otherwise define $l:=\lfloor k / 2\rfloor, S^{1}:=\left\{s_{1}, \ldots, s_{l}\right\}$, and $S^{2}:=\left\{s_{l+1}, s_{l+2}, \ldots, s_{k}\right\}$. Compute a max-value $S^{1}-t$ flow h and the corresponding minimum $S^{1}-t$ cut Z, which is saturated by h. Since no arc enters a source, we may assume that $Z \cap S=S^{1}$. To proceed with recursion, construct a pair of problem instances as follows. First, contract $\bar{Z}:=V \Gamma-Z$ in Γ into a new sink t^{1} and denote the resulting instance by $I^{1}:=\left(\Gamma^{1}:=\Gamma / \bar{Z}, S^{1}, t^{1}\right)$. Second, remove the subset Z in Γ_{h} (together with the incident arcs) and denote the resulting instance by $I^{2}:=\left(\Gamma^{2}:=\Gamma_{h}-Z, S^{2}, t\right)$.

Let f^{1} and f^{2} be optimal solutions to I^{1} and I^{2}, respectively, which are found recursively and satisfy (1) (for $f:=f^{1}, S:=S^{1}$ and for $f:=f^{2}, S:=S^{2}$). Construct an optimal solution to I as follows. First, Z is a minimum $S^{1}-t^{1}$ cut in Γ^{1} (since Z is a minimum $S^{1}-t$ cut in Γ) and by Lemma $9, f^{1}$ is a max-value flow. Hence f^{1} saturates Z. Second, f^{2} may be regarded as an $S^{2}-t$ flow in Γ_{h}. The sum $h \oplus f^{2}$ forms a u-feasible S - t flow in Γ that
also saturates Z. "Glue" f^{1} and $h \oplus f^{2}$ along $\delta^{\text {in }}(Z), \delta^{\text {out }}(Z)$ and construct an S - t flow f in Γ as follows:

$$
f(a):= \begin{cases}f^{1}(a) & \text { for } a \in \gamma(Z) \\ \left(h \oplus f^{2}\right)(a) & \text { for } a \in \gamma(\bar{Z}) \\ u(a) & \text { for } a \in \delta^{\text {out }}(Z) \\ 0 & \text { for } a \in \delta^{\text {in }}(Z)\end{cases}
$$

Let $X_{1}^{1}, X_{2}^{1}, \ldots, X_{l}^{1}$ and $X_{l+1}^{2}, X_{l+2}^{2}, \ldots, X_{k}^{2}$ be the sequence of nested cuts (as in (1)) for f^{1} and f^{2} (respectively). Then clearly $X_{1}^{1}, X_{2}^{1}, \ldots, X_{l}^{1}, Z \cup X_{l+1}^{2}, Z \cup X_{l+2}^{2}, \ldots, Z \cup X_{k}^{2}$ and f obey (1). The description of the algorithm is complete.

Let $\Phi\left(n^{\prime}, m^{\prime}\right)$ denote the complexity of a max-flow computation in a network with n^{\prime} nodes and m^{\prime} arcs. Let the above recursive algorithm be applied to a network with n nodes, m arcs, and k sources. Then its running time $T(n, m, k)$ obeys the recurrence

$$
T(n, m, k)=\Phi(n, m)+T\left(n^{1}, m^{1},\lfloor k / 2\rfloor\right)+T\left(n^{2}, m^{2},\lceil k / 2\rceil\right)+O(n+m)
$$

where $n^{1}+n^{2}=n+1, m^{1}+m^{2}=m$. For a "natural" time bound Φ this yields $T(n, m, k)=$ $O(\Phi(n, m) \cdot \log k)($ see $[10$, Sec. 2.3]).

- Theorem 10. In a network with n nodes, m arcs, and k sources a max-weight flow can be found in $O(\Phi(n, m) \cdot \log k)$ time.

For node-weighted star packings, $\Phi(n, m)=O(m \sqrt{n})$ for the max-flow problems arising during the recursive process (due to results of $[2,9]$).

- Corollary 11. The node-weighted T-star packing problem with non-negative weights is solvable in $O(m \sqrt{n} \log n)$ time.

4.3 Node-Weighted Packings of 2-Stars

We still have a case where neither a polynomial algorithm nor a hardness result are established. Let $T=2$ and node weights be arbitrary. Hence T-stars are just paths of length 1 and 2. This case is tractable but the needed machinery is of a bit different nature.

Recall the proof of Theorem 8. The latter fails for $T=2$ because it shows a reduction from a version of the set cover problem where all subsets are restricted to be of size 1 and 2 . The latter set cover problem is equivalent to finding a minimum cardinality edge cover in a general (i.e. not necessarily bipartite) graph. Both cardinality and weighted problems regarding edge covers are polynomially solvable (see [16, Ch.27]), so no hardness result can be obtained this way. However, this gives a clue on what techniques may apply here.

We employ the concept of bidirected graphs, which was introduced by Edmonds and Johnson [3] (more about bidirected graphs can be found in, e.g., [16, Ch. 36].) Recall that in a bidirected graph edges of three types are allowed: a usual directed edge, or an arc, that leaves one node and enters another one; an edge directed from both of its ends; and an edge directed to both of its ends. When both ends of an edge coincide, the edge becomes a loop.

The notion of a flow is extended to bidirected graphs in a natural fashion. Namely, let Γ is a bidirected graph whose edges are endowed with integer capacities $u: E \Gamma \rightarrow \mathbb{Z}_{+}$and let s be a distinguished node (a terminal). Nodes in $V \Gamma-\{s\}$ are called inner.

- Definition 12. A u-feasible (or just feasible) integer bidirected flow f is a function $f: E \Gamma \rightarrow \mathbb{Z}_{+}$such that: (i) $f(e) \leq u(e)$ for each $e \in E \Gamma$; and (ii) $\operatorname{div}_{f}(v)=0$ for each inner node v.

Figure 2 Reduction to a bidirected graph.

Here, as usual, $\operatorname{div}_{f}(v):=f\left(\delta^{\text {out }}(v)\right)-f\left(\delta^{\text {in }}(v)\right)$, where $\delta^{\text {in }}(v)$ denotes the set of edges entering v and $\delta^{\text {out }}(v)$ denotes the set of edges leaving v. It is important to note that a loop e entering (respectively leaving) a node v is counted two times in $\delta^{\text {in }}(v)$ (respectively in $\left.\delta^{\text {out }}(v)\right)$ and hence contributes $\pm 2 f(e)$ to $\operatorname{div}_{f}(v)$. Similar to flows in digraphs, $f(\{u, v\})$ is abbreviated to $f(u, v)$.

Consider an undirected graph G endowed with arbitrary node weights $w: V G \rightarrow \mathbb{Q}$. We reduce the node-weighed 2-star packing problem in G to finding a feasible max-cost integer bidirected flow in an auxiliary bidirected graph. The latter is solvable in strongly polynomial time [16, Ch. 36].

To construct the desired bidirected graph H, denote $V_{+}:=\{v \in V G \mid w(v) \geq 0\}$ and $V_{-}:=V G \backslash V_{+}$, Like in Section 2, consider two disjoint copies of V_{+}and denote them by V_{+}^{1} and V_{+}^{2}. Also add a terminal s and define $V H:=V_{+}^{1} \cup V_{+}^{2} \cup V_{-} \cup\{s\}$.

One may assume that no two nodes in V_{-}are connected by an edge since these edges may be removed without changing the optimum. For an edge $\{u, v\} \in E G, u, v \in V_{+}$, construct edges $\left\{u^{1}, v^{2}\right\}$ (leaving u^{1} and entering v^{2}) and $\left\{v^{1}, u^{2}\right\}$ (leaving v^{1} and entering u^{2}). For an edge $\{u, v\} \in E G, u \in V_{-}, v \in V_{+}$, construct an edge $\left\{u, v^{2}\right\}$ (leaving u^{1} and entering v^{2}). All these bidirected edges are endowed with infinite capacities and zero costs.

For each node $v \in V_{+}$, add an edge $\left\{s, v^{1}\right\}$ (entering v^{1}) of capacity 2 and zero cost, and an edge $\left\{v^{2}, s\right\}$ (leaving v^{2}) of capacity 1 and $\operatorname{cost} w(v)$. For each node $v \in V_{+}$, add a loop $\{v, v\}$ (entering v twice) of capacity 1 and $\operatorname{cost} w(v)$ and an edge $\{v, s\}$ (leaving v) of infinite capacity and zero cost. (Since s is a terminal, directions of edges at s are irrelevant.) An example is depicted in Fig. 2.

- Theorem 13. The maximum cost of a feasible integer bidirected flow in H coincides with the maximum weight of a 2-star packing in G.

Proof. We first show how to turn a max-weight 2-star packing \mathcal{P} in G into a feasible integer bidirected flow f in H of $\operatorname{cost} w(\mathcal{P})$. Start with $f:=0$. Let S be a star in \mathcal{P}. The following cases are possible.

Case I: S covers two nodes, say p and q, and $\{p, q\}$ is the edge of S.
Subcase I.1: $p, q \in V_{+}$. Increase f by one along the paths $\left(s, p^{1}, q^{2}, s\right)$ and $\left(s, q^{1}, p^{2}, s\right)$. This preserves zero divergences at inner nodes and adds $w(p)+w(q)=w(S)$ to $c(f)$.

Subcase I.2: $p \in V_{+}, q \in V_{-}$. Increase f by one along the path $\left(s, p^{2}, q, q, s\right)$ (where the q, q fragment denotes the loop at q). Divergences at inner nodes are preserved, $c(f)$ is increased by $w(p)+w(q)=w(S)$.

Case II: S covers three nodes, say p, q, and r, and $\{p, q\},\{q, r\}$ are the edges of S.
Subcase II.1: $p, q, r \in V_{+}$. Increase f by one along the paths $\left(s, q^{1}, p^{2}, s\right),\left(s, q^{1}, r^{2}, s\right)$, and $\left(s, p^{1}, q^{2}, s\right)$. Divergences at inner nodes are preserved, $c(f)$ is increased by $w(p)+w(q)+$ $w(r)=w(S)$.

Subcase II.2: $p, r \in V_{+}$and $q \in V_{-}$. Increase f by one along the path $\left(s, p^{2}, q, q, r^{2}, s\right)$ (as above, the q, q fragment is the loop at q). Divergences at inner nodes are preserved, $c(f)$ is increased by $w(p)+w(q)+w(r)=w(S)$.

Since \mathcal{P} is optimal, the other cases are impossible. Applying the above to all $S \in \mathcal{P}$ one gets a feasible integer bidirected flow of $\operatorname{cost} w(\mathcal{P})$, as claimed.

For the opposite direction, consider a feasible max-cost integer bidirected flow f in H and construct a 2 -star packing \mathcal{P} obeying $w(\mathcal{P}) \geq c(f)$ as follows. Define

$$
\begin{aligned}
& F_{+}:=\left\{(u, v) \mid u, v \in V_{+}, f\left(u^{1}, v^{2}\right)>0\right\} \\
& F_{-}:=\left\{(u, v) \mid u \in V_{-}, v \in V_{+}, f\left(u, v^{2}\right)>0\right\}
\end{aligned}
$$

Then $F:=F_{+} \cup F_{-}$is a 2-feasible arc set in \vec{G}. (Recall that \vec{G} is obtained from G by replacing each edge with a pair of opposite arcs.) Indeed, every arc in F leaving a node $u \in V_{+}$corresponds to a unit of flow along the edge $\left\{s, u^{1}\right\}$ and the capacity of the latter is 2. Every arc in F leaving a node $u \in V_{-}$corresponds to a unit of flow along the edge $\left\{u, v^{2}\right\}, v \in V_{+}$, and since the capacity of the loop $\{v, v$,$\} is 1$, there can be at most 2 such arcs. Next, if an arc in F enters a node $v \in V_{+}$then this arc adds a unit of flow along the edge $\left\{v^{2}, s\right\}$ (whose capacity is 1). Finally, no arc in F enters a node in V_{-}.

By Theorem 3, F generates a packing of 2-stars \mathcal{P} in G. We claim that $w(\mathcal{P}) \geq c(f)$. We show that each edge $e \in E H$ with $c(e)>0$ and $f(e)=1$ corresponds to a node $v_{e} \in V G$ covered by \mathcal{P} such that $c(e)=w\left(v_{e}\right)$. Also each node $v \in V_{-}$covered by \mathcal{P} corresponds to an edge $e_{v} \in E H$ with $f\left(e_{v}\right)=1$ such that $c\left(e_{v}\right)=w(v)$. (The mappings $e \mapsto v_{e}$ and $v \mapsto e_{v}$ are injective.) These observations complete the proof of Theorem 13.

For the first part, consider an edge $e=\left\{v^{2}, s\right\}$, where $f(e)=1$ and $v \in V_{+}$. Then v is entered by an arc in F, hence \mathcal{P} covers $v_{e}:=v$. For the second part, consider a node $v \in V_{-}$ covered by \mathcal{P}. Then v must be an endpoint of an $\operatorname{arc} a \in F$. No arc in F can enter v (by the construction of $F)$, hence $a=(v, u)$ for $u \in V_{+}$. Therefore $a \in F_{-}$corresponds to the edge $\left\{v, u^{2}\right\}$. Since $f\left(v, u^{2}\right)>0$ one has $f\left(e_{v}\right)=1$, where $e_{v}:=\{v, v\}$ is the loop at v.

Acknowledgements

We thank anonymous referees for useful suggestions.

References

1 A. Amahashi and M. Kano. On factors with given components. Discrete Math., 42(1):1-6, 1982.

2 E. Dinic. Algorithm for solution of a problem of maximum flow in networks with power estimation. Soviet Math. Dokl., 11:1277-1280, 1970.
3 J. Edmonds and E. L. Johnson. Matching, a well-solved class of integer linear programs. In Proc. Calgary Int. Conf. on Comb. Structures and Their Appl., pages 89-92, NY, 1970. Gordon and Breach.

4 T. Feder and R. Motwani. Clique partitions, graph compression and speeding-up algorithms. J. Comput. Syst. Sci., 51:261-272, October 1995.
5 L. Ford and D. Fulkerson. Flows in Networks. Princeton University Press, 1962.
6 A. Goldberg and R. Tarjan. Solving minimum-cost flow problems by successive approximation. In Proc. 18th Annual ACM Conference on Theory of Computing, pages 7-18, 1987.

7 A. Goldberg and R. Tarjan. Finding minimum-cost circulations by canceling negative cycles. J. ACM, 36(4):873-886, 1989.
8 P. Hell and D. Kirkpatrick. Packings by complete bipartite graphs. SIAM J. Algebraic Discrete Methods, 7(2):199-209, 1986.
9 J. Hopcroft and R. Karp. An $n^{\frac{5}{2}}$ algorithm for maximum matchings in bipartite graphs. SIAM J. Comput., 2(4):225-231, 1973.
10 T. Ibaraki, A. Karzanov, and H. Nagamochi. A fast algorithm for finding a maximum free multiflow in an inner eulerian network and some generalizations. Combinatorica, 18(1):6183, 1998.
11 R. Karp. Reducibility among combinatorial problems. In R. Miller and J. Thatcher, editors, Complexity of Computer Computations, pages 85-103. Plenum Press, 1972.
12 A. Kelmans. Optimal packing of induced stars in a graph. Discrete Math., 173(1-3):97-127, 1997.

13 M. Las Vergnas. An extension of Tutte's 1-factor theorem. Discrete Math., 23:241-255, 1978.

14 L. Lovász and M. D. Plummer. Matching Theory. North-Holland, NY, 1986.
15 Q. Ning. On the star packing problem. In Proc. 1st China-USA International Graph Theory Conference, volume 576, pages 411-416, 1989.
16 A. Schrijver. Combinatorial Optimization. Springer, Berlin, 2003.
17 T. Spencer and E. Mayr. Node weighted matching. In Proc. 11th Colloquium on Automata, Languages and Programming, pages 454-464, London, UK, 1984. Springer-Verlag.
18 R. Tarjan. Data structures and network algorithms. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1983.

