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Abstract
In the conversion of finite automata to regular expressions, an exponential blowup in size can
generally not be avoided. This is due to graph-structural properties of automata which cannot
be directly encoded by regular expressions and cause the blowup combinatorially. In order to
identify these structures, we generalize the class of arc-series-parallel digraphs to the acyclic case.
The resulting digraphs are shown to be reversibly encoded by linear-sized regular expressions. We
further derive a characterization of our new class by a finite set of forbidden minors and argue
that these minors constitute the primitives causing the blowup in the conversion from automata
to expressions.

1998 ACM Subject Classification F.4.3: Formal Languages, G.2.2: Graph Theory

Keywords and phrases Digraphs, Regular Expressions, Finite Automata, Forbidden Minors

Digital Object Identifier 10.4230/LIPIcs.STACS.2011.495

1 Motivation

A fundamental result in the theory of regular languages is the equivalent descriptive power
of regular expressions and finite automata, as originally shown by Kleene [9]. While regular
expressions come natural to humans as a means of denoting such languages, automata are
the objects of choice on the machine level. Consequently, converting between these two
representations is of great practical importance. There are several linear-time algorithms to
transform regular expressions into automata with size linear in that of the input, a detailed
overview is given by Watson [16]. We shall focus on the converse construction which is
considerably more troubling.

In particular, Ehrenfeucht & Zeiger [3] give a class of automata for which the size of
any equivalent expression is exponential in that of a given automaton. These automata
are defined over an alphabet which grows with automaton size, which led Ellul et al. to
ask whether a similar blowup in expression size can be shown for automata over a fixed
alphabet [4]. An affirmative answer was given by Gruber & Holzer [5] for binary alphabets
already. This mostly rules out alphabet size as a factor contributing to the exponential
blowup, the modifier ’mostly’ giving credit to the fact that automata over unary alphabets
can be converted to expressions of quadratic size via Chrobak normal form [1, 4].

Observe that a finite automaton is merely a digraph with edge labels, accepting the
language which consists of all sequences of labels met on a directed walk from an initial to a
final state. Informally, the increase of expression- over automaton-size results from automata
being combinatorial objects, whereas expressions are terms, i.e., linear entities, that must
resort to repeated subterms in order to convey information encoded in the graph-structure
of an automaton. This was observed quite early by McNaughton [11], who remarks that
“although every regular expression can be transformed into a graph that has the same
structure, the converse is not true”. The present work aims to identify the graphs that cannot
be transformed into expressions that have the same structure.
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496 Graphs Encoded by Regular Expressions

For automata whose underlying graphs are arc-series-parallel, Moreira & Reis [12] recently
gave an efficient conversion to expressions with size linear in that of the input. These graphs
are characterized by absence of a single minor-like substructure in acyclic graphs, as was
shown by Valdes et al. [15]. Korenblit & Levit [10] conjectured that this substructure already
causes a quadratic blowup in the size of expressions constructed from acyclic automata.

However, Moreira & Reis’s method is inherently confined to automata that accept finite
languages only. In order to accept an infinite language, an automaton needs to contain
cycles, which evades the class of arc-series-parallel digraphs. While separately dealing with
series-parallel ’parts’ of arbitrary automata has been suggested for conversion-heuristics [6],
no strict graph-theoretic analysis has been conducted for the general case as yet.

This motivates our generalization of arc-series-parallel digraphs to the non-acyclic case in
Sec. 3, yielding a class which is still efficiently recognizable. In Sec. 4 we show that such graphs
can be reversibly encoded by regular expressions and that every regular expression encodes
a graph of this class. Encoding and decoding is done in an automata-theoretic framework
and can be immediately applied to the conversion between automata and expressions. In
Sec. 5 we derive a characterization of our new class by a finite set of forbidden minors. This
implies that these minors represent the graph-structural properties of automata that cannot
be encoded by regular expressions and thus cause the blowup observed in the construction of
regular expressions from finite automata.

2 Preliminaries

We consider finite directed graphs with loops and multiple arcs. These are canonically known
as directed pseudographs but will be referred to as just graphs. Formally, a graph is a tuple
(V,A, t, h) with vertices V , arcs A, tail-map t : A → V and head-map h : A → V . If G is
not given explicitly, let G = (VG, AG, tG, hG). An xy-arc of G is any a ∈ AG with tG(a) = x

and hG(a) = y; we write this as a = xy ∈ AG. An xy-arc a leaves x and enters y, and x and
y are called the endpoints of a. Distinct xy-arcs of a graph are parallel to each other. An
xx-arc is an x-loop or just loop, every other arc is a proper arc. The in-degree of x ∈ VG,
denoted d−G(x), is the number of arcs entering x in G, the out-degree d+

G(x) is the number of
arcs leaving x. A constriction of G is any proper xy-arc where d+

G(x) = 1 = d−G(y). A vertex
x ∈ VG is simple if d−G(x) ≤ 1 and d+

G(x) ≤ 1. Subscripts are omitted if they are understood.
We write F ⊆ G is F is a subgraph of G. If F and G are subgraphs of H and a = xy ∈ AH

with x ∈ VF and y ∈ VG, then a is called an (F,G)-arc, as well as an (x,G)- or an (F, y)-arc
of H. A path of length n, denoted Pn is a graph on n+ 1 vertices and n constrictions.

The subdivision of an arc a = xy is the replacement of a with an xy-path of length 2.
More generally, a subdivision of G, referred to as a DG, is any graph H s.t. there are graphs
G1, . . . , Gn where G = G1, Gi+1 results from subdividing an arc of Gi and Gn = H. The
split of a vertex x is the replacement of x with two vertices x1 and x2 and an x1x2-arc and
redirecting all arcs that entered x to enter x1, resp. redirecting all arcs that left x to leave
x2. Two vertices x, y ∈ VG are merged by being replaced with a new vertex z and redirecting
all arcs entering or leaving x or y to enter or leave z.

A graph G is two-terminal if there are s, t ∈ VG s.t. every x ∈ VG lies on some st-path in
G. The vertices s and t are respectively called the source and sink of G; we write G = (G, s, t)
to express that G is two-terminal with source s and sink t. A two-terminal graph (G, s, t)
is a hammock if d−G(s) = d+

G(t) = 0. Let x and y be vertices of (G, s, t): x dominates y if
x lies on every sy-path, and x co-dominates y if x lies on every yt-path. Furthermore, x is
a guard of y if x dominates and co-dominates y; also, x is a guard of the arc a if x guards
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x y s⇒ x z y

(a) series expansion

x y p⇒ x y

(b) parallel expansion

x y `⇒ {x,y}

(c) loop expansion

Figure 1 Expansions of an xy-arc, resp. the containing graph.

p⇒ s⇒ s⇒ `⇒ s⇒

Figure 2 Construction of an spl-graph from P1 by a sequence of expansions.

both t(a) and h(a). More generally, x guards a subgraph F of (G, s, t) if x guards every arc
and vertex of F .

3 SPL - Graphs

I Definition 1. The relations s⇒, p⇒ and `⇒ are defined on graphs as follows: Let G be a
graph and a an xy-arc in G, then

G
s⇒ H if H is obtained by subdividing a in G

G
p⇒ H if H is obtained from G by adding an arc which is parallel to a.

G
`⇒ H if a is a constriction and H is obtained by merging x and y in G.

We say that H is derived from G by means of series-, parallel- or loop-expansion if
G

s⇒ H, G p⇒ H or G `⇒ H, respectively. The local changes in G upon expansion are
sketched in Fig. 1. We write G⇒ H if the particular expansion is irrelevant, and G⇒? H if
H is derived from G by a (possibly empty) finite sequence of expansions.

I Definition 2. The class of spl-graphs, denoted SPL, is generated by⇒ from P1 as follows

P1 ∈ SPL
Let G ∈ SPL, then H ∈ SPL if G s⇒ H or G p⇒ H, or if G `⇒ H where the `-expanded
arc is not incident to the source or the sink of G.

We call P1 the axiom of SPL. The restriction imposed on `-expansion ensures that every
spl-graph is a hammock. An example for the step-wise construction of an spl-graph is shown
in Fig. 2. The acyclic spl-graphs coincide with the arc-series-parallel graphs investigated
by Valdes et al. [15]; we resort to their results whenever possible and elaborate only on
properties of SPL that arise from its non-acyclic members.

To decide whether (G, s, t) is an spl-graph, we define a kind of dual to expansion. Some
care must be taken with the removal of loops, which is why the new operations are restricted
to hammocks.

I Definition 3. The relations s⇐, p⇐ and `⇐ are defined on hammocks as follows: Let
G = (G, s, t) be a hammock, then

i) G s⇐ H if y is simple vertex of G, incident to a1 = xy and a2 = yz, and H is derived
from G by removing y, a1 and a2 and adding an xz-arc.

ii) G p⇐ H if H is derived from G by removing one of two parallel arcs.

STACS’11
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iii) G `⇐ H if a is an x-loop in G s.t. x does not guard any arc besides a, and H is the split
of x in G \ {a}.

If G c⇐ H for c ∈ {s, p, `} we call both H and the replacement operation a c-reduction
of G. As before we may simply write G⇐ H for any reduction, and G⇐? H if H can be
derived from G by a sequence of reductions.

Expansion and reduction are not proper duals as the latter relation is restricted to
hammocks by definition. For hammocks we find G c⇐ H iff H

c⇐ G for c ∈ {s, p}; but while
G

`⇐ H implies H `⇒ G, the converse is not true. The asymmetry is due to the fact that
if `-expansion introduces an x-loop a, x might guard some arc besides a, so the converse
reduction is not ensured. This, however, does not happen within SPL.

I Proposition 4. Let C be a cycle of G ∈ SPL. Then exactly one vertex of C guards C.

The intuition of Prop. 4 is that every cycle in an spl-graph contains a vertex that serves
as the unique ’entry’ and ’exit’ of this cycle wrt. the source and sink (see the last two steps
in Fig. 2). Also note that a cycle might well be guarded by any number of vertices outside
the cycle.

I Theorem 5. G ∈ SPL iff G⇐? P1

Proof. Since G⇐? P1 implies P1 ⇒? G, reducibility is sufficient for membership. Necessity
is shown by induction on the structure of G. The claim holds for P1, so suppose G ∈ SPL
where G⇐? P1 and let G⇒ H. We attend to `-expansion only, the other cases are trivial.
Let a = uv be the relevant constriction of G and let l = xx be the loop introduced in H. If x
guards some distinct arc a′ = yz in H, then G contains a cycle that defies Prop. 4, contrary
to the assumption G ∈ SPL. Therefore, H `⇐ G is a valid reduction; since by assumption
G⇐? P1, we find H ⇐? P1. J

While membership in SPL can be decided by reducing a hammock to the axiom of
SPL, we do not know how to do so. Actually, there is no need for a strategy, since the
reduction-system exhibits unique normal-forms. Using a standard argument from abstract
rewriting (see e.g. [14]), we first show that reductions are locally confluent.

I Lemma 6. Let G be a hammock and suppose G⇐ H1 and G⇐ H2 hold. Then there is a
hammock J s.t. H1 ⇐? J and H2 ⇐? J hold.

Each reduction decreases the number of arcs or loops and none introduces loops, so every
sequence of reductions eventually terminates. Any graph derived from G by exhaustive
reduction is called normal-form of G and denoted R(G). A graph G that coincides with its
normal-form, G = R(G), is called reduced. Applying Newman’s lemma [13, 14] yields

I Corollary 7. The normal-form R(G) of any hammock G is unique.

Computing the normal-form of a hammock can be realized by repeatedly running the
reduction algorithm for arc-series-parallel graphs [15], interspersed with `-reductions, until no
further reduction can be applied. To this end some bookmarking about the loops occurring
in the intermediate graphs is necessary. Testing whether x is a guard can be done in linear
time by counting the components of G \x. Overall, this method computes R(G) in quadratic
time.

I Theorem 8. Membership of G in SPL is effectively decidable due to

G ∈ SPL iff G is a hammock and R(G) = P1
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4 Encoding by Regular Expressions

Syntax and semantics of regular expressions (REs) follow Hopcroft & Ullman’s textbook [8]
except that we do not allow for ∅ in REs. As for notation, Lr denotes the language described
by the RE r and reg(Σ) denotes the class of REs over Σ. An RE is simplified if it does not
contain ε as a factor. Any RE r can be converted to a simplified RE simp(r), denoting the
same language, by replacing every subexpression sε or εs with just s.

An extended finite automaton (EFA) over Σ is a 5-tuple E = (Q,Σ, δ, I, F ), whose
elements denote the set of states, the alphabet, the transition relation, the initial and the
final states, respectively. These sets are all finite and satisfy Q ∩Σ = ∅, δ ⊆ Q× reg(Σ)×Q,
I ⊆ Q, and F ⊆ Q. The relation `E is defined on Q×Σ∗ as (q, ww′) `E (q′, w′) if (q, r, q′) ∈ δ
and w ∈ Lr. The language accepted by E is

L(E) := {w | (qi, w) `∗E (qf , ε) for qi ∈ I, qf ∈ F}

Two EFAs are equivalent if they accept the same language. An EFA is normalized if
|I| = |F | = 1 and the initial and final state are distinct; any EFA can normalized by adding a
new initial (final) state and ε-transitions from (to) this new initial (final) state to (from) the
original ones. The EFA E is trim if for every state q of E there is a word w = w1w2 ∈ L(E)
s.t. (qi, w1) `∗E (q, ε) and (q, w2) `∗E (qf , ε) hold for some qi ∈ I and qF ∈ F . Any EFA
can be converted to a trim equivalent EFA by removing all states that do not meet this
requirement and adjusting the transition relation. A nondeterministic finite automaton with
ε-transitions (εNFA) is an EFA whose transition relation is restricted to δ ⊆ Q×(Σ∪{ε})×Q.

The graph underlying E is G(E) := (Q, δ, t, h) where t : (p, r, q) 7→ p and h : (p, r, q) 7→ q.
It is easy to see that E is trim and normalized iff G(E) is a hammock.

An EFA displays a compromise between the complexity of its transition-labels and that
of its underlying graph; REs and εNFAs represent the extremes in this tradeoff: an RE
can be considered as an EFA whose underlying graph is trivial, namely P1, while an εNFA
is an EFA with trivial labels. Locally relaying information about a language between the
graph-structure of an EFA and its labels lies at the heart of several conversions between REs
and εNFAs.

4.1 Expressions to Automata
We consider a fragment of the replacement-system proposed by Gulan & Fernau [7]. Let E
be an EFA with transition τ = (p, r, q) where r contains operators, then τ can be replaced
depending on the root of r, the out-degree of p and the in-degree of q. The degrees are only
relevant if r is an iteration: in this case they determine whether p and q should be merged
or a new state should be added (or neither) upon introduction of a loop. The rewriting rules,
denoted /•, /+, and /∗1 to /∗4 are shown in Fig. 3.

In order to convert an RE into an εNFA, we identify r ∈ reg(Σ) with the trivial
EFA A0

r := ({qi, qf},Σ, {(qi, r, qf )}, {qi}, {qf}), which obviously satisfies L(A0
r) = Lr. The

language accepted by an EFA is invariant under each rewriting, hence exhaustive application
of /•, /+ and /∗i yields a sequence A0

r, A
1
r, . . . of equivalent EFAs terminating in an εNFA

which we denote Ar.

I Lemma 9. Every Ai
r satisfies G(Ai

r) ∈ SPL.

Thus the graph underlying Ar is an spl-graph, too. It is shown in [7] that Ar is unique.
We thus define a map α from reg(Σ) to the class of expression-labeled spl-graphs (aka trim
normalized EFAs) by setting α(r) := Ar.

STACS’11
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p qst /• p ◦ qs t

(a) product

p qs+ t /+ p q
s

t

(b) sum

p qs∗ /∗1 {p,q}
s

(c) star, d+(p)=d−(q)=1

p qs∗ /∗2 p qε
s

(d) star, d+(p)>1, d−(q)=1

p qs∗ /∗3 p qε
s

(e) star, d+(p)=1, d−(q)>1

p qs∗ /∗4 p ◦ε qε
s

(f) star, d+(p)>1, d−(q)>1

Figure 3 Replacing a transition (p, r, q) based on its label and, in case r = s∗, the out-degree of
p and the in-degree of q in G(E). Either rule /•, /∗4 introduces a new state ’between’ p and q.

4.2 Automata to Expressions
The spl-reductions are augmented to handle expression-labeled arcs, which yields a second
rewriting-system on EFAs. In order to meet the requirements for loop-reduction, we consider
normalized EFAs only. The labeled reductions, denoted .•, .+, and .∗, are shown in Fig. 4.
Again, the accepted language is invariant under these transformations.

s t .• st

(a) labeled s-reduction

s

t
.+

s+ t

(b) labeled p-reduction

s
.∗

s∗

(c) labeled `-reduction

Figure 4 Labeled spl-reductions

Exhaustive reduction of a normalized EFA E terminates in an equivalent EFA which we
denote Rl(E). The graph underlying Rl(E) is the normal-form of the graph underlying E,
G(Rl(E)) = R(G(E)), and we further find

I Proposition 10. The labels of Rl(E) are unique up to associativity and commutativity.

In particular if G(E) ∈ SPL, we find G(Rl(E)) = P1, so the only label of Rl(E) is an
RE r with Lr = L(E). By Prop. 10 this RE is unique up to trivialities, so we define a map
β from EFAs with spl-structure to REs by setting β(E) := r, where r is the label of Rl(E).

4.3 Duality of the Conversions
The conversions between REs and εNFAs with spl-structure are ’almost’ duals, some extra
effort arises with the treatment of ε-factors resp. certain ε-labeled transitions. This is due to
the fact that star-expansion might introduce ε-transition that have no corresponding subterm
in the

We write r = r′ if the expressions r and r′ are identical up to associativity and commuta-
tivity of the regular operators.

I Theorem 11.

1. simp(r) = β(α(simp(r))) for any RE r

2. A = α(simp(β(A))) for any εNFA A with G(A) ∈ SPL

Thus the encoding of labeled spl-graphs by simplified expressions is unique and reversible,
and every simplified expression encodes a labeled spl-graph. Hence every RE over a non-
empty alphabet encodes an spl-graph and every spl-graph can be encoded. Informally, we
state
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I Corollary 12. G ∈ SPL iff G can be encoded by an RE

5 Forbidden Minor Characterization

We adapt the notion of topological minors, which is well-known for undirected graphs (see
e.g. [2]), to our needs.

I Definition 13. An embedding of F in G is an injection e : VF → VG satisfying that if
a = xy ∈ AF , then G contains an e(x)e(y)-path Pa, and that Pa and Pa′ are internally
disjoint for distinct a, a′ ∈ AF .

If an embedding of F in G exists, we call F a minor of G realized by the embedding.
We write F 4 G if F is a minor of G. If F 4 G does not hold then G is F -free; if M is
a set of graphs and G is F -free for every F ∈ M, then G isM-free. It is easily seen that
subdivisions allow for an equivalent characterization of minors:

I Proposition 14. F 4 G iff G contains a DF

Let F 4 G be realized by e and x ∈ VF , we call e(x) a peg of F in G wrt. e; if G and e
are known, we omit mentioning them. Observe that the in-/out-degree of a vertex in F does
not exceed the in-/out-degree of its corresponding peg in G:

I Proposition 15. If e realizes F 4G, then d−F (x)≤d−G(e(x)) and d+
F (x)≤d+

G(e(x)).

Let e realize F 4 G, a bypass of F in G wrt. e is an e(x)e(y)-path in G, where xy is
not an arc of F . An embedding of F in G is bare if G contains no bypass of F wrt. to the
embedding; we then write M v G. Observe that F 4 G might well be realized by various —
in particular bare and non-bare — embeddings. Based on Prop. 14, we also call a DF in G
bare if G contains no bypass wrt. to the embedding realizing this DF .

The existence of an xy-path is invariant under spl-expansion and -reduction if x and y
are not subject to the operation.

I Proposition 16. Let G⇒ H or G⇐ H and {x, y} ⊆ VG∩VH , then G contains an xy-path
iff H does.

’Half’ of the sought characterization is given by the set of graphs F = {C,CR,N,Q},
shown in Fig. 5. Note that Valdes et al. proved that an acyclic hammock is arc-series-parallel
iff it is N-free [15].

I Lemma 17. Every G ∈ SPL is F-free.

Proof. Clearly, P1 is F-free. Assume G ∈ SPL is F-free and let G ⇒ H. Consider any
F ∈ F : since F is free of parallel arcs, and the existence of paths among vertices in VG ∩ VH

is invariant under expansion (Prop. 16), F 4 H implies that a peg of F in H was introduced
upon expansion. Hence in case G p⇒ H, F is not a minor of H, i.e., H is F -free. The same
goes for G s⇒ H: as the new vertex in H is simple, but no vertex of F is, Prop. 15 implies
that H is F -free and therefore F -free.
If G `⇒ H, let a = xy be the relevant constriction of G and l = zz the loop of H introduced
by expansion. If F 4 H is realized by e, then z = e(q) for some q ∈ VF , as was discussed
above. Let H ′ = H \ l: since F is free of loops, F 4 H ′ holds, too, and since q is not simple
in F , z is not simple in H ′. We actually find d−H′(z) ≥ 2 and d+

H′(z) ≥ 2: if d−H′(z) = 0, then
F 4 G is realized by e′, which is defined as e except that e′(q) = y — contradicting the
assumption that G is F-free. If d−H′(z) = 1, there is exactly one arc entering z in H. Let

STACS’11
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(a) C (b) CR (c) N (d) Q

Figure 5 Graphs constituting F .

x

•

s • t

`⇐

x2 x1

•

s • t

Figure 6 The graph N emerges as a subgraph due to `-reduction of a hammock. Still, C is a
minor of either side.

this be a′ = z′z, then F 4 G is realized by e′′ which is as e except that, again, e′′(q) = y,
contradicting our assumption. A symmetric argument shows d+

H′(z) ≥ 2. In fact, we have
also shown that q, of which z is the peg, has in- and out-degree at least two.
But since d−G(x) = d−H′(z) and d+

G(y) = d+
H′(z), some F ′ ∈ F , constructed by splitting q in

F satisfies F ′ 4 G — contradicting the assumption that G is F -free. J

Likewise, it can be shown in general that if H ⇐ G and H is not F -free, then neither is
G. However, there is a catch: the F -minors of G and H need not coincide. This is hinted at
by the following lemma, and an explicit example is shown in Fig. 6.

I Lemma 18. If H ⇐ G for hammocks H and G, then H is F-free iff G is. More specifically:

i) F 4 H iff F 4 G for F ∈ {C,CR,Q}
ii) N 4 H only if N 4 G, whereas
iii) N 4 G only if (N 4 G or C 4 G or CR 4 G)

Still, F -freeness of a hammock is not sufficient for membership in SPL: for example, the
hammock Φ, shown in Fig. 7a, is F -free, but not included in SPL. The additional graphs
necessary for a characterization by forbidden minors are Φ, Ψ, and ΨR, shown in Fig. 7.

I Lemma 19. Every G ∈ SPL is free of bare Φ-, Ψ-, and ΨR-minors

On the other hand, each of {Φ,Ψ,ΨR} may well be a minor of certain spl-graphs.
Examples for spl-graphs with Φ and Ψ as minors are given in Fig. 8, the reader might want
to check that these can be reduced to P1. In the absence of F -minors an invariance-result
akin to Lem. 18 holds for bare subdivisions of these three graphs.

(a) Φ (b) Ψ (c) ΨR

Figure 7 Graphs that do not allow for a bare embedding in any G ∈ SPL.
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s

t

(a)

s t

(b)

Figure 8 Examples for spl-graphs with Φ and Ψ as (non-bare) minors

I Lemma 20. Let H be an F-free hammock and assume H ⇐ G, then F v H iff F v G

for F ∈ {Φ,Ψ,ΨR}.

Proof. Each of Φ, Ψ, and ΨR is free of parallel arcs, so Prop. 16 yields the claim if all pegs
occur in VG ∩ VH ; in particular, nothing needs to be done for H p⇐ G. We prove the claim
for Φ, the procedure is the same for Ψ and ΨR. In the following, let H be F -free.
Let Φ v H be realized by e. If G s⇐ H removes a peg x = e(q), q is one of the two simple
vertices of Φ; here, let q be the unique vertex with d−Φ(q) = 0 (the other case is symmetric).
Since s-reduction is applicable due to x, an arc a = yx exists in H, with y also occurring in
G. Let e′ be an embedding of Φ in G, s.t. e′(q) = y and e′ as e for the other vertices. If
e′ is bare, the claim follows for Φ and s-reduction, so assume it is not. Then G contains
a bypass of Φ wrt. e′, which is necessarily a path leaving y, otherwise H would contain a
bypass of Φ wrt. e, contradicting the assumption that e is bare. We find C 4 G, if the other
endpoint of the bypass is the peg of the vertex in Φ’s cycle that is not adjacent to q. If the
bypass is from e′(q) to the peg of the vertex with out-degree 0 in Φ, we get Q 4 G. In both
cases Lem. 18 implies that H is not F-free, contradicting our assumption. Proving that
s-reduction does not introduce new bare DΦ’s is trivial.
Again let Φ v H be realized by e with peg x ∈ VH . Considering H `⇐ G, let a = xx be the
loop that allows for reduction, and let x1x2 denote that constriction arising from it. As in
the proof of Lem. 18 our argument is based on the facts that a is irrelevant for the DΦ in H
and that d−G(x1) = d−H\a(x) and d+

G(x2) = d−H\a(x) hold. Since every of Φ has either in- or
out-degree ≤ 1, we can construct an embedding e′ of Φ in G by assigning the role of x to
either x1 or x2. J

I Definition 21. A kebab is a connected graph consisting of three arc-disjoint subgraphs: a
strong component B, called the body, and two nonempty vertex-disjoint paths S1 and S2,
called the spikes of the kebab.

We name some unique vertices in a kebab: the endpoint of a spike connecting that spike
to the body is the puncture of this spike, the other endpoint is its tip. A spike which enters
the body of a kebab is an in-spike, one that leaves the body is called an out-spike. If both
spikes of a kebab K enter (leave) the body, K is also called an in-kebab (out-kebab) if one
enters and the other leaves the body, K is called an inout-kebab. In order to prove two
lemmas concerning kebabs, some auxilliary propositions are necessary.

I Proposition 22. Let G be a reduced hammock with distinct arcs a1, a2 s.t. h(a1) = v =
t(a2). Then v is incident to a third proper arc.

I Proposition 23. Let x and y be distinct vertices of a hammock G. Then exactly one of
the following is true: 1) x dominates y, 2) y dominates x, or 3) for some z ∈ VG \ {x, y},
G contains internally disjoint zx- and zy-paths.
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I Proposition 24. Let x and y be distinct vertices of a strong graph G, then there is a cycle
C ⊆ G and distinct zx, zy ∈ VC , s.t. G contains an xzx- and a yzy-path that are disjoint.

I Lemma 25. Let (G, s, t) be an spl-reduced hammock and suppose G contains a kebab. Then
F 4 G for some F ∈ F or Φ v G.

Proof. We choose a ’biggest’ kebab K ⊆ G with the following properties

1. the body of K is arc-maximal, i.e., no kebab of G has a body with more arcs
2. the spikes of K are inclusion-maximal in G, i.e., they are not ’sub-spikes’ of a bigger

kebab with the same body as K but longer spikes than K.

We need to distinguish whether K is in an in-, an out- or an inout-kebab. Due to space
restrictions we only treat the first case, however note that the first and second case are
symmetric.

Let K ⊆ G be an in-kebab and let B denote the body of K, S1 and S2 the spikes, with
tips t1 and t2, and punctures p1 and p2, respectively (Fig. 9a). As (G, s, t) is a hammock,
according to Prop. 23 either one of t1 and t2 dominates the other, or G contains a vertex x
and internally disjoint xt1- and xt2-paths.

1. If t2 dominates t1 (the converse case is symmetric), let P be a shortest t2t1-path in
G. If P and B are disjoint, then P contains a segment P ′ from S2 to S1. Using Prop. 24
we now find C 4 G (Fig. 9b). So let P go through B, then the last segment of P is a
(B, t2)-path outside B. By the choice of K and P this segment consist of a single arc
a = bt1 for b ∈ VB (Fig. 9c). According to Prop. 22, t1 is incident to a further arc a′, as
G is reduced. Our choice of K requires that the other endpoint z of a′ lies in K, since B,
S1 and a form a strong component bigger than B. It is now easy to see (from Fig. 9c),
that z ∈ VS2 yields C 4 G (regardless of a’s orientation), and that z ∈ VB yields C 4 G

or CR 4 G (depending on a’s orientation), so let z ∈ VS1 \ {p1}. This leaves two pos-
sibilities: If a′ = zt1 we find Q 4 G, with pegs t1,p1,b and z (Fig. 9d). On the other
hand, a′ = t1z leads to a contradiction: Since G is p-reduced, there is at least one vertex
z′ between t1 and z on S1; omitting the t1z′-segment of S1 lets us identify an in-kebab
with tips z′ and t2 and a body properly containing B (Fig. 9e), contradicting maximality of B.

2. Let G contain a zt1-path P1 and a zt2-path P2 which are internally disjoint. If both
Pi are disjoint with B, we find C 4 G with help of Prop. 24 (Fig. 9f, where xi denotes the
first vertex on Pi that is also in Si). If wlog. P1 intersects B, let b denote the last vertex on
P1 that is in B and x the first vertex on P1 that is in VSi

\ {pi}. If x 6= t1, we find a kebab
in G with a body containing B, contradicting our choice of K. As the claim was already
proven for x = t1 (see Fig. 9c), the statement follows for in-kebabs.

J

I Lemma 26. Let G 6= P1 be a reduced hammock with cycles. Then F 4 G for some F ∈ F
or F ′ v G for some F ′ ∈ {Φ,Ψ,ΨR}.

We have thus found a characterization of SPL by forbidden subgraphs.

I Theorem 27. Let G be a hammock, then

G ∈ SPL iff G is F-free and no F ′ ∈ {Φ,Ψ,ΨR} is a bare minor of G.
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Figure 9 Cases occurring in the proof of Lem. 25 for K being an in-kebab. Solid arrows represent
arcs, dashed arrows represent paths.

Proof. Let G ∈ SPL, then Lem. 17 states that G is F -free, while Lem. 19 states that none of
{Φ,Ψ,ΨR} is a bare minor of G. Conversely if G /∈ SPL then Cor. 7 yields R(G) 6= P1. By
Valdes’ result and Lem. 26, we know F 4 R(G) for some F ∈ F and/or F ′ v R(G) for some
F ′ ∈ {Φ,Ψ,ΨR}. If G = R(G), i.e., G is already reduced, the claim follows immediately;
otherwise, induction on the length of the reduction using Lems. 18 and 20 provides the
statement. J

6 Conclusions

We generalized the class of arc-series-parallel graphs by augmenting the standard construction
with a rule that allows for loops. Members of the new class can be reversibly encoded by
regular expressions which represent the recursive structure of a graph; naturally, the size of
such an encoding is linear in that of the input. Moreover, any regular expression represents
an spl-graph under this encoding. Modulo isomorphism of graphs, resp. modulo associativity
and commutativity of operators in expressions, the encoding and decoding are unique; thus
they provide — up to trivialities — a bijection between spl-graphs and regular expressions.

The encoding is done by constructing a series of arc-labeled spl-graphs. As an automaton
can be interpreted as an arc-labeled graph, this can be immediately applied to the conversion
of finite automata with spl-structure to equivalent regular expressions whose size is linear
wrt. to the automaton. This generalizes a recent result for acyclic automata.

We further characterized our new class by means of 7 forbidden minors. Therefore the
exponential increase of expression size over automaton size, which cannot be avoided in
the general case, is due to graph-structural properties of automata that are not present
in spl-graphs. The forbidden minors can be considered as being the primitives of these
non-expressible properties, they should be further investigated in order to improve on current
conversions from automata to expressions.
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