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Abstract
Let G be a graph with n vertices and m edges. A sparsifier of G is a sparse graph on the same
vertex set approximating G in some natural way. It allows us to say useful things about G while
considering much fewer than m edges. The strongest commonly-used notion of sparsification
is spectral sparsification; H is a spectral sparsifier of G if the quadratic forms induced by the
Laplacians of G and H approximate one another well. This notion is strictly stronger than the
earlier concept of combinatorial sparsification.

In this paper, we consider a semi-streaming setting, where we have only Õ(n) storage space,
and we thus cannot keep all of G. In this case, maintaining a sparsifier instead gives us a useful
approximation to G, allowing us to answer certain questions about the original graph without
storing all of it. In this paper, we introduce an algorithm for constructing a spectral sparsifier of
G with O(n logn/ε2) edges (where ε is a parameter measuring the quality of the sparsifier), taking
Õ(m) time and requiring only one pass over G. In addition, our algorithm has the property that
it maintains at all times a valid sparsifier for the subgraph of G that we have received.

Our algorithm is natural and conceptually simple. As we read edges of G, we add them
to the sparsifier H. Whenever H gets too big, we resparsify it in Õ(n) time. Adding edges
to a graph changes the structure of its sparsifier’s restriction to the already existing edges. It
would thus seem that the above procedure would cause errors to compound each time that we
resparsify, and that we should need to either retain significantly more information or reexamine
previously discarded edges in order to construct the new sparsifier. However, we show how to
use the information contained in H to perform this resparsification using only the edges retained
by earlier steps in nearly linear time.
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1 Introduction

Graph sparsification is the task of finding a sparse approximation to a given (possibly
weighted) graph G. Specifically, we seek a weighted graph H on the same vertex set as G
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but with fewer edges, which approximates G in some respect. This enables one to approxi-
mately solve problems on G while performing calculations on a much simpler graph, which
often gives substantially faster running times. This problem has been extensively studied
by many researchers, and it has recently become a very active area of investigation as a
result of its connections with numerous topics, including the construction of fast solvers for
symmetric diagonally dominant linear systems (see, e.g., [11, 5]).

Benczúr and Karger [3] introduced the notion of combinatorial sparsification and proved
that any graph G on n vertices has a combinatorial sparsifier H with O(n logn/ε2) edges.
This H preserves the total weight of the edges crossing any cut of G up to a multiplicative
1±ε factor. (Note that this condition will require H to be weighted even if G is unweighted.)
Moreover, the authors provided an efficient algorithm for computingH by sampling the edges
of G according to certain very carefully chosen probabilities.

Recently, Spielman and Teng [10] defined the notion of spectral sparsification. A graph
H is a 1± ε spectral sparsifier of G if it preserves the quadratic form induced by the graph
Laplacian to within a multiplicative 1 ± ε factor. This definition is strictly stronger than
combinatorial sparsification. In a remarkable paper, Spielman and Srivastava [9] showed
that by sampling each edge with probability proportional to its effective resistance, adding
it in with a certain weight, and taking O(n logn/ε2) independent samples in this manner,
one obtains a 1 ± ε spectral sparsifier of G with high probability.1 Furthermore, Spielman
and Srivastava showed how to approximate all of the effective resistances to within a 1± η
factor in time Õ(m/η2), where m is the number of edges of G; using these approximate
values allows one to construct a sparsifier with only a constant blowup in the number of
edges. This leads to a nearly linear (specifically Õ(m/ε2)) time algorithm for computing
spectral sparsifiers.

Having a sparsifier allows us to approximately answer numerous algorithmic questions
about a dense graph without doing as laborious a calculation. For example, we can ap-
proximate the values of cuts, the effective resistances between pairs of vertices, and many
properties of the behavior of random walks on the graph. As such, sparsifiers can be used
to give faster approximate algorithms to numerous problems; Benczúr and Karger did this
in their paper. Additionally, in a setting where we do not have room to store a given dense
graph in its entirety, or perhaps can only access it through slow memory, a sparsifier, which
might be small enough to store in fast memory, can be a useful proxy.

This, along with the growing need to process extremely large graphs, leads us to ask if
we can also construct the sparsifier for a graph G even if we have much less work space than
it would take to represent G. In particular, we consider the semi-streaming model, where
we have Õ(n) memory available. The algorithm of [9] requires access to the entire graph G,
and thus, does not conform to the model. In this paper, we show how to build a sparsifier
almost as quickly as with the original Spielman-Srivastava algorithm, while using at most
Õ(n) space and taking only one pass over G.

In our analysis, we will consider a more general dynamic setting, where we start with a
graph G and its sparsifier H, and, as G is constantly updated, we want to maintain a 1± ε
approximation to the current graph. Specifically, we consider the case of adding edges to G.
(Setting the initial graphs G and H to be empty graphs on the vertex set V, we obtain the
semi-streaming case discussed above; for details, see Section 3.7.) It is not hard to see that as

1 Spielman and Srivastava actually showed that this holds with probability at least 1/2 using Rudelson’s
sampling theorem [7], but a straightforward application of a stronger concentration of measure result
[12, Corollary 4] yields the high probability claim.
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we add edges to G, by adding in those same edges to H, we get the desired approximation
of G. Unfortunately, as we keep doing this, our sparsifier will contain increasingly many
edges and may eventually become too large for our needs. Thus we will need to resample,
to produce a sparsifier of smaller size. We show how to periodically do this resampling very
fast, leading to amortized nearly constant update time per edge added to G. The resampling
algorithm relies on two main insights:
1. As we add new edges to G to produce a graph G′, the effective resistances of the edges

of G do not increase, and thus, neither does their probability of being selected for a
sparsifier. Thus, if we can compute their new probabilities, we can rejection sample the
edges in H and also appropriately sample the new edges to produce edges selected with
the probability distributions from G′, and hence a sparsifier of G′. Thus, we need not
consider all the probabilities in G′, but only those of edges in H and the added edges.

2. Since H with the new edges well-approximates G′, we can use it to quickly estimate the
effective resistances for the edges we need; this estimate turns out to be good enough.

On a high level, the key idea of our construction is that the original sparsifier already contains
a great deal of information, which we can reuse to save time instead of building a sparsifier
from scratch.

In addition to being a generalization of the semi-streaming problem, the dynamic setting
has numerous applications. As [2] points out, by maintaining a sparsifier of a changing
graph at all times, we will be able to perform certain calculations quickly whenever we
need to know something about the current graph. Furthermore, in some cases, it might be
that we have a family of graphs we can choose from, and all of them are variants on some
base graph G (e.g., G with extra edges). In that instance, by sparsifying G, and using our
procedure, one can produce sparsifiers of the other graphs relatively quickly.

Related work
The problem of graph sparsification in the semi-streaming setting was introduced by Ahn
and Guha [2], and it was then further studied by Goel, Kapralov, and Khanna [4] (the latter
of which is concurrent to and independent of the present paper). Ahn and Guha constructed
combinatorial sparsifiers in the semi-streaming model. However, while the space complexity
of their algorithm was Õ(n), the running time was Õ(mn), which is often too slow when the
graphs are large. This is remedied by the present work, as well as by Goel, Kapralov, and
Khanna, who obtain results that are similar to ours when one aims to construct combinatorial
sparsifiers.

However, the graphs that we produce obey the strictly stronger constraints imposed by
spectral sparsification. To our knowledge, ours is the first work to do this in the semi-
streaming setting.

Furthermore, we believe that our algorithm is conceptually cleaner and simpler than that
of [4], and our techniques are quite different from theirs. The algorithm set forth by Goel et
al. inherently requires a logarithmic number of passes through the data, and they maintain
a multi-level collection of graphs and partitions of graphs. They then, using an ingenious
construction and careful analysis, find a way to implement this in a single pass. This results
in a graph that has logarithmically more edges than necessary, which they then clean up at
the end.

Our algorithm, on the other hand, operates inherently in a single pass. We simply add
edges to our graph until it becomes large. When this occurs, we replace our graph with a
sparser version still preserving the approximation guarantee and continue. By taking advan-
tage of the stronger notion of sparsification that we are employing, and properly sparsifying
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and analyzing the probabilities, we are able to show that this simple algorithm produces the
desired sparsifiers while requiring a nearly constant amount of amortized work per edge and
maintaining at all times a graph with Õ(n/ε2) edges.

Acknowledgments This work was partially supported by NSF grant CCF-0843915. The
second author is supported by a National Science Foundation graduate fellowship.

2 Background

Throughout, let G = (V,E) be a graph on n vertices V = {1, . . . , n} and m edges. The
Laplacian of G is given by LG := AG − DG, where AG is the adjacency matrix of G and
DG is the diagonal matrix whose ith diagonal entry is the degree of vertex i. Let L+

G be the
(Moore-Penrose) pseudoinverse of LG.

For i ∈ V, we denote by χi the n × 1 characteristic vector of i (having a 1 at the ith
position and 0’s everywhere else). For an edge e of G with endpoints i, j ∈ V , we let be be the
n×1 vector χi−χj (where the choice of i or j to have the positive sign is made arbitrarily).
Further, denote by B the m × n edge-vertex incidence matrix, with rows indexed by the
edges and columns indexed by the vertices, and whose eth row is be. It is a standard fact that
the Laplacian can be decomposed as LG =

∑
e∈G beb

T
e , or, equivalently, that LG = BTB.

Finally, we discuss some notions from electrical network theory that will be relevant.
Consider the graph as an electric network of nodes (vertices) and wires (edges), where each
edge has resistance of 1. The effective resistance between vertices i and j is the voltage
difference that would be induced between i and j if one unit of current were put in i and
taken out from j. It can be shown that this is precisely equal to (χi−χj)TL+

G(χi−χj). For
an edge e of G, the effective resistance of e, denoted by Re, is defined to be the effective
resistance between the endpoints of e. Namely, we have Re = bT

e L
+
Gbe. It is a standard fact

that if G is connected, we have
∑

e∈G Re = n− 1. The sum is n− c− 1 if G has c connected
components.

2.1 Spectral sparsifiers
Fix notation as above. In what follows, we will write A � B for matrices A and B when
B −A is positive semidefinite.

I Definition 1. A 1 ± ε spectral sparsifier of G is a possibly weighted graph H such that
the edge set of H is contained in that of G and

(1− ε)LG � LH � (1 + ε)LG. (1)

In other words, for all x ∈ Rn, we have

(1− ε)xTLGx ≤ xTLHx ≤ (1 + ε)xTLGx.

Note that we have approximations for pseudoinverses as well. If H is a 1 ± ε sparsifier
of G, it is the case that

1
1 + ε

L+
G � L

+
H �

1
1− εL

+
G. (2)

In particular, because the effective resistance between i and j is given by evaluating the
quadratic form defined by the Laplacian pseudoinverse at χi − χj , we see that the effective
resistances between any two nodes in G and H are the same up to a 1/(1± ε) factor.

STACS’11
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Algorithm 1 Sparsify
Input: G = (V,E)
Set H to be the empty graph on V.
for i = 1 to N = O(n logn/ε2) do

Sample edge e ∈ G with probability pe proportional to Re, and add it in with
weight 1/(Npe) to H

end for

In [9], Spielman and Srivastava considered Algorithm 1 for generating a sparsifier of G.
They proved:

I Theorem 2. Fix ε ≥ 1/
√
n. Then, Algorithm 1 produces a 1± ε sparsifier of G with high

probability.

Additionally, the authors were able to show how to approximate all the effective resis-
tances in time Õ(m/ε2). Up to log factors, this is optimal, since it takes Ω(m) time to even
write down all of the effective resistances. This fast way of estimating resistances gives a
nearly-linear time (in m) algorithm for sparsifying G.2

Notation

Before proceeding, we make a few remarks about notation. Let G be a graph with n vertices.
Let Γ be another graph on the same vertex set as G. Then, G + Γ is the graph given by
adding the weights of the edges of Γ to the corresponding edges of G. In this paper, for the
most part G and Γ will be unweighted graphs, and Γ will be edge-disjoint from G. In this
case, G + Γ represents the graph we get when we add the edges of Γ to G. The definition
agrees with the previous one if we regard missing edges as having a weight of 0, and those
that are in the graph as having a weight of 1.

For an edge e not in G, we denote G+ e the graph obtained by adding e to G.
For convenience, we define q = q(n, ε) = O(logn/ε2) to be the quantity such that taking

nq samples in the above algorithm (using exactly correct probabilities) gives us a 1 ± ε

sparsifier H of G with probability at least 1− n−d (for some desired constant d determined
at the outset).

Finally, we note that as prescribed by [9], when we add an edge to H multiple times,
we just sum up the weights. In our presentation, it will be convenient to think instead of
keeping parallel edges, so that our sparsifiers will have have exactly nq edges.

3 The dynamic update algorithm

Throughout, for notational convenience, we will consider the setting of adding new edges
to an unweighted graph G without adding new vertices. It is straightforward to generalize
to the case where we add vertices, or where the graph is weighted and we may increase the
weights of existing edges as well as add new ones, provided that the weights are polynomially
bounded.

2 Throughout, we will use the terms “nearly constant” or “nearly linear” to mean constant or linear, up
to poly-logarithmic factors. This terminology is fairly standard.
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3.1 Setup
Initially, we assume that we are given access to the exact effective resistances when we need
them to sample. We will later relax this requirement.

Suppose that G is a graph on n vertices and H is a 1± ε sparsifier of G with nq edges.
(If G is the initial graph, we assume that H was produced using the sampling procedure in
[9], given the correct effective resistances.) Let e be an edge not in G; then it is clear that
H + e is a 1± ε sparsifier of G+ e. Indeed, we have

LG+e = LG + beb
T
e , LH+e = LH + beb

T
e ,

whence the desired statement follows.
As we add edges to G, we can add those same edges to H, until the sparsifier gets too

large, forcing us to resample. In this work, we say that this happens when it is of size Cnq
for some constant C > 1 that we can choose at will.

We will formalize this situation as follows. Let G = (V,E) be a graph, and let H be its
1± ε sparsifier with nq edges. Let Γ represent the added edges (i.e., it is a graph on V with
edges exactly those that are added to G) such that H+ := H+ Γ has Cnq edges. (Note that
H+ is a 1± ε sparsifier of G′ := G+ Γ.)

Because H+ is large, we want to construct a sparsifier H ′ of G′ of nq edges. We call
this procedure resparsification. We would like this resparsification to take much less time
than it would take to sample from scratch, namely Õ(m/ε2). Sparsifying G′ from scratch
gives us an average update time of Õ(m/n) per operation, which is Õ(n) when G′ is dense.
We want a Õ(1) amortized time instead. The key insight is to use the information already
contained in H, which will allow us to sample edges from the correct distribution in time
Õ(n/ε2), leading to the desired bound.

The main observation is that when we add a new edge to G, the effective resistances of
the other edges cannot increase. This is more or less clear from the physical model, and it
can be proven rigorously as in [6, Lecture 9]. Further, the sum of the effective resistances
of all of the edges cannot decrease. (If adding the edge reduces the number of connected
components, this quantity increases, otherwise it stays the same.) Thus, the probabilities
of choosing the edges in the sparsification procedure of [9] cannot increase.

In what follows, we let Re (resp. R′e) be the effective resistances across edge e in G (resp.
G′), and pe (resp. p′e) be the probability of selecting those edges (i.e. pe = Re/

∑
f∈G Rf ,

and similarly for p′e).
Consider Algorithm 2, which details the resparsification step in our simplified context.

Algorithm 2 Resparsification (knowing the correct probabilities)
Input: H,Γ %G, the original graph, is not given
Output: H ′, a 1± ε sparsifier of G′ with nq edges
1: Compute the effective resistances in G of all the edges of H, and from there the proba-

bilities of selecting them. %We will show how to do this later
2: Compute the effective resistances in G′ of all the edges of H+ (i.e. all the edges of H

and Γ) and the probabilities of selecting them.
3: for all edges e of H do
4: With probability p′e/pe, add e to H ′ with weight 1/(nqp′e)
5: Otherwise, pick an edge f of Γ with probability p′f/

(∑
g∈Γ p

′
g

)
and add it to H ′

with weight 1/(nqp′f )
6: end for

STACS’11
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Note that the sampling procedure is well-defined, since p′e ≤ pe. Further, we claim that
all the edges are selected with exactly the correct probabilities, giving us a proper sample,
so that H ′ is a 1 ± ε sparsifier of G′ with high probability. Indeed, imagine selecting one
edge for H ′ using a three-step process:
1. Select an edge from G with probability pe.
2. Keep it with probability p′e/pe.
3. If you reject in Step 2, pick an edge f of Γ with probability p′f/

(∑
g∈Γ p

′
g

)
.

Note that you select edge e ∈ G with probability p′e, and the overall probability of rejecting
in the second step is 1−

∑
e∈G p

′
e =

∑
g∈Γ p

′
g, hence you select f with probability p′f , as it

should be. By going through edges in H as in the algorithm and accepting them with the
desired probability, we are effectively reusing the randomness we used to construct H. This,
in turn, allows us to save time by only considering the probabilities for the Cnq edges of
H+, rather than for all the edges of G′.

The heart of algorithm then becomes correctly estimating the Re and R′e and from them,
the pe and p′e.

3.2 Estimating effective resistances
Unfortunately, we are not able to exactly compute the effective resistances (and hence se-
lection probabilities) quickly enough, so we will have to estimate them. We know that if our
estimate of each probability is guaranteed to be at least 1/α of the correct value (for some
fixed α > 1), then αnq samples are enough to get a 1 ± ε sparsifier with high probability
(see [8, Corollary 6], where this fact is proven implicitly). We will be able to provide this
guarantee for α � 2, so if we let H have 2nq edges (and take 2nq samples for computing
H ′), the same claims about the sparsification quality of H and H ′ will hold.

With that in mind, we note that our method is closely related to the one in [9] for
calculating the effective resistances quickly. We first recapitulate the ideas in that paper,
and then we describe our modifications.

Recall that

Re = bT
e L

+
Gbe = bT

e L
+
GLGL

+
Gbe = bT

e L
+
GB

TBL+
Gbe =

∥∥BL+
Gbe

∥∥2
.

Thus, if e = (i, j), then Re is the squared distance between the ith and jth columns of the
m× n matrix BL+

G. To compute this would be too slow, so Spielman and Srivastava make
the following approximations:
1. Since the effective resistances are given by distances between n × 1 vectors, we can ap-

ply the Johnson-Lindenstrauss Theorem to randomly project the vectors onto a smaller
dimensional subspace such that all the distances stay roughly the same with high prob-
ability [1].
Specifically, for k = O(logn/ε2), if we choose a k ×m matrix Q each of whose entries is
±1/
√
k uniformly at random, then, with high probability over the choice of Q, we know

that for every edge e = (i, j) of G, the squared distance between the ith and jth column
of the k × n matrix Z = QBL+

G approximates Re to within a 1± ε factor. Furthermore,
computing QB takes O(km) = Õ(m/ε2) time, since B has only 2m entries. (We remark
that the ε in the above can be the same as the parameter measuring the quality of the
sparsifier.)

2. Computing L+
G is costly, so instead, we will approximate it by approximately solving

linear systems in LG. Each solution gives us an approximation of a row of Z, and takes
O(m log(1/δ)) time (since LG has O(m) entries), using the Spielman-Teng linear system
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solver for symmetric diagonally dominant systems [11]. Here, δ is a parameter for the
quality of approximation, which can be appropriately set. Since there are k rows, we
need to solve k � n linear systems. Let Z̃ be the matrix we obtain in this fashion.

Spielman and Srivastava show that if Z encodes all the effective resistances to within a
1 ± ε factor (which happens with high probability over the choice of projection matrix Q),
then for

δ ≤ ε

3

√
2(1− ε)
(1 + ε)n3 (3)

we have that Z̃ encodes the effective resistances to within a (1 ± ε)2 factor [8, Lemma 9].
The running time of one instance of the linear system solver is thus Õ(m log(1/ε)), and since
there are at most k of them, the total time for computing Z̃ is Õ(m/ε2).

For our purposes, we need to compute a matrix encoding approximations to effective
resistances in faster time, namely Õ(n/ε2). Now, because we already have sparsifiers (H and
H+) for G and G′ of size 2nq and 2Cnq respectively, we can use their Laplacians in the place
of LG for estimating the Re and R′e respectively. With high probability, QHW

1/2
H BHL

+
H

(resp. QH+W
1/2
H+

BH+L
+
H+

) encodes the effective resistances of edges in H (resp. H+) to
within 1± ε. Here, BH is the edge-vertex incidence matrix of H, such that LH = BT

HWHBH

for WH the matrix whose diagonal entries are the weighted degrees of H; QH is a k × 2nq
matrix with entries uniform from ±1/

√
k. The definitions of BH+ , WH+ , and QH+ are

similar.
We can compute the QHW

1/2
H BH in O(kqn) = Õ(n/ε2) time, and similarly for the matrix

QH+W
1/2
H+

BH+ , up to a factor of C.
Thus, by running the linear system solver, we obtain matrices, call them Z̃H and Z̃H+ ,

encoding the approximations to effective resistances in H and H+.

Because the effective resistances in H and H+ are within a 1/(1± ε) factor of those of G,
in this manner, we approximate the effective resistances in G to within a factor of (1± 2ε)3.

Furthermore, solving the linear systems now takes Õ(n/ε2) time, since the Laplacians have
Õ(n/ε2) entries (we are absorbing the constant C into the big-Õ notation).

3.3 An alternate sparsification algorithm
We would now like to use the approximate effective resistances to run a variant of Algo-
rithm 2, which simulates the random process in Algorithm 1. For technical reasons, in this
setting, it is useful to consider the following variant of Algorithm 1, and simulate it instead:

Algorithm 3 Alternative sparsify
Input: G
Output: H, a 1± ε sparsifier of G (with high probability)

for all edges e of G do
for i from 1 to N := O(n log2 n/ε2) do %Run this loop implicitly

With probability pe = Re/(n−1) add e to H with weight 1/(Npe) %Re

is the effective resistance of e in G.
end for

end for
return H

STACS’11
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This algorithm produces a 1± ε sparsifier H of G with high probability. Moreover, the
number of edges in H is tightly concentrated around O(N). If we underestimate each pe by
at most an α factor, and use these estimates to run the algorithm, we will have to increase
N by the same α factor to get the high probability claim.

The inner loop is run implicitly; for each edge, given pe, it is easy to determine how many
samples of the edge will be taken, as this follows a binomial distribution. In particular, once
we know the probability, the total running time of the algorithm is proportional to the total
number of edges we select, which is O(N) with high probability.

Note that the sparsifiers we get as a result have O(logn) more edges than the sparsifiers
produced by Algorithm 1. We need the extra factor for a technical reason, and from now
on, will assume that all the sparsifiers we deal with are of size O(n log2 n/ε2).

As before, if we add multiple copies of an edge to H, we treat them as parallel edges in
what follows.

3.4 Putting it all together
Now we are ready to show the final algorithm. So, let G be a graph and H its 1±ε sparsifier
generated according to Algorithm 3, with 2N rather than N steps in the inner loop, where,
from now on, N := O(n log2 n/ε2). The sparsifier H has O(N) edges with high probability.
Let the p̃e be the estimates of the probabilities of edges in G, which were used to generate
H. As before, Γ will represent the new edges (of which there will now be O(n log2 n/ε2)),
G′ := G + Γ, and H+ := H + Γ. Denote by p̃′e the probabilities of edges in G′, computed
using H+, as described previously.

Consider Algorithm 4.

Algorithm 4 Resparsification
Input: H,Γ, as well as the p̃e for every edge e ∈ H.
Output: H ′, a 1± ε sparsifier of G′ with O(n log2 n/ε2) edges with high probability, as well

as p̃′e for every edge e ∈ H ′.
1: Estimate the effective resistances in G′ of all the edges of H+.

2: For e ∈ H+, let p̃′e = R̃′e/(n− 1) %Good approximation to true pe

3: for each edge e of H do
4: p̃′e ← min(p̃e, p̃

′
e)

5: end for
6: for all edges e of H do
7: Keep e with probability p̃′e/p̃e and add it to H ′ with weight 1/(2p̃′eN).
8: end for
9: for all edges e of Γ do
10: for i from 1 to 2N do %Do this loop implicitly
11: With probability p̃′e put e into H ′ with weight 1/(2p̃′eN)
12: end for
13: end for
14: return H ′ and the p̃′e for e ∈ H ′.

It is not hard to see that this algorithm simulates the random process for sparsifying G′
using Algorithm 3. (Again, we reuse the randomness used to generate H.) We can see that
if we keep adding edges and resparsifying, we will put edges into the resulting sparsifier with
exactly the desired probability, up to the modification in Step 4. The probability is over the
randomness of the entire algorithm up to the current step.
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We remark that we need Step 4 since approximation errors might cause the estimate of
the probability of an edge to go up after we have added Γ, even though the true probabilities
should go down. For rejection sampling to simulate the proper probability distributions, the
probabilities have to be non-increasing. We show that the change does not in fact hurt our
construction.

Indeed, suppose pe and p′e are the true probabilities of e in G and G′ respectively, and
assume that p̃e ≥ pe/α and p̃′e ≥ p′e/α for some α (which is much smaller than 2). We must
have pe ≥ p′e, hence p̃e ≥ pe/α ≥ p′e/α, and hence min(p̃e, p̃

′
e) is at least as big as p′e/α.

Therefore, the samples we take suffice to guarantee that H ′ will be a 1 ± ε sparsifier with
high probability.

Computing the matrices encoding the effective resistances takes Õ(n/ε2) times. We only
need to compute Õ(n/ε2) effective resistances (since we do this only for edges in H and
those in H+). Sampling also takes Õ(n/ε2) time. Since we resparsify every Õ(n/ε2) steps,
we conclude that the update procedure takes Õ(1) steps per added edge.

This procedure works to give resparsified graphs with the correct approximation guar-
antee with high probability as long as the previous resparsified graph was a 1± ε sparsifier.
(Note that by construction, the previous graph will always have edges drawn from a proba-
bility distribution that is close to correct; we need it to be a good sparsifier so that we can
use it to quickly obtain good approximations to effective resistances.) We can union bound
the probability of failure of any one of the resparsification steps (where we can include the
event that the sparsifier ends up too big as a failure). The other potential place for error is
when we apply the Johnson-Lindenstrauss theorem, but again, we have a high probability
guarantee there, and are free to increase the number of rows k in the projection matrices QH

and QH+ by a constant factor. Thus, by picking N and k to have a large enough constants
at the outset, we can perform this procedure any desired polynomial number of times and
be guaranteed that we always maintain a sparsifier with high probability.

By keeping careful track of the running times of the construction, we can prove:

I Theorem 3. Our dynamic update algorithm takes O(log4 n(log logn)3 log(1/ε)/ε2) opera-
tions per added edge.

Proof. The bottleneck in the algorithm is solving the linear systems in the resparsification
step. Using the recent results of Koutis, Miller, and Peng [5], which give the best asymp-
totics known to date, the solution to each linear system for the Laplacian of a graph with
O(n log2 n/ε2) edges can be approximated in time O(n log4 n(log logn)3 log(1/δ)). Solving
O(logn/ε2) linear systems with δ as in (3), requires time O(n log6 n(log logn)3 log(1/ε)/ε4).
Since we resparsify after adding O(n log2 n/ε2) edges, the amortized cost is

O(log4 n(log logn)3 log(1/ε)/ε2)

per added edge, as claimed. J

3.5 Error-forgetfulness of the construction
Before concluding this section, we note one interesting property of our construction in Al-
gorithm 4. Using H and H+, which are approximations to G and G′ respectively, we obtain
estimates on effective resistances, which are slightly worse than those we would get had we
used the full graphs G and G′ (but allow us to do the computation much faster). Despite the
approximations that we make, by taking twice as many samples as we would have needed
had we known the true probabilities, we once again obtain a high-quality sparsifier (with
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high probability), allowing us to make the approximation all over. In other words, because
we take enough samples, and do so intelligently, the errors we make in approximating the
effective resistances do not propagate; the procedure has no memory for the approximations
we made in the past.

Compare this to a more naïve approach to the problem of resparsifying. If we have G,
G′, H and H+, defined as before, it is tempting to use Algorithm 1 to sparsify H+ directly
to a graph of size nq. Unfortunately, the resulting graph H̄ is a 1± ε approximation of H+,

which is a 1 ± ε approximation of G′, so H̄ is only guaranteed to be a (1 ± ε)2 ≈ 1 ± 2ε
sparsifier of G′. In other words, the error propagates.

3.6 Straightforward generalizations
It is easy to generalize the above construction to the following cases. First, the construction
goes through almost directly for the case of weighted graphs, where we are allowed to add
weighted edges. For example, the probability of selecting an edge becomes the weight of that
edge times its effective resistance. The weights with which we add sampled edges depend on
their weights in G, so in order to do this properly, we should store the weights of the edges
in the current sparsifier.

We can also consider operations where we increase the weight of an edge e of G by some
amount w. In this case, we imagine adding an edge parallel to e and with weight w to G,
and proceed as before (we add e′ with weight w to H, and resparsify after some number of
steps). The reason for considering parallel edges here is that while increasing the weight of
an edge decreases the probabilities of other edges, it may increase the probability of that
edge, which can stymie our construction. If we instead add an independent copy of the edge,
all the arguments go through.

The only thing we have to be careful about is that in the weighted case, the value of δ
in (3) depends on the ratio of the maximum weight to the minimum weight in the graph. If
this is always bounded by some polynomial in n, then we need to add at most a factor of
logn to the running time of the linear system solver, and hence of the overall algorithm.

Secondly, we can envision adding vertices as well as edges to G. Adding a vertex and
connecting it by an edge to some existing vertex does not affect the effective resistances of
the other edges, and it does not increase the number of connected components in the graph.
Hence, once again, the probability of existing edges can only decrease, and we can use the
same arguments. Here, by adding vertices, we increase the number of times we need to
sample in the inner loop of Algorithm 3 in order to get a 1± ε approximation guarantee. If
we have an upper bound on the number of vertices we will end up with, we can ensure that
we take enough samples from the outset.

3.7 The semi-streaming setting
The dynamic algorithm described above goes through almost unchanged in the semi-streaming
case (where we start with the empty graph). After adding the first 2CN edges (where
N = O(n log2 n/ε2)), we use Algorithm 4 (with H set to the empty graph and Γ set to
the current graph, and 2N iterations in the inner loop), giving us a 1± ε approximation to
the current graph, containing of 2N edges in expectation. The number of edges is in fact
tightly concentrated around this expectation. Then we continue as before, adding edges and
resparsifying every 2CN steps.

For our algorithm to be valid in the semi-streaming model, we only need to prove that
it requires Õ(n/ε2) work space. But this is immediate, since, with high probability, we will
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only deal with graphs of Õ(n/ε2) edges throughout the run.
If we would like to end up with a sparsifier containing O(n logn/ε2) edges, we can run

Algorithm 1 on the output, which will change the final error guarantee from 1±ε to (1±ε)2.

4 Conclusions and future work

We have presented an algorithm for maintaining a sparsifier of a growing graph, such that the
average time is Õ(1) for each added edge. The main idea is a resampling procedure that uses
information in the existing sparsifier to construct a new one very quickly. Our construction
is robust and holds relatively unchanged for several natural variants. An interesting question
left open by our work is whether similar results could be obtained in a dynamic model that
permits the removal of edges as well. While this is somewhat unnatural in the semi-streaming
setting, it is a very reasonable goal in the dynamic setting where one aims to maintain a
sparsifier for a graph that is changing over time.
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