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Abstract
In prior papers, beginning with the seminal work by Freivalds et al. 1995, the notion of intrinsic
complexity is used to analyze the learning complexity of sets of functions in a Gold-style learning
setting. Herein are pointed out some weaknesses of this notion. Offered is an alternative based
on epitomizing sets of functions – sets, which are learnable under a given learning criterion, but
not under other criteria which are not at least as powerful.

To capture the idea of epitomizing sets, new reducibility notions are given based on robust
learning (closure of learning under certain classes of operators). Various degrees of epitomizing
sets are characterized as the sets complete with respect to corresponding reducibility notions!
These characterizations also provide an easy method for showing sets to be epitomizers, and they
are, then, employed to prove several sets to be epitomizing.

Furthermore, a scheme is provided to generate easily very strong epitomizers for a multitude
of learning criteria. These strong epitomizers are so-called self-learning sets, previously applied
by Case & Kötzing, 2010. These strong epitomizers can be generated and employed in a myriad
of settings to witness the strict separation in learning power between the criteria so epitomized
and other not as powerful criteria!
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1 Introduction

We analyze the problem of algorithmically learning a description for an infinite sequence
(a function from the natural numbers into the natural numbers) when presented larger and
larger initial segments of that sequence. For example, a learner h might be presented more
and more of the sequence g = 1, 4, 9, 16, . . .. After each new datum of g, h may output
a description of a function as its conjecture. For example, h might output a program for
the constantly 1 function after seeing the first element of this sequence g and a program
for the squaring function on all the other data from g. Many criteria for saying whether
h is successful on g have been proposed in the literature. Gold, in his seminal paper [16],
gave a first, simple learning criterion, later called in [11] Ex-learning1, where a learner is

1 Ex stands for explanatory.
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successful iff it eventually stops changing its conjectures, and its final conjecture is a correct
description for the input sequence.

Trivially, each single, describable sequence g has a suitable constant function as an Ex-
learner (this learner constantly outputs a description for g). Thus, we are interested for
which sets of functions S is there a single learner h learning each member of S. We are
interested herein in learning sets of total computable functions, and we will use (codes
of) programs from a fixed programming system as possible conjectured descriptions for the
functions.2 This framework is known as function learning in the limit and has been studied
extensively, using a wide range of learning criteria similar to Ex-learning (see, for example,
the text book [19]).

Freivalds et al. [12] considered how to define learning complexity of a set of learnable
functions. They introduced the seminal notion of intrinsic complexity and defined, for
learning criteria I, a corresponding reducibility relation ≤I . Intrinsic here is intrinsic to a
learning task or problem S, not to particular learning algorithms for S. The idea is that,
if S ≤I S ′, then S ′ is at least as hard to I-learn as is S. In particular, [12] shows that, if
S ≤Ex S ′ and S ′ is Ex-learnable, then S is Ex-learnable. This intrinsic complexity has been
further studied in some detail, see, for example, [12, 18, 17].

From [12], for a given learning criterion I, an I-learnable set of functions S0 is said to
be ≤I-complete iff, for all I-learnable sets of functions S, S ≤I S0. As far as ≤I describes
the relative difficulty of learnability, ≤I -complete sets are the most difficult to I-learn. [12]
shows that the set SFinSup of all computable functions of finite support3 is ≤Ex-complete.
These notions from [12] are structural analogs, for example, to the various notions from
complexity theory of polynomial time reducibility and completeness.

There are at least two problems connected with the notion of intrinsic complexity from
[12].

(i) For some learning criteria I, the relation ≤I is not very fine-grained. In particular, there
are ≤I -complete sets of functions which are also learnable with respect to much more
restricted learning criteria (see Theorem 4.2 below).

(ii) There are learning criteria I and sets of functions S,S ′ such that S ≤I S ′ and S ′ is
I-learnable, but S is not I-learnable (see Theorem 4.3 below).

In this paper we quantify the difficulty of learning a given class of functions in a new
way. First, we consider the following concept, essentially from [12]. A set of functions S
epitomizes a learning criterion I with respect to some class of learning criteria I, iff, S is
I-learnable, and, for each I ′ ∈ I, if some I-learnable task is too hard to be I ′-learned, then
S is already such an example task too hard to be I ′-learned.4

We believe that epitomization nicely captures the learning complexity of a set of func-
tions. Hence, the work herein aims at finding such epitomizers. Naturally, the interest is
in epitomizers with respect to as large as possible classes of learning criteria I. We give
epitomizers with respect to classes of all learning criteria which are robust with respect to
certain classes of operators (operating on functions). Essentially, a learning criterion I is
robust with respect to a given class of operators O iff, for each I-learnable task S and each

2 One could, for example, think of the programming system as one of Java, C, Turing machines, . . . .
3 A (total) function has finite support iff only finitely many arguments have a function value other than 0.
4 Note that [12] called epitomizing sets characteristic. To our best knowledge, neither this term nor the
concept caught on in the later literature — until now.
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322 Measuring Learning Complexity with Criteria Epitomizers

operator Θ ∈ O, Θ(S) is also I-learnable, i.e., the class of I-learnable sets of functions is
closed under operators from O.5

Furthermore, for any set of operators O, we define a reducibility ≤O and a corresponding
completeness notion. As an important first theorem we have that a set S epitomizes a
learning criterion I with respect to all O-robust learning criteria iff S is ≤O-complete for all
I-learnable sets (Theorem 3.6 below)! The benefits of this theorem are twofold.

First, since, as noted above, we believe that epitomization captures the complexity of
learning, this Theorem 3.6 entails that our reducibility notions also capture this complexity.

Secondly, we now need only to prove completeness to get epitomization!
Other than structural insight, we get the following two benefits from epitomizers.
First, we can use epitomizers to show the identity of learning power of two learning

criteria. For example, Theorem 5.2 establishes SFinSup to be epitomizing with respect to
various learning criteria and sets of operators. In Corollary 5.3 below we use this to show a
learning criterion I to be as powerful as one of the epitomized learning criteria by showing
that SFinSup can be I-learned. With classic methods, the proof of this result might have
required tedious work with attention to detail, while we can conclude it as a corollary to
structural properties uncovered by our theorems.

The second way in which epitomization helps us is by providing canonical candidates
to witness the separation of two learning criteria. To this end, self-learning classes (see
Theorem 5.7) are particularly useful epitomizers and are used in the literature to prove
particularly difficult separations (see, for example, [9], which solves two previously open
problems using this technique, and see also [10]).

[12] noted that their ≤Ex-completeness does not give epitomization with respect even to
the set of learning criteria considered in [12].

Thus, we believe our approach to complexity of learning is both more comprehensive and
more useful than the notion of intrinsic complexity from [12].

We present mathematical preliminaries in Section 2. The notions discussed above and
some first theorems about them are given in Section 3, including the mentioned important
characterization of epitomizers as complete sets (Theorem 3.6 below).

Section 4 gives definitions and results regarding the notion of intrinsic complexity in-
troduced in [12]. We already mentioned our Theorems 4.2 and 4.3 below which witness
drawbacks of this older notion; furthermore, in Theorem 4.5 below, we characterize ≤Ex in
terms of one of our reducibility notions, and conclude in Corollary 4.6 that all sets complete
with respect to a central one of our reducibility notions are ≤Ex-complete.

Finally, in Section 5, we present a series of tasks and state which learning criteria they
epitomize at what strength. N.B. Epitomizers with respect to larger classes of learning criteria
are stronger. As indicated above, we give each epitomization result, for some set of operators
O, and with respect to the corresponding set of O-robust learning criteria. N.B. It will be
seen that the smaller the set of operators O, the larger the set of O-robust learning criteria.
Theorem 5.2 entails that SFinSup, the set of functions of finite support introduced above,
is a very weak epitomizer. Some so called self-describing classes are also surprisingly weak
epitomizers (Theorem 5.4 below); some are of considerably greater strength (Theorem 5.5

5 In the previous literature, a set S was called robustly I-learnable iff, for all recursive operators [22] Θ,
the class of total functions in Θ(S) is I-learnable (see, for example, [15]). The motivation for such
past notions of robustness was to eliminate self-referential examples. The motivation herein is quite
different. Herein, as will be seen, it is very interesting that which operators are to be considered can
be restricted, and ask for all I-learnable tasks to be robust with respect to some possibly restricted
class of operators.
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below); but, interestingly, the strongest are self-learning sets (Theorem 5.7 below).
Some of our proofs involve subtle infinitary program self-reference arguments employing

(variants of) the Operator Recursion Theorem (ORT) from [5, 6, 19]. Note that, due to
space constraints, all proofs are omitted from the paper.

We are working on extending the present paper to employ self-learning sets which work
for learning criteria, unlike those herein, which require the learners to be total on all inputs.

2 Mathematical Preliminaries

Unintroduced computability-theoretic notions follow [22].
N denotes the set of natural numbers, {0, 1, 2, . . .}.
The symbols ⊆,⊂,⊇,⊃ respectively denote the subset, proper subset, superset and

proper superset relation between sets. The symbol \ denotes set-difference.
The quantifier ∀∞x means “for all but finitely many x ∈ N”; the quantifier ∃∞x means

“for infinitely many x ∈ N”. For any set A, card(A) denotes its cardinality, Pow(A) denotes
the set of all subsets of A.

With P and R we denote, respectively, the set of all partial and of all total functions
N→ N. With dom and range we denote, respectively, domain and range of a given function.
Set-theoretically, (partial) functions are identified with their graphs, i.e., they are treated
as sets of ordered pairs, and we sometimes compare them by ⊆.

We sometimes denote a partial function f of n > 0 arguments x1, . . . , xn in lambda
notation (as in Lisp) as λx1, . . . , xn f(x1, . . . , xn). For example, with c ∈ N, λx c is the
constantly c function of one argument.

If f ∈ P is not defined for some argument x, then we denote this fact by f(x)↑, and we
say that f on x diverges; the opposite is denoted by f(x)↓, and we say that f on x converges.
If f on x converges to p, then we denote this fact by f(x)↓ = p.

We say that f ∈ P converges to p iff ∀∞x : f(x)↓ = p; we write f → p to denote this.6
For any (possibly partial) predicate P , we let µx P (x) denote the least x such that P (x)

and, for all y < x, P (x)↓ (if no such x exists, µx P (x) is undefined).
We fix any computable 1-1 and onto pairing function 〈·, ·〉 : N × N → N.7 With π1 and

π2, respectively, we denote decoding into first and second arguments of pairing, respectively.
Whenever we consider tuples of natural numbers as input to f ∈ P, it is understood that
the general coding function 〈·, ·〉 is used to (left-associatively) code the tuples into a single
natural number (but we will not necessarily state the pairing explicitly).

For any g ∈ P and x ∈ N, we let g[x] denote the sequence of the numbers g(0), . . . , g(x−
1), if all are defined, and ↑ otherwise.

A partial function f ∈ P is partial computable iff there is a deterministic, multi-tape
Turing machine which, on input x, returns f(x) if f(x)↓, and loops infinitely if f(x)↑.
P and R denote, respectively, the set of all partial computable and the set of all (total)
computable functions N→ N. The functions in R are called computable functions.

We let ϕ be any fixed acceptable programming system for the partial computable func-
tions N → N with associated complexity measure Φ [19]. Further, we let ϕp denote the
partial computable function computed by the ϕ-program with code number p, and we let
Φp denote the partial computable complexity function of the ϕ-program with code number
p.

6 f(x) converges should not be confused with f converges to.
7 For a linear-time computable and invertible example, see [23, Section 2.3].
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324 Measuring Learning Complexity with Criteria Epitomizers

Whenever we consider sequences or finite sets as input to functions, we assume these
objects to be appropriately coded as natural numbers. Similarly, when functions are defined
to give non-numeric output, for example, when the outputs are in N ∪ {?}, we implicitly
assume N ∪ {?} to be appropriately coded onto the natural numbers.

We use complexity theoretic notions as introduced in [23]. We let LinF be the set of all
linear time computable functions. A function g is called linlin iff g is computable in linear
time and there is a linear time computable function g−1 such that g−1 ◦ g = λx x. We let
LL be the set of all linlin functions.
Learning in the Limit

A learner is a partial computable function. A target is a total computable function g; a
learning task is a set of targets S ⊆ R.

A learning criterion consists of three parts which, together, determine whether a given
learner is successful on a given learning task.

Firstly, the learning criterion has to specify what learners are allowed. This is called a
learner admissibility restriction, and is modeled as a set C ⊆ P, the set of all admissible
learners.

Secondly, the learning criterion has to specify how learner and target interact. This part
is modeled as a sequence generating operator, which is an operator β taking as arguments a
learner h and a target g and that outputs a function p. We call p the learning sequence of
h given g. For this paper, we think of p as the sequence of conjectured programs of h on g.

Thirdly, the learning criterion has to specify which learning sequences are to be con-
sidered “successful” on a given target. This is done with a sequence acceptance criterion, a
total binary predicate δ on a learning sequence and a target function.8

For C a learner admissibility restriction, β a sequence generating operator, δ a sequence
acceptance criterion and h a learner, we call (C, β, δ) a learning criterion. For every learning
criterion I with I = (C, β, δ) we let CI = C, βI = β and δI = δ. Let I = (C, β, δ) be a
learning criterion. We proceed by giving definitions for I-learning.

We say that h I-learns a learning task S iff, h ∈ C and, for all g ∈ S, with p = β(h, g),
(p, g) ∈ δ. We denote by S(I) and also by Cβδ the set of all I-learnable learning tasks.9
With an abuse of notation, we sometimes also use Cβδ to denote I.

Any set of complexity-bounded functions is an example learner admissibility restriction,
as are R and P. We omit mentioning C, if C = P (no restriction on the learner).

We give the following three examples for sequence generating operators. Let G be defined
thus.10

∀h, g, i : G(h, g)(i) = h(g[i]). (1)

Let It be defined thus.11

∀h, g : It(h, g)(0) =? ∧ ∀i : It(h, g)(i+ 1) = h(It(h, g)(i), 〈i, g(i)〉). (2)

Lastly, we give transductive learning [7].

∀h, g : Td(h, g)(0) =? ∧ ∀i : Td(h, g)(i+ 1) = h(〈i, g(i)〉). (3)

8 Herein, our βs and δs can essentially be modeled as multi-argument variants of Rogers’ [22] recursive
operators.

9 Note that “Cβδ” is the classical way to denote this, while we use “S(I)” whenever C, β and δ are not
explicit.

10 G stands for Gold identification [16].
11 It stands for iterative [14, 24].
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For sequence acceptance criteria, we give the following five examples. We define explanatory
learning [16] as follows.

Ex = {(p, g) | p total and ∃e : p→ e and ϕe = g}.

Finite learning is given by

Fin = {(p, g) | p total and ∃e ∈ N : e ∈ range(p) ⊆ {e, ?} and ϕe = g}.

Further, we define a sequence acceptance criterion corresponding to postdictively complete
learning12 [2, 4, 24].

Pcp = {(p, g) | p total and ∀i : g[i] ⊆ ϕp(i+1)}.

For conservative learning [1] we give the following sequence acceptance criterion.

Conv = {(p, g) | p total and ∀i : p(i+ 1) 6= p(i)⇒ g[i] 6⊆ ϕp(i)}.

Finally, behaviorally correct learning as given by [3, 11] is associated with

Bc = {(p, g) | p total and ∀∞i : ϕp(i) = g}.

Any two sequence acceptance criteria δ and δ′ can be combined by intersecting them. For
ease of notation we write δδ′ instead of δ ∩ δ′.

For more examples of the above concepts, see [20].

3 Concept Definitions

In this section, we give the key concepts used in this paper in Definition 3.3. Before we can
get to that, we define pre-orders and associated notions, as well as several sets of operators,
for which we give examples and remark on some easy properties.

The main theorem of this section is Theorem 3.6, which shows the important connections
between complete sets and epitomizers.

Let S be a set and � a binary relation on that set. We call � a pre-order iff � is reflexive
and transitive. For s ∈ S and T ⊆ S, we say that s is �-complete for T iff, s ∈ T and, for
all t ∈ T , t � s.

Next we define several sets of operators. For illustration, see Example 3.2.

I Definition 3.1. A function Θ : P → P is called an operator. We define the following sets
of operators.

Let Oeff be the set of all effective operators [22], i.e., all operators Θ such that there is
a computable function s ∈ R with ∀e : Θ(ϕe) = ϕs(e).13
Let C ⊆ P. Let OCloc be the set of all Θ ∈ Oeff such that, for all g, x, Θ(g)[x] depends
only on g[x], i.e., if there is a function f with ∀g ∈ P,∀x : Θ(g)[x] = f(g[x]), and f ∈ C.
Note that Θ ∈ Oloc is equivalent to

∀g, g′ ∈ P∀x : g[x] = g′[x]⇒ Θ(g)[x] = Θ(g′)[x].14 (4)

12Also called consistent learning.
13Note that, without loss of generality, we can take s to be linlin.
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326 Measuring Learning Complexity with Criteria Epitomizers

Let C ⊆ P. Let OCelemWise be the set of all Θ ∈ Oeff such that there is a function f ∈ C
such that ∀g ∈ P : Θ(g) = λx f(g(x), x).15 We write OelemWise for OPelemWise.

Next, we define sets of left-invertible operators. For any set of operators O and S ⊆ R, we
let LInv(O;S) = {Θ ∈ O | Θ(S) ⊆ R ∧ ∃Θ̂ ∈ O ∀g ∈ S : (Θ̂ ◦Θ)(g) = g}.

Clearly, OelemWise ⊂ Oloc ⊂ Oeff .

I Example 3.2. For illustration, we give the following example operators.

The operator Θ such that ∀g ∈ P∀x : Θ(g)(x) = g(x + 1) is in Oeff , but not in Oloc
or OelemWise; furthermore, Θ is not in LInv(Oeff) (Θ is not 1-1, hence cannot be left-
inverted).
The operator Θ such that

∀g ∈ P∀x : Θ(g)(x) =
{

0, if x = 0;
g(x− 1), otherwise,

(5)

is in Oeff and in Oloc, but not in OelemWise; furthermore, Θ is in LInv(Oeff), but not in
LInv(Oloc) (Θ has a computable left-inverse, but not a local one).
The operator Θ such that ∀g ∈ P∀x : Θ(g)(x) = x + g(x) is in Oeff , Oloc and also
OelemWise; furthermore, Θ is even in LInv(OelemWise).

Now we give the definition of the central notions of this paper.

I Definition 3.3. Let O be a set of operators and I a learning criterion. Let S,S0,S1 ⊆ R.

(i) I is called O-robust iff, for all S ⊆ R and Θ ∈ LInv(O;S),

S ∈ S(I)⇒ Θ(S) ∈ S(I).16 (6)

(ii) We say that S epitomizes I with respect to a set of learning criteria I, iff S ∈ S(I) and

∀I ′ ∈ I : [S ∈ S(I ′)⇔ S(I) ⊆ S(I ′)] .17 (7)

(iii) If S epitomizes I with respect to the set of all O-robust learning criteria, then we say S
O-epitomizes I.

(iv) We say that S O-generates I iff {Θ(S ′) | S ′ ⊆ S,Θ ∈ LInv(O;S ′)} is the set of all
I-learnable functions.

(v) S0 ≤O S1 iff there is an operator Θ ∈ LInv(O;S0) such that Θ(S0) ⊆ S1.

As an interesting first observation on epitomizers, we make the following remark regard-
ing separations from unions of learning criteria.

I Proposition 3.4. Let I be a learning criterion and I a set of learning criteria with
∀I ′ ∈ I : S(I) \S(I ′) 6= ∅. Suppose there is a set epitomizing I with respect to I. Then

S(I) \
⋃

I′∈I
S(I ′) 6= ∅.

15We call these operators element wise.
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Theorem 5.7 provides very strong existence results for epitomizers which can be used to
satisfy the corresponding hypothesis of Proposition 3.4.18

We can use Proposition 3.4 to give cases where epitomizers do not exist: For example,
let I be reliable learnability and let I be the set of all learning criteria of delayed postdictive
completeness; then ∀I ′ ∈ I : S(I) \S(I ′) 6= ∅ and S(I) =

⋃
I′∈I S(I ′), which shows that

there is no epitomizer of I with respect to I (see [8] for the definitions; the result will be
included in an extension of [8]).19

The following theorem gives a number of general observations regarding the concepts
introduced in Definition 3.3.

I Proposition 3.5. Let O,O′ be sets of operators, I a learning criterion.

(i) Let I be O-robust. Then, for all S ⊆ R, Θ ∈ LInv(O;S) with Θ(S) ⊆ R,

S ∈ S(I)⇔ Θ(S) ∈ S(I).

(ii) If O ∈ {Oeff ,Oloc,OelemWise}, then ≤O is a pre-order.
(iii) Suppose I is O-robust. Suppose S ∈ S(I). Then, for all S ′ ⊆ R,

S ′ ≤O S ⇒ S ′ ∈ S(I).

Next is the central theorem of this section, showing that, for important sets of operators
O and certain learning criteria I, ≤O-completeness for I characterizes O-epitomization of
I.

I Theorem 3.6. Let O be a set of operators containing the identity and which is closed
under composition. Let I be a O-robust learning criterion. Let S ⊆ R. The following are
equivalent.

(i) S O-epitomizes I.
(ii) S O-generates I.
(iii) S is ≤O-complete for I.

4 Connection to Intrinsic Complexity

We will now give the definitions of intrinsic complexity. Some version thereof was introduced
in [12], here we give an interpretation that fits our formalism. After that we will give
theorems regarding the shortcomings of intrinsic complexity, as discussed in the introduction.

In particular, Theorem 4.2 gives an example ≤GEx-complete set of functions which is
nonetheless learnable in much more restricted criteria. Then, in Theorem 4.3, we give two
natural learning criteria I for which the learnable sets are not downward closed with respect
to ≤I . For the two criteria, the cause of this failure of closure is different: in one case it is
a local restriction on the conjectures, in the other a memory restriction on the learner.

Finally, we show the equivalence of ≤GEx with one of our reducibility notions in The-
orem 4.5.

18We give the following example for illustration. Let, for all a ∈ N, Exa be like Ex, but, for success,
the final program is allowed to be incorrect on up to a places. Further, let Ex∗ be like Ex, but the
final program is allowed to be incorrect on up to finitely many places. From [11] we know that, for all
a ∈ N, GExa ⊂ GExa+1; hence, GExa ⊂ GEx∗. Theorem 5.7 provides an appropriate epitomizer for
GEx∗, so that we can deduce, with Proposition 3.4,

⋃
a∈N GExa ⊂ GEx∗ (which was shown in [11]).

19We are thankful to an anonymous referee who pointed out a (different) example for the nonexistence
of epitomizers.
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I Definition 4.1. Let I = (C, β, δ) be a learning criterion, and g a function. We say that a
sequence p is I-admissible for g iff (p, g) ∈ δ.20

Let S0,S1 ⊆ R, and an identification criterion I be given. We say that S0 ≤I S1 iff there
exist recursive operators Θ and Ψ such that, for any function g ∈ S0,

(i) Θ(g) ∈ S1, and
(ii) for any I-admissible sequence p for Θ(g), Ψ(p) is an I-admissible sequence for g.

We say that a set S ⊆ R is ≤I -complete, iff S is ≤I -complete for S(I).

I Theorem 4.2 ([12] & [3, 4]). SFinSup is ≤GEx-complete, but SFinSup ∈ GPcpEx ⊂ GEx.

The following theorem shows two criteria classes to be not closed downwards with respect
to their respective intrinsic reducibility notions.

I Theorem 4.3.

(i) There are sets S0 and S1 ⊆ R such that S0 ≤ItEx S1 and S1 ∈ ItEx, but S0 6∈ ItEx.
(ii) There are sets S0 and S1 ⊆ R such that S0 ≤GPcpEx S1 and S1 ∈ GPcpEx, but
S0 6∈ GPcpEx.

In order to characterize the reducibility of intrinsic complexity in terms of our notions,
we give the following definitions, extending notions from Section 3.

I Definition 4.4. Let O,O′ be sets of operators and S ⊆ R.

(i) Let LInv(O,O′;S) = {Θ ∈ O | ∃Θ̂ ∈ O′ ∀g ∈ S : (Θ̂ ◦Θ)(g) = g}.
(ii) For two sets S0,S1 ⊆ R, we write S0 ≤(O,O′) S1 iff there is an operator Θ ∈

LInv(O,O′;S0) such that Θ(S0) ⊆ S1.
(iii) Furthermore, let OlimPEff be the set of all partial operators Θ such that there is a

computable function s ∈ R with

∀e : Θ(ϕe) =
{
ϕp, if λt s(e, t) converges to some p;
↑, otherwise.21

(8)

Now we show the equivalence of one particular reducibility notion of intrinsic complexity
with one of our extended variants from Definition 4.4. Note that a similar characterization
can be made for GBc.

I Theorem 4.5. We have

≤(Oeff ,OlimPEff) equals ≤GEx .

We get the following Corollary from Theorem 4.5.

I Corollary 4.6. Let I be a learning criterion with δI = Ex as sequence acceptance criterion.
We have that ≤Oeff is a subrelation of ≤GEx; in particular, for all S ⊆ R

S is ≤Oeff -complete for S(I)⇒ S is ≤I -complete.

20 I-admissibility is not to be confused with learner admissibility restrictions.
21Note that the operators from OlimPEff resemble those from [21] and [13].
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5 Specific Function Learning Epitomizers

In this section we present several epitomizers, starting with the very natural class SFinSup
in Theorem 5.2. After noting an immediate corollary, we show a self-describing class to be
an epitomizer. Finally, we give a construction for self-learning classes and show them to
be very powerful epitomizers in Theorem 5.7, i.e., epitomizing with respect to a very wide
range of learning criteria, much wider than for self-descibing classes (which is in turn wider
than for SFinSup).

Note that all proofs rely implicitly on Theorem 3.6, as they show completeness and derive
epitomization from that.

But first, we give a table of examples of which learning criteria are robust with respect
to which set of operators.

I Example 5.1. Let C ⊆ P contain all linlin functions. Let F ⊆ P be closed under C-
composition and contain all linear time computable functions.

The following table states several kinds of robustness of learning criteria with respect to
certain sets of operators.

Oeff FGEx, FGBc, FGFin

OCloc FGPcpEx, FGConvEx, FGPcpConvEx

OCelemWise FItEx, FItConvEx, FItPcpConvEx, FTdEx, FTdBc

Note that each criterion in any given row just above could also be listed in any lower row.

Next, we show SFinSup to epitomize various particular learning criteria with respect to
various sets of learning criteria.

I Theorem 5.2. We have

(i) SFinSup Oeff-epitomizes GEx;
(ii) SFinSup does not Oloc-epitomize GEx;
(iii) SFinSup Oloc-epitomizes GPcpEx.
(iv) SFinSup does not OelemWise-epitomize GPcpEx;

From Theorem 5.2 we can directly get the following corollary, showing an identity of
learning criteria power. The very short proof shows the power of our notions of epitomizers
and robustness.

I Corollary 5.3. We have

GPcpEx = GPcpConvEx.

Next we analyze a set of self-describing functions which was first given in [11] and used
a lot in [19]. Theorem 5.4 shows that this set is not a very good epitomizer.

I Theorem 5.4. Let S0 = {g ∈ R | ϕg(0) = g}. Then S0 Oeff-epitomizes GFin. However,
S0 does not Oloc-epitomize any learning criterion that can be built from components given
in this paper as S0 ≡Oloc {g ∈ R | ∀x > 0 : g(x) = 0}.

Next we analyze a set of self-describing functions which was used in [11] to show the
separation of GBc and (a stronger version of) GEx. Theorem 5.5 shows that this set
necessarily shows the separation of GEx and GBc, if any set does.
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I Theorem 5.5. Let S0 = {g ∈ R | ∀∞x : ϕg(x) = g}. Then S0 OLL
loc -epitomizes GBc.

However, S0 does not OelemWise-epitomize GBc, as SFinSup 6≤OelemWise S0.22

Theorem 5.7 gives examples for self-learning classes of functions, which turn out to be
very strong epitomizers. In order to define these classes, we need the following notions of
computable robustness and data normality.

I Definition 5.6. Let I be a learning criterion.
We call I computably element-wise robust iff I is element-wise robust in a constructive

way, i.e., there is an effective operator Ψ ∈ Oeff such that, for all h, e ∈ P, e ◦ I(h) ⊆
I(Ψ(h, e)).

We call I data normal iff (a) – (c) below.

(a) There is fI ∈ R such that

∀h ∈ P∀g ∈ R∀i : βI(h, g)(i) = h(fI(g[i], βI(h, g)[i])).23 (9)

(b) There is a function dI ∈ R such that

∀h ∈ P∀g ∈ R∀i : dI(fI(g[i], βI(h, g)[i])) =
{

?, if i = 0;
g(i− 1), otherwise.24

(10)

(c) There is an effective operator Ψ̂ ∈ Oeff such that, for all h ∈ P, I(h) ⊆ I(Ψ̂(h)) and
Ψ̂(h)(fI(∅, ∅)) =?.25

I Theorem 5.7. Let I be a computably element-wise robust learning criterion with CI = P
(i.e., I does not impose global restrictions on the learner). Suppose I is data normal as
witnessed by f and d. Let h0 be such that

∀x : h0(x) =
{

?, if d(x) =?;
ϕd(x)(x), otherwise.

(11)

Further, let S0 = I(h0).26 Then S0 OLL
elemWise-epitomizes I.

Theorem 5.7 provides epitomizing sets for the learning criteria βδ with β and δ as ex-
plicitly given in this paper, and many more. Furthermore, S0 of Theorem 5.7 epitomizes
with respect to all learning criteria that can be built from the example components given
in this paper (including the ones with learner admissibility restrictions), as they are all
OLL

elemWise-robust. In particular, Theorem 5.7 provides a superior epitomizer for GBc than
the epitomizer of Theorem 5.5.27

22This uses Theorem 3.6.
24 Intuitively, in the ith round the learner has access to the (i− 1)st data item.
25 Intuitively, without loss of generality, the output based on no data of a learner equals ?.
26S0 is a self-learning class. Roughly, the learner (h0 in Theorem 5.7) defining such a set (S0 in The-
orem 5.7) just runs each input datum as coding a program to determine its corresponding conjecture
to output [9, 10].
Note that h0 is not total, hence, not polynomial time computable, etc. It is work in progress to extend
self-learning classes for criteria separations to cases which cover associated learners interestingly more
restricted than simply being partial computable, e.g., restricted to being linear time computable.

27The first author of the present paper, when he was co-creating [11], had the intuition that, for any
criterion I, if (GBc \ S(I)) 6= ∅, then the S0 of Theorem 5.5 above would witness that separation.
Consider I = TdBc. Clearly, SFinSup separates GBc from TdBc. However, the epitomizer S0 of
Theorem 5.5 clearly is TdBc-learnable—disproving the present first author’s old intuition. Nicely,
though, from OLL

elemWise-robustness of TdBc (Example 5.1), the epitomizer S0 of Theorem 5.7 does
separate GBc from TdBc.
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