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Abstract
We investigate the complexity of the model checking problem for propositional intuitionistic logic.
We show that the model checking problem for intuitionistic logic with one variable is complete
for logspace-uniform AC1, and for intuitionistic logic with two variables it is P-complete. For
superintuitionistic logics with one variable, we obtain NC1-completeness for the model checking
problem and for the tautology problem.
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1 Introduction

Intuitionistic logic (see e.g. [8, 20]) is a part of classical logic that can be proven using
constructive proofs–e.g. by proofs that do not use reductio ad absurdum. For example, the
law of the excluded middle a ∨ ¬a and the weak law of the excluded middle ¬a ∨ ¬¬a do
not have a constructive proof and are not valid in intuitionistic logic. Not surprisingly,
constructivism has its costs. Whereas the tautology problem is coNP-complete for classical
propositional logic [5], for intuitionistic propositional logic IPC it is PSPACE-complete [17, 18].
The computational hardness of intuitionistic logic is already reached with the fragment IPC2
of formulas having only two variables: the tautology problem is PSPACE-complete already
for IPC2 [16]. Recall that every fragment of classical propositional logic with a fixed number
of variables has an NC1-complete tautology problem (follows from [2]).

In this paper, we consider the complexity of intuitionistic propositional logic with one
or two variables. The model checking problem—i.e. the problem to determine whether a
given formula is satisfied by a given Kripke model—was recently shown to be P-complete [12]
for IPC. We show, that it remains P-complete for the fragment with two variables IPC2.
More surprisingly, for the fragment with one variable IPC1 we show the model checking
problem to be AC1-complete. A basic ingredient for this result lies in normal forms for
models and formulas as found by Nishimura [14], that we reinvestigate under an algorithmic
and complexity theoretical point of view. To our knowledge, this is the first “natural”
AC1-complete problem, whereas formerly known AC1-complete problems (see e.g. [1]) have
some explicit logarithmic bound in the problem definition. In contrast, the formula value
problem for classical propositional logic is NC1-complete [2], even with one variable (follows
from [2]).
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Classical propositional logic is the extension of IPC with the axiom a∨¬a. Those proper
extensions of intuitionistic logic are called superintuitionistic logics. The superintuitionistic
logic KC (see [7]) results from adding ¬a ∨ ¬¬a to IPC. We show that the model checking
problem for every superintuitionistic logic with one variable is NC1-complete (and easier than
that for IPC1), whereas for the superintuitionistic logic KC with two variables it is already
P-complete (and as hard as for IPC2).

We also consider the tautology problem that is known to be PSPACE-complete for
IPC2 [16]. Svejdar [19] recently showed the upper bound SPACE(logn · log logn) for IPC1.
We show the tautology problem to be in NC1 for any superintuitionistic logic with one
variable. For superintuitionistic logics with more than one variable such a general result for
the tautology problem remains open.

This paper is organized as follows. In Section 2 we introduce the notations we use for
intuitionistic logic and model checking. Section 3 is devoted to introduce the old results by
Nishimura [14] and to upgrade them with a complexity analysis. The following Section 4
presents our lower and upper bound for model checking for IPC1. Section 5 deals with the
complexity of the model checking problem and the tautology problem for superintuitionistic
logics with one variable, and Section 6 considers the case with two variables. The implied
completeness for the model checking for intuitionistic logic and conclusions are drawn in
Section 7. Proofs and technical details can be found in [13].

2 Preliminaries

Complexity (see e. g. [21]). The notion of reducibility we use is the logspace many-one
reducibility ≤log

m , except for NC1 hardness, where we use first-order reducibility. NC1 and AC1

are the classes of sets that are decided by families of logspace-uniform circuits of polynomial
size and logarithmic depth. The circuits consist of and-, or-, and negation-gates. The
negation-gates have fan-in 1. For NC1, the and- and or-gates have fan-in 2 (bounded fan-in),
whereas for AC1 there is no bound on the fan-in of the gates (unbounded fan-in). ALOGTIME
denotes the class of sets decided by alternating Turing machines in logarithmic time, and we
will use that NC1 = ALOGTIME (see [15]). L denotes the class of sets decidable in logarithmic
space. We use ALOGSPACE[f(n)] to denote the class of sets decided by an alternating
log-space Turing machine that makes O(f(n)) alternations, where n is the length of the input.
We will use that AC1 = ALOGSPACE[logn] (see [6]). LOGDCFL is the class of sets that are
≤log

m -reducible to deterministic context-free languages. It is also characterized as the class of
sets decidable by deterministic Turing machines in polynomial-time and logarithmic space
with additional use of a stack. The inclusion structure of the classes we use is as follows.

NC1 ⊆ L ⊆ LOGDCFL ⊆ AC1 ⊆ P ⊆ PSPACE

Intuitionistic Propositional Logic (see e.g.[20]). Let VAR denote a countable set
of variables. The language IPC of intuitionistic propositional logic is the same as that of
propositional logic PC, i.e. it is the set of all formulas of the form

ϕ ::= p | ⊥ | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | (ϕ→ ϕ) ,

where p ∈ VAR. The languages IPCi are the subsets/fragments of IPC for which VAR
consists of i variables. We will consider IPC0 (i.e. formulas without variables), IPC1 and
IPC2 (i.e. formulas with one resp. two variables).

As usual, we use the abbreviations ¬ϕ := ϕ→ ⊥ and > := ¬⊥. Because of the semantics
of intuitionistic logic, one cannot express ∧ or ∨ using → and ⊥.
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370 The complexity of model checking for intuitionistic logics

A Kripke model for intuitionistic logic is a tripleM = (U,R, ξ), where U is a nonempty
and finite set of states, R is a preorder on U (i.e. a reflexive and transitive binary relation),
and ξ : VAR → P(U) is a function—the valuation function. Informally speaking, for any
variable it assigns the set of states in which this variable is satisfied. The valuation function
ξ is monotone in the sense that for every p ∈ VAR, a, b ∈ U : if a ∈ ξ(p) and aRb, then
b ∈ ξ(p). (U,R) can also be seen as a directed graph. We will call such models intuitionistic.

Given an intuitionistic modelM = (U,6, ξ) and a state s ∈ U , the satisfaction relation
for intuitionistic logics |= is defined as follows.

M, s 6|= ⊥
M, s |= p iff s ∈ ξ(p), p ∈ VAR,
M, s |= ϕ ∧ ψ iff M, s |= ϕ andM, s |= ψ,

M, s |= ϕ ∨ ψ iff M, s |= ϕ orM, s |= ψ,

M, s |= ϕ→ ψ iff ∀n > s : ifM, n |= ϕ thenM, n |= ψ

A formula ϕ is satisfied by an intuitionistic modelM in state s iffM, s |= ϕ. A tautology
resp. a valid formula is a formula that is satisfied by every model.

The Model Checking Problem. This paper examines the complexity of model
checking problems for intuitionistic logics.

Problem: model checking problem for IPCi

Input: 〈ϕ,M, s〉, where ϕ is an IPCi formula,M is an intuitionistic Kripke
model, and s is a state ofM

Question: M, s |= ϕ ?

We assume that formulas and Kripke models are encoded in a straightforward way. This
means, a formula is given as a text, and the graph (U,R) of a Kripke model is given by
its adjacency matrix that takes |U |2 bits. Therefore, only finite Kripke models can be
considered.

3 Properties of IPC1 and its complexity

The set IPC1 of formulas with one variable is partitioned into infinitely many equivalence
classes [14]. This was shown using the formulas that are inductively defined as follows (see
e.g.[8]). We use a for the only variable.

ϕ1 = ¬a, ψ1 = a, ϕn+1 = ϕn → ψn, ψn+1 = ϕn ∨ψn

The formulas ⊥,>,ϕ1,ψ1,ϕ2,ψ2, . . . are called Rieger-Nishimura formulas.

I Theorem 1. ([14], cf.[8, Chap.6,Thm.7]) Every formula in IPC1 is equivalent1 to exactly
one of the Rieger-Nishimura formulas.

The function RNindex maps every formula to the index of its equivalent Rieger-Nishimura
formula.

RNindex(α) =


(i, phi), if α ≡ ϕi

(i, psi), if α ≡ ψi

(0,⊥), if α ≡ ⊥
(0,>), if α ≡ >

1 α is equivalent to β if every state in every model satisfies both or none formula.
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We analyze the complexity of this function in Lemma 3. For this, we need a lower bound for
the length of formulas in every equivalence class (see Lemma 2). With other words, this is
an upper bound of the length of the Rieger-Nishimura index of any formula.

Let [ϕ] denote the equivalence class that contains ϕ, for ϕ being an IPC1 formula. The
equivalence classes of the IPC1 formulas form a free Heyting algebra over one generator
(for algebraic details see [10]). This algebra is also called the Rieger-Nishimura lattice (see
Fig. 1). It is shown in [14] that the lattice operations can be calculated using a big case
distinction (see [13, Appendix A]). We use these algebraic properties of IPC1 to give a lower
bound on the length of formulas2 in the equivalence classes of IPC1, and to give an upper
bound on the complexity of the problem to decide the Rieger-Nishimura index of a formula.
Let rank(α) be the first element—the integer—of the RNindex(α) pair.

I Lemma 2. For every IPC1 formula ϕ it holds that rank(ϕ) ≤ c1 · log(|ϕ|), for a constant
c1 independent of ϕ.

In order to analyze the complexity of the Rieger-Nishimura index computation, we define
the following decision problem.

Problem: EqRNformula
Input: 〈α, (i, x)〉, where α is an IPC1 formula and (i, x) is an index
Question: Is (i, x) the Rieger-Nishimura index of α?

I Lemma 3. EqRNformula is in LOGDCFL.

Similar as any formula can be represented by its index, Kripke models can, too. We give
a construction of models—the canonical models—(according to [8, Chap.6, Defi.5]) that are
also used to distinguish the formula equivalence classes (Theorem 4). Our definition is a
little different from that in [8, Chap.6, Defi.5]. We show in Lemma 5 that every model over
one variable is homomorphic to a canonical model, and that this homomorphic Kripke model
can be determined in ALOGSPACE[n]. (For model checking it suffices to determine at most
logn as index. For details see Section 4.4.) For n = 1, 2, . . ., we define the canonical models
Hn = (Wn,E, ξn) as follows (according to [8, Chap.6, Defi.5]).

1. Wn = {1, 2, . . . , n− 2} ∪ {n},
2. a E b iff a = b or a ≥ b+ 2, and

3. ξn(a) =
{
∅, if n = 2
{1}, otherwise.

See Figure 1 for some examples.
The formulas in IPC1 can be distinguished using the canonical models as follows.

I Theorem 4. ([14],cf.[8, Chap.6, Thm.8]) For every n and every k holds:
1. Hn, n |= ψk iff n ≤ k (i.e. k ∈ {n, n+ 1, . . .}), and
2. Hn, n |= ϕk iff n < k or n = k + 1 (i.e. k ∈ {n− 1} ∪ {n+ 1, n+ 2, . . .}).

From [8, Chap.6, Lemma 11] it is known that every intuitionistic Kripke modelM (for
formulas with one variable a) is homomorphic to some Hi. We additionally analyse the
complexity of the decision problem whetherM is homomorphic to Hi (see Lemma 5). For

2 |α| denotes the length of the formula α, and it is the number of appearances of variables, connectives,
and constants in α.
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Figure 1 The Rieger-Nishimura lattice (left), and the canonical models H9 and H10 (reflexive
and transitive edges are not depicted, ξn(a) = {1} is indicated by the double circle for state 1).

this, we define a function h that for given model M and state w has as function value
h(M, w) the index i of the homomorphic model Hi. LetM = (W,6, ζ) be a model and w a
state. Let Ww⇑ = {v ∈W | w 6 v} and Ww↑ = Ww⇑ \ {w}. We define h as follows.

h(M, w) =


1, if w ∈ ζ(a)
2, if w 6∈ ζ(a) and ∀v ∈Ww↑ v 6∈ ζ(a)
3, if w 6∈ ζ(a) and ∀v ∈Ww↑ h(M, v) 6= 2 and ∃u ∈Ww↑ h(M, u) = 1
n+ 2, if ∀v ∈Ww↑ h(M, v) 6= n+ 1 and

∃u1, u2 ∈Ww↑ h(M, u1) = n and h(M, u2) = n− 1

We call h(M, w) the model index of w. The function h is well defined because for every state
w it holds that {h(M, v) | v ∈Ww⇑} = {1, 2, . . . , h(M, w)− 2} ∪ {h(M, w)}.

Let M1 and M2 be models, w1 resp. w2 a state from M1 resp. M2. We say that
(M1, w1) is homomorphic to (M2, w2) if for every α ∈ IPC1 it holds thatM1, w1 |= α iff
M2, w2 |= α.

I Lemma 5. LetM = (W,≤, ζ) be a Kripke model.
1. (M, w) is homomorphic to (Hh(M,w), h(M, w)).
2. For a given modelM, a state w and an integer n, to decide whether h(M, w) = n is in

ALOGSPACE[n].

4 The complexity of model checking for IPC1

We first define an AC1-hard graph problem, that is similar to the alternating graph accessibility
problem, but has some additional simplicity properties. Then we give a construction that
transforms such a graph into an intuitionistic Kripke model. This transformation is the basis
for the reduction from the alternating graph accessibility problem to the model checking
problem for IPC1.
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4.1 Alternating graph problems
The alternating graph accessibility problem is shown to be P-complete in [4]. We use
the following restricted version of this problem that is very similar to Boolean circuits
with and- and or-gates (and input-gates). An alternating slice graph [12] G = (V,E) is a
directed bipartite acyclic graph with a bipartitioning V = V∃ ∪ V∀, and a further partitioning
V = V0 ∪ V1 ∪ V2 ∪ · · · ∪ Vm−1 (m slices, Vi ∩ Vj = ∅ if i 6= j) where V∃ =

⋃
i<m,i odd

Vi and

V∀ =
⋃

i<m,i even
Vi, such that E ⊆

⋃
i=1,2,...,m−1

Vi × Vi−1 — i.e. all edges go from slice Vi

to slice Vi−1 (for i = 1, 2, . . . ,m − 1). All nodes excepted those in the last slice V0 have
a positive outdegree. Nodes in V∃ are called existential nodes, and nodes in V∀ are called
universal nodes. Alternating paths from node x to node y are defined as follows by the
property apathG(x, y).
1) apathG(x, x) holds for all x ∈ V
2a) for x ∈ V∃: apathG(x, y) iff ∃z ∈ V∀ : (x, z) ∈ E and apathG(z, y)
2b) for x ∈ V∀: apathG(x, y) iff ∀z ∈ V∃ : if (x, z) ∈ E then apathG(z, y)
The problem AsAgap is similar to the alternating graph accessibility problem, but for the
restricted class of alternating slice graphs.

Problem: AsAgap
Input: 〈G, s, t〉, where G = (V∃∪V∀, E) is an alternating slice graph with slices

V0, V1, . . . , Vm−1, and s ∈ Vm−1 ∩ V∃, t ∈ V0 ∩ V∀
Question: does apathG(s, t) hold?

Similarly as the alternating graph accessibility problem, AsAgap is P-complete [12,
Lemma 2]. The following technical Lemma is not hard to prove.

I Lemma 6. For every set A in (logspace-uniform) AC1 exists a function f that maps
instances x of A to instances f(x) = 〈Gx, sx, tx〉 of AsAgap and satisfies the following
properties.
1. f is computable in logspace.
2. Gx is an alternating slice graph of logarithmic depth; i.e. if Gx has n nodes, then it has

m ≤ logn slices.
3. For all instances x of A holds: x ∈ A iff f(x) ∈ AsAgap.

Essentially, the function f constructs the AC1 circuit C|x| with input x, and transforms it
to an alternating slice graph Gx. The goal node tx represents exactly the bits of x that are
1. The start node sx corresponds to the output gate of C|x|, and apathGx

(sx, tx) expresses
that C|x| accepts input x.

4.2 Transforming alternating slice graphs to intuitionistic Kripke
models

Our hardness results rely on a transformation of instances 〈G, s, t〉 of AsAgap to Kripke
modelsMG = (U,R, ξ). We describe it informally here. An example can be seen in Figure 2.

Let 〈G, s, t〉 be an instance of AsAgap for the slice graph G = (V∃ ∪ V∀, EG) with the
m slices V∃ = Vm−1 ∪ Vm−3 ∪ · · · ∪ V1 and V∀ = Vm−2 ∪ Vm−4 ∪ · · · ∪ V0. The Kripke model
MG is constructed as follows. The nodes of the Kripke model consist of the nodes of H4m,
and of two copies uin and uout of each node u of G. The slice Wout

i ofMG consists of the
out-copies of nodes in Vi and the nodes 4i+ 1 and 4i+ 2 of H4m, and the slice W in

i ofMG

consists of the in-copies of nodes in Vi and the nodes 4i+ 3 and 4i+ 4 of H4m.
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Figure 2 An alternating slice graph G (left) and the resulting Kripke model MG (right); both
the states in ξ(a) are drawn doubly; pseudotransitive and reflexive edges in MG are not depicted.
The value at state x denotes its model index h(MG, x). For states in H16, their names and their
model indices coincide. States vin and vout for which apathG(v, t) holds in G are colored grey.

All the edges of H4m are kept. The edges (u, v) of G are changed to (uout , vin) inMG,
and for every u of G an edge (uin, uout) is added. We add edges from the copies of the nodes
in G to the nodes from H4m as follows. Every node vout for v ∈ Vi (i > 0) has an edge to
node 4i− 1 from H4m, and every node vin for v ∈ Vi has an edge to node 4i+ 2 from H4m.

An intuitionistic Kripke model must be transitive and reflexive. The part of the model
that comes from H4m is transitive and reflexive, the part of the model that comes from the
alternating slice graph G is not. The transformation of the alternating slice graph to an
intuitionistic Kripke model must be computable in logarithmic space, because it will be used
as part of a logspace reduction function. Within this space bound we cannot compute the
transitive closure of a graph. Therefore, we make the graph transitive with brute force. We
add all edges from nodes vin and vout (v ∈ V ) that jump over at least one slice—we call
these edges pseudotransitive. Finally, we need to add all missing reflexive edges.

The valuation function for our modelMG is ξ(a) = {tout , 1}, where tout is the copy of the
goal node t in Wout

0 , and {1} = ξ4m(a) is the node from H4m. This concludes the informal
description of the Kripke modelMG. An example of an AsAgap instance 〈G, s, t〉 and the
Kripke modelMG constructed from it can be seen in Figure 2.

The canonical model is attached to the slice graph in order to obtain control over the
model indices of the other states (w.r.t. the modelMG). This is described by Propositions 7
and 8.

I Proposition 7. For every i = 0, 1, 2, . . . ,m− 1 and every v ∈ Vi holds

h(MG, v
out) ∈ {4i+ 1, 4i+ 2} and h(MG, v

in) ∈ {4i+ 2, 4i+ 4} .

I Proposition 8. For every i = 0, 1, 2, . . . ,m− 1 and every v ∈ Vi holds:
1. if i is even (∀ slice):

apathG(v, t) iff h(MG, v
out) = 4i+ 1, and apathG(v, t) iff h(MG, v

in) = 4i+ 4,
2. if i is odd (∃ slice):

apathG(v, t) iff h(MG, v
out) = 4i+ 2, and apathG(v, t) iff h(MG, v

in) = 4i+ 2.

Let T denote the function that maps instances x = 〈G, s, t〉 of AsAgap to Kripke models
T (x) =MG as described above. The following properties of T are easy to verify.
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I Lemma 9. 1. T is logspace computable.
2. If x = 〈G, s, t〉 for an alternating slice graph G with n nodes and m < n slices, then T (x)

is a Kripke model with ≤ 4n states and depth 2m.

We will use T as part of the reduction functions for our hardness results.

4.3 Hardness results
Our first result states that the calculation of the model index of an intuitionistic Kripke
model is P-complete. It is already P-complete to decide the last bit of this model index.

I Theorem 10. The following problems are P-complete.
1. Given a Kripke modelM and a state w, decide whether h(M, w) is even.
2. Given a Kripke modelM, a state w, and an integer i, decide whether h(M, w) = i.

Proof. In order to show the P-hardness of the problems, we give a reduction from the P-hard
problem AsAgap [12]. From an instance 〈G, s, t〉 of AsAgap where G is an alternating
slice graph with m slices, constructM = T (〈G, s, t〉). Then h(M, sout) ∈ {4m+ 1, 4m+ 2}
(Proposition 7), and apathG(s, t) iff h(M, sout) = 4m+2 (Proposition 8). Therefore, 〈G, s, t〉 ∈
AsAgap if and only if h(M, sout) is even resp. h(M, sout) = 4m+ 2.

For every modelM = (U,6, ξ) holds h(M, w) ≤ |U |+ 1. From Lemma 5 and using that
P = ALOGSPACE[poly] it then follows that both problems are in P. J

In the construction of the above proof, the decision whether h(M, sout) = 4m + 2 is
the same as to decide whetherM, sout |= ψ4m+2, for the Rieger-Nishimura formula ψ4m+2.
Unfortunately, the length of ψ4m+2 is exponential in m, and therefore the mapping from
〈G, s, t〉 (with m slices) to the model checking instance 〈ψ4m+2, T (〈G, s, t〉), sout〉 cannot
in general be performed in logarithmic space. But if the depth m of the slice graph is
logarithmic, the respective formula ψ4m+2 has polynomial size only. Using Lemma 6, every
AC1 problem is logspace reducible to instances of AsAgap having logarithmically bounded
depth, and by the above mapping these special instances are logspace reducible to model
checking for IPC1.

I Theorem 11. The model checking problem for IPC1 is AC1-hard.

4.4 Model checking for IPC1 is in AC1

Algorithm 1 decides the model checking problem for IPC1. In the following, we estimate its
complexity. The algorithm gets input 〈ϕ,M, s〉 and works in two steps. In the first step we
calculate the Rieger-Nishimura index (r, x) of ϕ. Since the index is very small (Lemma 2)
and using Lemma 3, this can be done in LOGDCFL. In the second step we identify the
homomorphic canonical model for (M, s). In fact it is not always necessary to identify the
homomorphic canonical model exactly. According to Theorem 4, the input can be rejected
if h(M, s) > r + 1, and the latter can be checked by finding some state u > s inM with
h(M, u) > r + 1. This estimation can be done in alternating logarithmic space with r + 1
alternations. If h(M, u) ≤ r + 1, according to Theorem 5 the model index can be computed
exactly in ALOGSPACE[r + 1], and knowing the Rieger-Nishimura index of ϕ and the model
index of (M, s), it can be decided whetherM, s |= ϕ using Theorem 4. Since k is at most
about log |ϕ| (Lemma 2), the computation of the model index can be done in alternating
logspace with log |〈ϕ,M, s〉| alternations (Lemma 5). Since the Rieger-Nishimura index of a
formula can be decided in LOGDCFL, and LOGDCFL ⊆ AC1 = ALOGSPACE[logn], we obtain
the desired upper bound.

STACS’11



376 The complexity of model checking for intuitionistic logics

Algorithm 1 model checking algorithm for IPC1

Require: a formula ϕ, a modelM and a state s
1: search for (r, x) with 0 ≤ r ≤ c1 · log(|ϕ|) such that 〈ϕ, (r, x)〉 ∈ EqRNformula
2: if (r, x) = (0,⊥) then reject
3: else if (r, x) = (0,>) then accept
4: else if x = psi then
5: if h(M, s) 6= i for all i ∈ {1, 2, . . . , r} then reject
6: else accept
7: else if x = phi then
8: if h(M, s) 6= i for all i ∈ {1, 2, . . . , r − 1} ∪ {r + 1} then reject
9: else accept
10: end if

I Theorem 12. The model checking problem for IPC1 is in AC1.

5 Some notes on superintuitionistic logics with one variable

Superintuitionistic propositional logics are logics that have more valid formulas than IPC. In
this sense, classical propositional logic is a superintuitionistic logic, since it can be obtained as
the closure under substitution and modus ponens of the tautologies from IPC plus a∨¬a as
additional axiom. A well-studied superintuitionistic logic is KC [7] that results from adding
the weak law of the excluded middle ¬a ∨ ¬¬a to IPC. Semantically, the Kripke models for
KC are restricted to those intuitionistic modelsM = (W,6, ξ) where 6 is a directed preorder.
Whereas IPC1 has infinitely many equivalence classes of formulas, KC1 has only 7 equivalence
classes—represented by the Rieger-Nishimura formulas ⊥,>,ϕ1,ψ1,ϕ2,ψ2,ψ3—that can be
distinguished using the first 3 canonical models [14, 11]. The function h can be implemented
as an alternating Turing machine that runs in logarithmic time, if the function value is
fixed to a finite range—that in this case is {1, 2, 3}–independent on the input. For KC1,
the Rieger-Nishimura index of the formulas also has a finite range (as mentioned above).
Therefore, it can be calculated by an alternating Turing machine that runs in logarithmic time
similar to the machine presented by Buss [3] that calculates the value of a Boolean formula.
Instead of the Boolean values 0 and 1, for KC1 we have 7 different Rieger-Nishimura indices.
The rules how the index of a formula can be calculated from the indices of its subformulas
and the connective, follow directly from the Rieger-Nishimura lattice operations—see e.g. [13].
If the indices are bound to a finite range, this big table yields an even bigger but finite table
without variable formula indices. For example, the equivalence ϕn ∨ ϕn+1 ≡ ψn+2 for all
n ≥ 1 induces the three equivalences ϕ1 ∨ϕ2 ≡ ψ3, ϕ2 ∨ > ≡ >, and > ∨ > ≡ > for KC1.
This yields ALOGTIME as an upper bound for the tautology problem for KC1.

There are infinitely many superintuitionistic logics (with one variable) that can be
obtained by adding an arbitrary formula as axiom to IPC1, that is not valid for IPC1. For
example, if we add a formula equivalent to ϕk, then the superintuitionistic logic obtained has
finitely many equivalence classes represented by ⊥,>,ϕ1,ψ1,ϕ2,ψ2, . . . ,ϕk−1,ψk−1. With
similar arguments as for KC1 we can conclude that the model checking problems for these
logics all are in NC1. Moreover, the formula value problem for Boolean formulas without
variables is NC1-hard [2]. Intuitionistic formulas without variables have the same values, if
they are interpreted as classical Boolean formulas. This means, the semantics of → is the
same for Boolean formulas and for intuitionistic formulas without variables. Therefore, the
model checking problem for any superintuitionistic logic is NC1-hard, too.
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I Theorem 13. The model checking problem for every superintuitionistic logic with one
variable is NC1-complete.

The tautology problem for superintuitionistic logic has the same complexity, since in
order to decide whether a formula with one variable is a tautology it suffices to know its
Rieger-Nishimura index.

I Theorem 14. The tautology problem for every superintuitionistic logic with one variable
is NC1-complete.

The best upper space bound for the tautology problem for IPC1 is a little higher, namely
SPACE(logn · log logn) [19].

6 The complexity of model checking for IPC2

I Theorem 15. The model checking problems for KC2 and for IPC2 are P-hard.

This can be proven with a reduction from the IPC model checking problem that is
P-complete [12]. We give formulas with two variables—the replacement formulas—which
simulate the variables in an arbitrary IPC formula. For an arbitrary model we need to
simulate the assignment function. For this we use a special model where every replacement
formula has a unique maximal refuting state. We combine the given model and the special
model in a way that if a variable is not assigned to a state, this state is connected to the
state from the special model that refutes the replacement formula which substitutes this
variable. This construction is similar to the polynomial time reduction from the tautology
problem for IPC to the tautology problem for IPC2 in [16]. The main difference is that
our logspace reduction yields pseudotransitive models, whereas in [16] a polynomial time
reduction is used that allows to compute transitive models.

7 Conclusion

We consider computational problems that appear with intuitionistic propositional logic with
at most two variables. Our main theorem completely characterizes the complexity of model
checking for intuitionistic logic.

I Theorem 16. 1. The model checking problem for IPC0 is NC1-complete.
2. The model checking problem for IPC1 is AC1-complete.
3. The model checking problem for IPC2 is P-complete.

Part (1) follows from the fact that an intuitionistic formula that contains constants ⊥
and > but no variables can be evaluated like a Boolean formula, whose evaluation problem is
NC1-complete [2] independently of the number of variables. Part (2) follows from Theorems 11
and 12. It shows a difference between IPC1 and its modal companion S4 with one variable,
for which the model checking problem is P-complete [12]. Part (3) comes from Theorem 15
(hardness) and [12] (containment in P). Similarly as Rybakov [16] for the tautology problem,
this shows that the model checking problem for IPC reaches its full complexity already with
the use of two variables.

Next we summarize the results from Theorems 13 and 15 for superintuitionistic logics.
1. The model checking problem for every superintuitionistic logic with one variable is NC1-

complete.
2. The model checking problem for KC2 is P-complete.
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There are superintuitionistic logics with two variables between Boolean logic and KC2
(see below). The exact complexity of the model checking problem for these logics is open. It
is interesting to notice that the complexity results for IPC2 and for KC2 are the same. But
if only one variable is allowed, the complexity of IPC1 is higher than that of KC1.

Intuitionistic logic with one variable turns out to be the most challenging case. There are
infinitely many equivalence classes of formulas, and according to Lemma 2 the sequence of
smallest representatives of these equivalence classes has an exponential growth with respect
to the length of the formulas. Such a fast growing sequence seems to appear rarely in
“natural” problems, and it is a key ingredient for the AC1-completeness of the model checking
problem. Intuitionistic logic with one variable is strongly related to free Heyting algebras
with one generator. Since Heyting algebras are generalizations of Boolean algebras, it would
be interesting to investigate whether the difference between NC1 and AC1 is related to that
between Boolean algebras and Heyting algebras.

If we consider other problems related to Kripke models for IPC1 that are not “out braked”
by a very fast growing part of the input, the complexity jumps up to P-completeness, as
shown in Theorem 10. Model checking for IPC1 also gets P-hard if the instances 〈ϕ,M, s〉
allow the formula ϕ to be represented as a graph. Let us call this the g-model checking
problem for short. This is a consequence of the P-hardness of the monotone circuit evaluation
problem [9], holds even for formulas without variables, and therefore it also holds for all
superintuitionistic logics. If formulas are represented as graphs, the sequence of smallest
representatives of the equivalence classes of IPC1 does not have exponential growth anymore.
Moreover, the calculation of the Rieger-Nishimura index gets P-hard.

I Theorem 17. The following problems are P-complete:
1. the g-model checking problem for IPC1,
2. the g-model checking problem for every superintuitionistic logic with one variable,
3. the tautology problem for IPC1, where the formula is represented as a graph, and
4. the tautology problem for every superintuitionistic logic with one variable, where the

formula is represented as a graph.

Parts (1) and (2) contrast the different upper bounds NC1 and AC1 (Theorem 13 resp.
Theorem 16) for the standard encodings of formulas. Parts (3) and (4) contrast the complexity
of the tautology problems for the logics under consideration, that have the following upper
bounds.
1. The tautology problem for every superintuitionistic logic with one variable is NC1-complete.
2. The tautology problem for IPC1 is in LOGDCFL ∩ SPACE(logn · log logn).
3. The tautology problem for KC2 and for IPC2 is PSPACE-complete.

Part (1) is Theorem 14, part (2) is from Svejdar [19] and Lemma 3, and part (3) follows
directly from [16]. The exact complexity of the tautology problem for IPC1 is open. It is
interesting to notice that superintuitionistic logics with one variable all have lower complexity
than IPC1, whereas for superintuitionistic logics with two variables already KC2 reaches
the same complexity as IPC2. A superintuitionistic logic between Boolean logic and KC
is LC [7]. Non-trivial hardness results for LC2 are not known. It would be interesting to
investigate exactly the complexity jump from LC2 to KC2.
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