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Abstract
This paper reviews structural problem decomposition methods, such as tree and path decompo-
sitions. It is argued that these notions can be applied in two distinct ways: Either to show that a
problem is efficiently solvable when a width parameter is fixed, or to prove that the unrestricted
(or some width-parameter free) version of a problem is tractable by using a width-notion as a
mathematical tool for directly solving the problem at hand. Examples are given for both cases.
As a new showcase for the latter usage, we report some recent results on the Partner Units
Problem, a form of configuration problem arising in an industrial context. We use the notion
of a path decomposition to identify and solve a tractable class of instances of this problem with
practical relevance.
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1 Introduction: Treewidth and Other Notions of Width

Tree decompositions [52, 6] and their variants and generalizations [44] constitute a significant
success story of Theoretical Computer Science. In fact, tree decompositions and polynomial
algorithms for bounded treewidth constitute one of the most effective weapons to attack NP
hard problems, namely, by recognizing and efficiently solving large classes of tractable problem
instances. Structural problem decompositions such as treewidth are thus closely related to fixed-
parameter tractability [19, 37].

Tree and Path Decompositions. Formally, a tree decomposition of a graph G = (V,E) is a
pair P = (T, χ) such that T = (W,F ) is a tree or forest, and where the function χ associates to
every w ∈W a subset B ⊆ V such that

(1) for every vertex v in V there is a vertex w ∈W with v ∈ χ(w);
(2) for every edge (v1, v2) in E there is a vertex w ∈W with {v1, v2} ⊆ χ(w); and
(3) for every vertex v in V the set {w ∈W | v ∈ χ(w)} induces a subtree of T .
Condition (3) is called the connectedness condition. The subsets B associated with the vertices
of W are called bags. The width of a tree decomposition is maxw∈W (|χ(w)| − 1). The treewidth
tw(G) of G is the minimum width over all its tree decompositions.

A path decomposition of a graph is a tree decomposition where T = (W,F ) actually consists
of a simple root-leaf path. The pathwidth pw(G) of a graph is the minimum width over all its
path decompositions.

Several variants and generalizations of treewidth have been introduced, for an overview
see [44]. For example, the notion of treewidth is easily generalized from graphs to finite structures.
A finite structure A consists of a domain A, and relations R1, . . . , Rk of arities a1, . . . , ak, respec-
tively. Each such relation Ri consists of a set of tuples (r1, . . . , rai ) ∈ R where r1, ..., rai ∈ A.
A graph G = (V,E) corresponds to a finite structure whose domain is V , with a binary relation
E encoding the edges. If G is undirected, then E contains both pairs (v, w) and (w, v) for each
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edge {v, w} of G. Undirected graphs are thus represented as special cases of arbitrary (possibly
directed) graphs. The Gaifman graph of a structure A, is the undirected graph G(A) whose set
of vertices is the domain A of A and where there is an edge {a, b} iff a, b ∈ A and a 6= b, and there
exists a tuple in one of the relations of A in which a and b occur jointly. A tree decomposition
of the structure A is a tree decomposition for the Gaifman graph, G(A). The treewidth tw(A) of
a structure A is defined accordingly, i.e., tw(A) = tw(G(A)). Similarly, the pathwidth pw(A) is
defined as pw(G(A). The treewidth tw(C) (pathwidth pw(C)) of a class C of finite structures is
the maximum over all tw(A) ( pw(A)) for A ∈ C. A tree decomposition of a hypergraph H is
a tree decomposition of the primal graph G(H) of H, which has the same vertices as H and an
edge between each pair of vertices that jointly occur in a hyperedge of H.

It is NP hard to determine the treewidth of a structure A. However, for each fixed k,
checking whether tw(A) ≤ k, and if so, computing a tree decomposition for A of optimal width,
is achievable in linear time [5], and was recently shown to be achievable in logarithmic space [20].
Even though the multiplicative constant factor of Bodlander’s linear algorithm [5] is exponential
in k, there are algorithms that find exact tree decompositions in reasonable time or good upper
approximations in many cases of practical relevance, see for example [7, 8] and the references
therein.

The treewidth of a graph or relational structure is an invariant that can be used as a param-
eter to define infinite classes of graphs (or structures) related to problem instances. Many NP
hard problems of practical relevance can be solved in polynomial time on instances of bounded
treewidth and some are actually fixed-parameter tractable with respect to treewidth. Given
that bounded pathwidth implies bounded treewidth, these results hold a fortiori for bounded
pathwidth. The notion of treewidth is at the base of strong meta-theorems such as Courcelle’s
Theorem [13], which states that any problem expressible in monadic second-order logic (MSO)
over structures of bounded treewidth can be solved in linear time (or, by a recent result, in log-
arithmic space [20]). Many problems, e.g. the 3-colorability of graphs, are very easily expressed
in terms of MSO, and thus Courcelle’s theorem turns out to be a very effective tool for obtaining
tractability results.

Hypergraph Decompositions The structure of a computational problem is sometimes better
described by a hypergraph than by a graph. Therefore, various width-notions for hypergraphs
have been defined and studied, and often these are more effective than simply considering the
associated primal graph. In particular, the notion of hypertree width, which is based on hypertree
decompositions [24, 31, 1], is an appropriate measure for the degree of acyclicity of a hyper-
graph. Bounded hypertree width generalizes the concept of α-acyclic hypergraphs developed by
Fagin [21]. In essence, a hypertree decomposition of width k for a hypergraph H can be obtained
from a suitable tree decomposition of G(H) by covering each bag with at most k hyperedges of H.
However, under this definition, which actually defines the concept of generalized hypertree width,
ghw(H), of a hypergraph H, it is unfortunately NP-hard to determine whether a hypergraph
has width ≤ k for k = 3 [32]. Therefore, to define the actual concept of hypertree width, an
additional condition is imposed that ensures the tractability of computing hypertree decomposi-
tions of low width (for details, see [24]). Bounded hypertree width is strictly more general than
bounded treewidth because there exist families of hypergraphs with bounded hypertree width
whose treewidth is unbounded.

A number of practically relevant problems become tractable for instances whose associ-
ated hypergraphs have low hypertree width. Examples are constraint satisfaction problems
(CSPs) [16, 29], see Section 3.1 for a definition, and combinatorial auctions [26]. Very roughly,
CSPs of bounded hypertree-width are loosely constrained and therefore tractable. CSPs may
also become tractable because their associated hypergraphs are –in a precise sense– tightly con-
strained. Formally this was captured by the entropy-based measure of fractional edge cover [39].

STACS’11



14 Structural Decomposition Methods and What They are Good For

CSPs whose associated hypergraphs are of bounded fractional edge cover number are tightly
constrained and can be solved in polynomial time. Combining hypertree decomposition with
fractional edge covers yields fractional hypertree decompositions [39], a decomposition method
that is more general than both hypertree decompositions and fractional edge covers. While hy-
pertree decompositions will be considered again in Section 3.1, this paper mainly deals with tree
and path decompositions.

Structure of the Paper. The rest of the paper is structured as follows. In the next section,
we present a taxonomy of the main uses of tree decomposition in Computer Science. We will
distinguish between two main categories (categories 1 and 2) and four sub-categories (1.a, 1.b,
2.a, and 2.b) of applications of tree decompositions. In Section 3, we give examples of problems
that fall into the categories 1.a, 1.b, and 2.a, respectively. In section 4, we describe a relevant
version of the Partner Unit Problem (Pup) and report about our recent result [3] showing that
the problem falls in category 2.b and is therefore tractable.

2 Taxonomy of Main Uses of Tree Decompositions

One may distinguish between two main usages of tree decompositions, each of which can be
subdivided in turn into two sub-cases. The following taxonomy will be illustrated with concrete
examples in the next sections. When we speak about the treewidth of a problem instance, we
mean the treewidth of some graph associated with the instance. Obviously, for each concrete
problem, one has to indicate what this graph is, and, whenever necessary, how it can be obtained
from the instance.

1. Proving a problem tractable for instances of bounded treewidth. This is probably the main
use of treewidth. The idea is that many practically relevant classes of inputs actually have
bounded treewidth, and that for such classes, a polynomial algorithm can be designed. We
distinguish between general tractability results and fixed-parameter tractability (FPT) re-
sults:
1.a General tractability results. We are able to show that the problem becomes tractable, but

the best known polynomial algorithms are of complexity Ω(nf(k)), where limk→∞ f(k) =
∞. In many such cases it can actually be proven that the problem is fixed-parameter
intractable with respect to the treewidth parameter k. A typical problem in this category,
is the CSP problem, which we will discuss in more detail in the next section.

1.b Fixed-parameter tractability results. This is the case if there exists a function f such that
the problem is solvable in time f(k)×nO(1) on instances of treewidth ≤ k. If the problem
is actually solvable in time f(k)×O(n), then we speak about fixed-parameter linearity. In
particular, fixed-parameter linearity results can be obtained whenever Courcelle’s Theorem
can be applied. To illustrate this, we will discus the Multicut problem in the next section.

2. Using treewidth as a tool for proving a problem to be generally tractable (on all instances).
There are a number of cases where treewidth is used as a tool in general tractability proofs.
Again, we may distinguish between two sub-cases:
2.a Proving that a problem is tractable both for small and large treewidth. For some problems

having some associated implicit or explicit parameter c, it can be shown that there exists
a function f such that the problem is tractable both for instances having treewidth ≤ f(c)
and also for instances having treewidth > f(c). The tractability proof for low treewidth is
usually completely different from the tractability proof for high treewidth. As an example
for this category, we will review the problem of checking whether a loop-free undirected
graph has a cycle of length 0 mod c, where c is a fixed constant. This problem was shown
to be tractable by Thomassen [53].
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2.b Proving that all yes-instances of a problem have bounded treewidth and that the problem is
tractable for this reason. Here, for some explicit or implicit constant parameter c associated
with the problem, one is able to find a function t, such that all yes-instances of the problem
must have treewidth ≤ t(c). Moreover, one shows that for instances of bounded treewidth
the problem is polynomially solvable. Note that this is actually a very special case of
Case 2.a. In fact, this means that the high-treewidth case is trivially tractable, because
all instances of high treewidth are no-instances. As an example for this category, we will
report in Section 4 about a new result related to the Partner Unit Problem (Pup), a
problem of industrial relevance [22].

3 Examples for Tractability Results Based on Bounded Treewidth

As announced, this section contains examples for the usages of bounded treewidth as described
under categories 1.a, 1.b, and 2.a. We start with a very brief review of the Constraint Satisfaction
Problem (CSP) in Section 3.1. We then describe the Multicut problem and illustrate how a nice
generalization of Courcelle’s Theorem can be used to show that Multicut is FPT on instances
of bounded treewidth. Finally, in Section 3.3 we review Thomassen’s famous result stating that
it can be determined in polynomial time whether a graph has an even cycle, and more generally,
whether a graph has a cycle of length 0 mod c where c is a fixed constant. Our presentation
of all these problems and results is necessarily very brief, but we include references to literature
containing a full treatment and many more results.

3.1 The Constraint Satisfaction Problem
The efficient solution of Constraint Satisfaction Problems (CSPs) has for many years been an
important goal of AI research and of related disciplines, in particular, Operations Research and
Database Theory.

An instance of a constraint satisfaction problem (CSP) (also constraint network) is a triple
I = (Var, U, C), where Var is a finite set of variables, U is a finite domain of values, and C =
{C1, C2, . . . , Cq} is a finite set of constraints. Each constraint Ci is a pair (Si, ri), where Si is
a list of variables of length mi called the constraint scope, and ri is an mi-ary relation over U ,
called the constraint relation. (The tuples of ri indicate the allowed combinations of simultaneous
values for the variables Si). A solution to a CSP instance is a substitution θ : Var −→ U , such
that for each 1 ≤ i ≤ q, Siθ ∈ ri. The problem of deciding whether a CSP instance has any
solution is called constraint satisfiability (CS). Many well-known problems in Computer Science
and Mathematics can be formulated as CSPs. For example, the famous problem of graph three-
colorability (3COL), i.e., deciding whether the vertices of a graph G = 〈Vertices,Edges〉 can be
colored by three colors (say: red, green, blue) such that no edge links two vertices having the
same color, can be formulated as a CSP as follows. The set Var contains a variable Xv for
each vertex v ∈ Vertices. For each edge e = 〈v, w〉 ∈ Edges, the set C contains a constraint
Ce = (Se, re), where Se = 〈Xv, Xw〉 and re is the relation r6= consisting of all pairs of different
colors, i.e., r6= = {〈red, green〉, 〈red, blue〉, 〈green, red〉, 〈green, blue〉, 〈blue, red〉, 〈blue, green〉}.

It is well-known, and easy to see, that Constraint Satisfiability is an NP-complete problem.
Membership in NP is obvious. NP-hardness follows immediately, e.g. from the NP hardness of
3COL. It is also well-known [4, 43, 15] that the CSP is equivalent to various database problems,
e.g., to the problem of evaluating Boolean conjunctive queries over a relational database.

To any CSP instance I = (V ar, U, C), we associate a hypergraph H(I) = (V,H), where
V = V ar, and H = {var(S) | C = (S, r) ∈ C}, where var(S) denotes the set of variables in the
scope S of the constraint C. The graph G(I) associated with a CSP is the primal graph G(H(I))
of the hypergraph H(I). Note that if all constraints of a CSP instance I are binary, then its
associated hypergraph H(I) is identical to its graph G(I).

STACS’11



16 Structural Decomposition Methods and What They are Good For

The following result (for treewidth) was implicit in work of Dechter and Pearl [17] based on
Freuder (see [29] for clarifications). It was explicitly stated by Kolaitis and Vardi (Theorem 5.4
in [46]) and, by Chekuri and Rajaraman[12], who considered a slightly different graph associated
to a CSP-instance I. The more general version for bounded hypertree width was proven in [24].

I Theorem 1. CSPs of bounded treewidth and CSPs of bounded hypertree width are tractable.

Since bounded treewidth implies bounded hypertree width [24, 29], it is sufficient to consider
the proof for bounded hypertree width. A detailed exposition is given in the proof of Theorem 21
of [46]. Essentially it is shown that a CSP instance I of hypertree width k can be transformed in
time O(nk) into an instance I∗ of size nk, where n is the size of I, whose associated hypergraph
is acyclic. I∗ can then be solved by using Yannakakis’ well-known method for answering acyclic
queries [54]. The total time for solving I is shown to be nk+1 logn.

It is natural to ask whether we could achieve fixed-parameter tractability (FPT) by finding
a better algorithm which would allow us to get rid of the constant k in the exponent of n, and
thus to replace the runtime bound by some expression f(k)× nc for a function f and a constant
c independent of k. Unfortunately, this appears to be very unlikely. In fact, the problem of
evaluating Boolean conjunctive queries, which is identical to the CSP problem, is easily shown to
be fixed-parameter intractable (more precisely, W [1]-hard) with respect to either parameter, the
query size or the number of variables [50], see also [38, 18]. It is therefore a fortiori FP-intractable
with respect to the treewidth parameter, given that any k-variable CSP has treewidth at most
k − 1. This makes the CSP a prime example for a problem in category 1.a of our classification.

The precise complexity of solving CSPs (or answering conjunctive queries) of bounded treewidth,
or hypertree width, is as follows [30, 24]:

I Theorem 2. Deciding satisfiability for CSP instances of bounded treewidth or bounded hypertree
width is LOGCFL-complete.

Given that LOGCFL is a class of highly parallelizable problems included in the well-known
very low classes AC1 and NC2, this shows that even though FP-intractable in case of bounded
treewidth, the problem is efficiently parallelizable. A concrete parallel algorithm can be obtained
by combining the transformation of the original CSP instance of bounded treewidth, I, into an
acyclic CSP instance I ′ (see [29]) (which is an AC0-reduction) with the Db-Shunt algorithm
described in [30].

By results of Grohe, Schwentick, and Segoufin [40], for CSPs of bounded arity (i.e., whose
constraint scopes and relations are of bounded arity, but otherwise unrestricted), it was shown
that bounded treewidth is actually the best possible tractability criterion: a class of CSP in-
stances of bounded arity is tractable if and only if it has bounded treewidth. However, when the
constraints can have unbounded arity, bounded treewidth is a sub-optimal tractability criterion
and is dramatically outperformed by bounded hypertree width. But, as already alluded to in the
introduction, there are yet more powerful decomposition methods, such as fractional hypertree
decompositions [39]. Even bounded fractional hypertree width does not seem to be an optimal
structural tractability criterion. An optimal criterion was very recently established by Marx
in [48], however, this criterion imposes conditions not only on the constraint scopes, but also on
the constraint relations, and is thus of a different, less "structural" type. Finally, let us observe
that it may be useful to consider hypertree decompositions or their generalizations, rather than
just tree decompositions, even in the case of bounded arities. In fact, in Theorem 16 of [33] it
was shown that each CSP instance I having n variables is of hypertree width ≤ bn/2c+ 1, while
its treewidth may actually be n− 1.
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3.2 Network Multicut Problems
We now illustrate category 1.b of our taxonomy by a number of variants of the well-known
Multicut problem.
Multicut problems and their complexity. Multicut problems are highly relevant to the
field of network design. The smallest size of a multicut reveals the robustness and stability of a
network with multicommodity flows. Given a set H ⊆ V 2 of pairs of terminal vertices of a graph
G = (V,E), several forms of Multicut have been considered and have given rise to complexity
studies [9, 14, 23, 42, 41, 47, 49].

A large part of the literature deals with the Edge Multicut variant in which the solution
is a set of edges E′ ⊆ E that, if removed, separate every terminal pair. Variants in which sets
of vertices are removed, such as Unrestricted Vertex Multicut, wherein any vertices can
appear in the solution set V ′, and Restricted Vertex Multicut, wherein no terminal vertices
can appear in the solution set, have also been studied [9]. Formal definitions of these versions of
Multicut are given below.

In 2006, Guo et al. [41] present an algorithm which solves all three of the variants of the
problem in polynomial time given two constant parameters, the cardinality of the set of terminal
pairs, |H|, and the treewidth ω of G.

In [28], Gottlob and Tien Lee introduced a new single parameter for which all variants of
Multicut are FPT. This unique parameter is the treewidth ω∗ of the input structure A =
(V,E,H), which is equal to the treewidth of the graph (V,E ∪ H). These more recent FPT-
results are proved by using a powerful extended version of Courcelle’s theorem due to Arnborg,
Lagergren, and Seese [2]. By formulating Multicut in such an extended MSO, the considered
Multicut problems are shown to be FPT with respect to ω∗. Note that if the input graph has
bounded treewidth, and if H has bounded cardinality, then, obviously, the entire input structure
A = (V,E,H) also has bounded treewidth ω∗. However, ω∗ can be bounded even in cases where
G has bounded treewidth but H has unbounded cardinality. The FPT results for bounded ω∗
are thus a strict generalization of the results by Guo et al. [41]. These findings demonstrate that
powerful logical tools such as the extended version of Courcelle’s master theorem by Arnborg,
Lagergren, and Seese [2] can be applied to advance the state of the art in network multicut theory
and can help identify parameters of interest in complexity analysis.
Formal definitions of multicut problems. We now define the various different versions of
the MULTICUT problem mentioned earlier. The Edge Multicut problem is formally defined
as follows:

I Definition 3. Edge Multicut (EMC)

Input: An undirected graph G = (V,E), and H ⊆ V ×V a collection of pairs of vertices.
Task: Find a minimal cardinality set E′ ⊆ E whose removal disconnects each pair in H.

The vertex variants of the problem were identified by Calinescu et al. [9] and they are defined as:

I Definition 4. Unrestricted Vertex Multicut (UVMC)

Input: An undirected graph G = (V,E), and H ⊆ V ×V a collection of pairs of vertices.
Task: Find a minimal cardinality set V ′ ⊆ V whose removal disconnects each pair in H.

If H is a set of pairs of elements, we denote by H0 the set of all elements occurring in some pair
of H, i.e., H0 = {x|∃y : (x, y) ∈ H ∨ (y, x) ∈ H}.

I Definition 5. Restricted Vertex Multicut (RVMC)

Input: An undirected graph G = (V,E), and H ⊆ V ×V , a collection of pairs of vertices.
Task: Find a minimal cardinality subset V ′ ⊆ V where V ′ ∩H0 = ∅ and whose removal
disconnects each pair of vertices in H.
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18 Structural Decomposition Methods and What They are Good For

It has been shown that all three forms of the problem are NP-complete for general graphs [14, 9]
and remain hard even for graphs with bounded treewidth [23, 9].

A strong master theorem by Arnborg, Lagergren, and Seese. Before showing that
the problems become FPT for inputs of bounded treewidth ω∗, we present a strong and most
useful generalization of Courcelle’s Theorem by Arnborg, Lagergren, and Seese [2]. Let us refer
to the version of MSO where second-order quantification is restricted to sets of domain elements
(e.g., sets of vertices of the input graph) as MSO1. Note that Courcelle [13] and other authors
considered an extended version of MSO called MSO2 which extends MSO1 by the possibility of
quantifying over subsets of any relation of the input structure, e.g., sets of edges of an input
graph. Thus, for example, if a relational symbol R is part of the problem signature, then a
subformula (∃X ⊆ R)ϕ(X), expressing that there exists a subset X of the relation R such that
ϕ(X) holds for some formula ϕ, could be part of an MSO2 formula. Courcelle’s Theorem is
actually valid for MSO2 (and thus, in particular, for MSO1). Arnborg, Lagergren and Seese [2]
considered an important extension of MSO2, called extended MSO that can be used to formulate
optimization and counting problems. They proved that solving problems expressible in this form
over input structures is FPT with respect to the treewidth of these input structures.

While in the original setting in [2], extended MSO properties were defined in a much more
general context, it is sufficient for our purposes to state a drastically simplified definition and,
accordingly, a simplified master theorem (Theorem 7). By optimization we here understand the
search for a minimum or maximum solution according to some cardinality criteria. The solution
itself is an “optimal” assignment of sets to second-order variables that freely occur in some MSO
formula, such that the formula is satisfied over a given input structure. More precisely:

I Definition 6 (simplified version of a definition in [2]). An optimization problem is an extended
MSO cardinality optimization problem if it can be expressed in the following form. The input of
the problem is a a structure A = (V,E,H), where V is a set (the universe of A), and E and
H are binary relations over elements of V . Let ϕ(X) be a fixed MSO1 or MSO2 formula over
A, where X is either a free set variable ranging over subsets of V , or a binary relation variable
ranging over subsets of E. The task is to find an assignment1 among all possible assignments z′
to the variable X such that:

|z(X)| = opt{|z′(X)| : (A, z′) |= ϕ(X)}

where opt is either min or max. A suitable assignment z is called a solution to the extended
MSO cardinality optimization problem.

Using this definition, Arnborg, Lagergren and Seese found the following important fixed-
parameter tractability result [2]:

I Theorem 7. Solving extended MSO cardinality problems is fixed-parameter tractable w.r.t. the
treewidth of the input structure. In particular, for a fixed extended MSO cardinality optimization
problem P , and a class C of input structures whose treewidth is bounded by some constant, the
following can be done in linear time:

Determine whether P has a solution for an input from C.
Compute a solution for an input from C, if one exists.

Applying the master theorem to multicut problems. We first define a useful formula that
states that two vertices x and y are connected by a path that lies entirely in a set S of vertices.

1 An assignment z to the variable X is an interpretation of X that maps X to a subset z(X) of V if X
is unary and a subset of E if X is binary.
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I Definition 8. On structures A = (V,E,H) as above, let connects(S, x, y) be defined as follows:

S(x) ∧ S(y) ∧ ∀P((P (x) ∧ ¬P (y))→ (∃v∃w (S(v) ∧ S(w) ∧ P (v) ∧ ¬P (w) ∧ E(v, w)))).
I Lemma 9 ([28]). Over a structure A = (V,E,H) as above, the formula connects(S, x, y) states
that there is a path in (V,E) that connects vertex x to vertex y, and this path lies entirely in S.
In particular, this is also true for directed graphs.

I Theorem 10 ([28]). The problems UVMC, RVMC, and EMC are fixed parameter linear with
respect to the treewidth ω∗ of the input structure (V,E,H).

Proof. (Sketch.) We outline the proof for UVMC. The problem UVMC can in fact be expressed
as an extended MSO cardinality optimization problem in the following way: Find an assignment
z ⊆ V to set variable X such that |z(X)| = min{|z′(X)| : 〈V,E,H, z′〉 |= uvmc(X)}, where
uvmc(X) is an MSO1 expression defined as:

uvmc(X) ≡ ∀x∀y(H(x, y)→ ∀S(connects(S, x, y)→ ∃v(X(v) ∧ S(v)))).
In words, the formula uvmc(X) defines X to be such that for each pair (x, y) ∈ H (i.e., for
each pair (x, y) that must be disconnected), whenever there is a set S of vertices from V that
contains a path from x to y, then X must intersect S, i.e. contain some vertex from S. In [28] it is
formally proven that uvmc(X) is true iff the set X is an unrestricted vertex multicut of (V,E,H).
The theorem then follows immediately from Theorem 7. Slight variants of this proof yield the
corresponding FPT results for RVMC and EMC. For EMC, quantification over subsets of the
edge relation is used. For details, see [28]. J

Master theorems such as Courcelle’s and the one of Arnborg, Lagergren and Seese are con-
structive and can be used for the implementation of model-checking tools such as MONA [45]
that directly interpret an MSO-formulation of a problem, or directly compile an MSO-formula
into a solution algorithm. However, in order to obtain more efficient algorithms and better upper
bounds it is currently still advisable to attempt a more detailed ad hoc analysis of the problem
at hand, once the master theorems show us they are FPT. The above FPT-results, for example,
were used by Pichler, Rümmele and Woltran [51] as a starting point for the design of very effec-
tive algorithms and for the derivation of rather low complexity bounds for Multicut problems
on inputs of low treewidth. In the future we may expect new tools that are able to automatically
compile algorithms and bounds of a similar quality. As an intermediate step, we believe that it
is rewarding to replace MSO by equally expressive but much simpler (and better optimizable)
languages for expressing a problem. One such candidate is the monadic fragment of the well-
known Datalog language [11, 10]. It was recently shown in [35] that over structures of bounded
treewidth, when a tree decomposition is provided, monadic Datalog is exactly as expressive as
MSO. As illustrated in [34, 36], many problems of practical relevance can be easily encoded in
monadic Datalog, and special interpreters that execute monadic Datalog programs over struc-
tures of bounded treewidth turned out to be much more efficient than MONA fed with the MSO
formulas that are logically equivalent to those Datalog programs. For a further discussion, see
Section 5 of [34].

3.3 The Even Cycle Problem
The EVEN CYCLE PROBLEM (ECP) is the problem of determining whether a loop-free
undirected graph has an even cycle. The tractability of ECP was open for a long time, until
Carsten Thomassen proved it polynomial [53]. Actually, Thomassen proved the following more
general result regarding the problems mCP of whether a loop-free undirected graph has a cycle
of length 0 modulo m, where m is a fixed positive integer.
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I Theorem 11 ([53]). For each integer m > 0, mCP is decidable in polynomial time.

As the following proof outline shows, the proof is according to the pattern of Case 2.a in our
taxonomy.

Proof. (Outline.) First it is shown that on graphs G = (V,E) of bounded treewidth, mCP is
tractable. With Courcelle’s theorem this is very easy; it is sufficient to note that mCP can be
expressed in MSO. (Given that Courcelle’s Theorem was not known, Thomassen gave a slightly
more involved ad hoc proof.)

The second part deals with input graphs of "large" treewidth. It is proven that for each fixed
m, a number t(m) can be determined, such that all graphs of treewidth > t(m) must actually
have a cycle whose length is a multiple of m. Thus, for the specific problem mCP, all instances
of "high" treewidth are actually yes-instances. In particular, it is shown by using Robertson’s and
Seymour’s result [52] that t(m) can always be chosen large enough such that G must contain a
subdivision of a grid H, which, in turn, must contain a cycle whose length is a multiple of m. J

In a similar fashion, while classifying the complexity of model checking for all prefix-classes
of existential second-order logic (ESO) over graphs, it was shown in [27] that evaluating fixed
closed formulas of type ∃R1, . . . Rk ∀x∃y φ(V,E,R1, . . . , Rk, x, y) over a loop-free undirected
input graph (V,E), where R1 . . . , Rk are existentially quantified relation symbols of arbitrary
arity, and where φ(V,E,R1, . . . , Rk, x, y) is a quantifier-free first order formula, is feasible in
polynomial time. Note that this generalizes Thomassen’s theorem, given that for each m, the
problem mCP can be expressed by an ESO formula of this type.

4 The Partner Units Problem

In this section, we describe the Partner Units Problem (Pup). First, in Section 4.1, a general
version of the problem is given, which is, however, intractable. In Section 4.2 we describe a special
version of the Pup which is of particular industrial relevance. It is for this special case that we
were able to establish tractability by exploiting the result that all yes-instances must necessarily
have bounded pathwidth (and thus bounded treewidth). It is thus the special case which serves
as a paradigmatic example of a problem in category 2.b of our taxonomy. In Section 4.2.4 we then
report on a prototypical implementation for the special case that already could solve benchmark
instances beyond the reach of the heuristic methods and "engineering approaches" previously used
to solve this problem. This section gives only a short summary; the original work underlying this
section, as well as detailed proofs can be found in [3].

4.1 Definition of the Partner Units Problem and Basic Facts
The Partner Units Problem (Pup) has recently been proposed as a new benchmark configuration
problem [22]. It captures the essence of a specific type of configuration problem that frequently
occurs in industry.

Informally it can be described as follows: Consider a set of sensors that are grouped into
zones. A zone may contain many sensors, and a sensor may be attached to more than one zone.
The Pup consists of connecting the sensors and zones to control units. These control units can
be connected to the same fixed maximum number UnitCap of zones and sensors.2 Moreover, if a
sensor is attached to a zone, but the sensor and the zone are assigned to different control units,

2 For ease of presentation we assume that UnitCap is the same for zones and sensors.
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then the two control units in question have to be (directly) connected. However, a control unit
cannot be connected to more than InterUnitCap other control units (the partner units).

The Pup occurs e.g. in the following application domain: Consider a museum where we want
to keep track of the number of visitors that populate certain parts (zones) of the museum. To
this end the doors leading from one zone to another are equipped with sensors. To keep track of
the visitors the zones and sensors are attached to control units; the adjacency constraints on the
control units ensure that communication between control units can be kept simple. It is worth
pointing out that the Pup is not limited to this application domain: It occurs whenever sensors
that are grouped into zones have to be attached to control units, and communication between
units should be kept simple.

Figure 1 shows a Pup instance and a solution for the case UnitCap = InterUnitCap = 2 —
six sensors (left) and six zones (right) which are completely inter-connected are partitioned into
units (shown as squares) respecting the adjacency constraints. Note that for the given parameters
this is a maximal solvable instance; it is not possible to connect a new zone or sensor to any of
the existing ones.

Figure 1 Solving a K6,6 Partner Units Instance — Partitioning Sensors and Zones into Units

More formally, the Pup consists of partitioning the vertices of a bipartite graphG = (V1, V2, E)
into a set U of bags such that each bag

contains at most UnitCap vertices from V1 and at most UnitCap vertices from V2; and
has at most InterUnitCap adjacent bags where the bags U1 and U2 are adjacent whenever
vi ∈ U1 and vj ∈ U2 and (vi, vj) ∈ E.

To every solution of the Pup we can associate a solution graph. For this we associate to every
bag u ∈ U a vertex u′ ∈ U ′. Then the solution graph G∗ has the vertex set V1 ∪ V2 ∪U ′ and the
set of edges {(v, u′) | v ∈ u ∧ u ∈ U} ∪ {(u′i, u′j) | ui and uj are adjacent.}. In the following we
will refer to the subgraph of the solution graph induced by the u′ as the unit graph.

The reasoning tasks for Pup instances that we consider in this paper are the following:
Decide whether there is a solution (Pudp).
Find a solution (Pusp).
Find an optimal solution; i.e. one that uses the minimal number of control units (Puop).

The rationale behind the optimization version is that (a) units are expensive, and (b) connections
are cheap. Especially the case where the maximum number InterUnitCap of connections between
units is limited to two is of great interest for our partners in industry.
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By a reduction from BinPacking it can be shown that Puop is NP-complete [3] when
InterUnitCap = 0, and UnitCap is part of the input. We also observe [3] that a Pup instance has
no solution if it containsK1,n orKn,1 as a subgraph, where n = ((InterUnitCap+1)∗UnitCap)+1.

4.2 A Special Case: InterUnitCap = 2
We now turn to the announced special case, which consists of Pups where InterUnitCap = 2, i.e.
the number of neighbors of any given unit in a solution is bounded by 2. This special version of
the Pup, which is of high industrial relevance, can be directly tackled. We will do this by giving
an algorithm that decides this version of the Pup in NLogSpace by exploiting the notion of a
path decomposition of a given graph.

For ease of presentation in the sequel we make the simplifying assumption that the underlying
bipartite graph is connected. This does not affect solutions of the Pudp and the Pusp, where
the connected components can be tackled independently. For optimal solutions, however, the
connected components of an underlying graph will have to be considered simultaneously; cf. the
discussion in section 4.2.3.

4.2.1 Basic Properties of the Pup (Special Case)
We proceed by identifying basic properties of the Pup in the special case. The key observation
is that the units and their interconnections form a special kind of unit graph in any solution:
either a simple path, or a simple cycle. This holds because each unit is connected to at most two
partner units. Moreover, cycles are more general unit graphs than paths: Every solution can be
extended to a cyclic solution; hence in the sequel we only consider cyclic solutions.

Exploiting this observation we can transform the Pup into the problem of finding a suitable
path decomposition P of the zones-and-sensors-graph G:

I Theorem 12 (Pup is Path-Decomposable). Assume a Pup instance given by a graph G =
(V1, V2, E) is solvable with a solution graph G∗ with |U | = n. Let f be the unit function that
associates vertices from G to U . Then there is a path decomposition P = (P, χ) of G of pathwidth
≤ (3 ∗ 2 ∗UnitCap)− 1, with the following special properties:

(a) The length of P is n− 1; P = w1, . . . wn−1.
(b) There are sets S1 ⊆ V1, S2 ⊆ V2 with |Si| ≤ UnitCap such that S1∪S2 are in every bag of P.
(c) Apart from S1 ∪ S2 each bag contains at most 2 ∗ UnitCap elements from V1 (or V2, respec-

tively).
(d) For any vertex v ∈ V1 ∪V2 all neighbors of v appear in three consecutive bags of P (assuming

the first and last bag to be connected).
(e) For each bag χ(wi) of P it holds χ(wi) = f−1(U1) ∪ f−1(Ui) ∪ f−1(Ui+1) for 1 ≤ i ≤ n− 1.
(f) S1 = f−1(U1) ∩ V1 and S2 = f−1(U1) ∩ V2.

Proof. If G is solvable then there is a solution G∗ whose unit graph is a cycle U1, . . . , Un, U1.
Consider P = (P = w1, . . . , wn−1, χ) where χ(wi) = f−1(U1) ∪ f−1(Ui) ∪ f−1(Ui+1). This P is
indeed a path decomposition:

Every edge (v1, v2) is in some bag. Assume v1 and v2 are assigned to two different connected
units Ui and Ui+1. Then {v1, v2} ⊆ χ(wi).
The connectedness condition is satisfied: For the vertices connected to unit U1 the induced
subgraph is P . All other vertices occur in at most two consecutive bags.
Every bag in P contains ≤ (3 ∗ 2 ∗UnitCap) elements; hence pw(P) ≤ (3 ∗ 2 ∗UnitCap)− 1.

An optimal path decomposition of the complete bipartite graph Kn,n with n = 3 ∗UnitCap has
width (3 ∗ 2 ∗ UnitCap) − 1; cf. figure 1. Hence the bound is tight. The conditions (a − f) are
easily seen to hold for the path decomposition P constructed above. J
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Intuitively, the vertices in the sets S1 and S2 from condition (b) above are those that close
the cycle (i.e. that are connected to unit U1). These have to be in every bag as some of their
neighbors might only appear on the last unit Un.

4.2.2 An Algorithm for the Special Case

By Theorem 12 we know that if a Pup instance is solvable then there is a path decomposition with
specific properties. But we still need an algorithm for finding such suitable path decompositions.
Many algorithms for finding path decompositions of bounded width have been proposed in the
literature. But for the Pup we want to find path decompositions P with specific properties:

The paths should be short (the number of bags reflects the number of units); and hence,

The bags should be rather full (in "good" solutions the units will be filled up).

The construction of the bags must be interleaved with checking the additional constraints.

Below we introduce a novel algorithm that fits the bill; it is inspired by the algorithm for
finding hypertree decompositions from [24]. This non-deterministic algorithm does the following:
The bags on the path decomposition are guessed. The initial bag partitions the graph into a set of
remaining components that are recursively processed simultaneously. A single bag suffices to re-
member which part of the graph has already been processed; the bag separates the processed part
of the graph from the remaining components. Consequently, the current bag and the remaining
components can be stored in in logarithmic space, and the algorithm runs in NLogSpace. In
addition to the bags the unit function is guessed, too. According to condition (2d) of Theorem 12
all neighbors of any vertex in G occur in three consecutive bags in P. Hence, for checking locally
that the unit function is correct it suffices to remember three bags at each step.

A closer look reveals that it actually is enough to remember only U1 and two "first" and
"second" units Ui−1 and Ui. At each step the current bag’s content is then given by the union
of U1 with Ui−1 ∪ Ui. For the next step a third unit Ui+1 is guessed. All neighbors of vertices
assigned to the current second unit Ui are guaranteed to appear in Ui−1 ∪ Ui ∪ Ui+1. For the
current first unit Ui−1 this will already have been established (if i > 2); hence, in the next step
the new current first and second unit Ui and Ui+1 together with U1 are again a proper separator.
The neighbors of U1, however, are only guaranteed to appear somewhere on the first, second, or
last unit. Upon termination the current "second" unit is the last unit in the cycle. But in addition
to the first unit U1 the second unit U2 has to be stored throughout a run of the algorithm, too:

DecidePup(G)
1 Guess disjoint non-empty U1, U2 ⊆ V (G) with |Ui ∩ V1| ≤ UnitCap ≥ |Ui ∩ V2|
2 CR ← G \ (U1 ∪ U2)
3 if DecidePup (CR, 〈U1, U2〉, 〈U1, U2〉)
4 then ACCEPT
5 else REJECT
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DecidePup(CR, 〈U1, U2〉, 〈Ui−1, Ui〉)
1 if CR = ∅
2 then
3 if ∀v ∈ U1 nb(v) ⊆ U1 ∪ U2 ∪ Ui and

∀v ∈ Ui nb(v) ⊆ Ui−1 ∪ Ui ∪ U1
4 then ACCEPT
5 else REJECT
6 else
7 Guess non-empty Ui+1 ⊆ V (

⋃
CR) with |Ui+1 ∩ V1| ≤ UnitCap ≥ |Ui+1 ∩ V2|

8 For v ∈ Ui check nb(v) ⊆ (Ui−1 ∪ Ui ∪ Ui+1)
9 C ′R ← (CR \ Ui+1)

10 DecidePup (C ′R, 〈U1, U2〉, 〈Ui, Ui+1〉)

Using this algorithm in [3] we show the following:

I Theorem 13 (Tractability of Pudp). The decision problem for the Pup is solvable by the algo-
rithm DecidePup in NLogSpace for InterUnitCap = 2 and any given fixed value of UnitCap.

Answer Extraction

For actually obtaining a solution to a Pup instance we face the following problem: In general
it is not possible to remember the contents of all the bags in logarithmic space. Theoretically
this problem can be solved as follows: On a first accepting run of DecidePup we clearly can
remember the first bag’s contents in logarithmic space. We can then run DecidePup again with
a fixed first bag, and so forth. Hence the following holds:

I Theorem 14 (Tractability of Pusp). The problem of finding a solution to the Pup is solvable
in NLogSpace for InterUnitCap = 2 and any given fixed value of UnitCap.

Note that the problem of answer extraction disappears when actually implementing the non-
deterministic algorithm on a deterministic computer; cf. section 4.2.4.

Towards an Efficient Algorithm

We next make a number of observations that can be exploited to turn DecidePup into a prac-
tically efficient algorithm.
Guiding the Guessing Not all zones and sensors assigned to units have to be chosen randomly.
At most UnitCap neighbors of sensors and zones on the first unit can be assigned to the last
unit. Hence the following holds:3

|nbs(U1) \ (U1 ∪ U2)| ≤ UnitCap ≥ |nbz(U1) \ (U1 ∪ U2)|.

Moreover, the neighbors of U1 not assigned to U1 or U2 may only be guessed in the last step,
where the number of unprocessed sensors (or zones) is at most UnitCap.

Starting from i ≥ 2 we have the stronger:

(nbs(Ui) \ (Ui ∪ Ui−1)) ⊆ Ui+1 ⊇ (nbz(Ui) \ (Ui ∪ Ui−1)).

Finding Optimal Solutions First Next recall that "good" solutions correspond to short path
decompositions with filled-up bags. Moreover, the number of units used in the solution of a

3 We denote by nbs(U) the set of sensors adjacent to vertices in U .
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Pup instance G = (V1, V2, E) can always be bounded by lb = dmax (|V1|,|V2|)
UnitCap e from below and

ub = max (|V1|, |V2|) from above [3]. Hence we can apply iterative deepening search: First, try
to find a solution with lb units; if that fails increase lb by one. This has the effect that the first
solution found will be optimal. This yields the following:

I Corollary 15 (Tractability of Puop). On connected input graphs the optimization problem for
the Pup is solvable in NLogSpace.

In this context let us point out that branch-and-bound-search (on the number of units used)
does not work: E.g. a K6,6 graph does not admit solutions with more than three units.
Symmetry BreakingWe already observed that cycles are more general unit graphs than paths.
But with cycles for unit graphs there is rotational symmetry: For a solution with unit graph
U1, . . . , Un, U1 there is a solution U2, . . . , Un, U1, U2, etc.. We can break this symmetry without
additional computational cost by requiring that

the first sensor is assigned to unit U1; and
the second sensor appears somewhere on the first half of the cycle.

4.2.3 Puop and Multiple Connected Components
Next let us discuss the problem of finding optimal solutions when the input graph consists of more
than one connected component. Here, part of the problem is that any two connected components
may either have to be assigned to the same, or to two distinct unit graph(s). A priori it is unclear
which of the two choices leads to better results. E.g. if we assume that UnitCap = 2 then two
K3,3 should be placed on one cyclic unit graph, while two K6,6 must stand alone. In [3] we are
able to show the following:

I Theorem 16 (Tractability of Puop on Multiple Connected Components). For InterUnitCap = 2
and any given value of UnitCap the optimization problem for the Pup on multiple connected com-
ponents is solvable in NLogSpace if there are only logarithmically many connected components
in the input graph.

4.2.4 Implementation and Evaluation
We prototypically implemented the DecidePup algorithm in Java, replacing the non-determinism
by a backtracking search mechanism. A detailed description of the procedure is beyond the scope
of this paper. However, in [25] a deterministic backtracking version of the non-deterministic hy-
pertree decomposition algorithm from [24] is described, and the issues we face when making
DecidePup deterministic are very similar. Suffice it to say the following: To avoid repeated
sub-computations we store those pairs of bags and remaining components (represented by unas-
signed neighbors) that could not be decomposed. We don’t store successful pairs — the first such
pair occurs when finding a solution. As there are only polynomially many such pairs the overall
runtime of the algorithm is polynomial [3]. Finally observe that for the backtracking search we
have to store the choices made, and hence answer extraction is easy.

We have evaluated our algorithm on a set of benchmark instances that we received from our
partners in industry. Using our prototypical implementation we could solve many instances that
were beyond the reach of the previously used heuristic methods and engineering approaches [3].

5 Conclusion

In this work we have reviewed structural problem decomposition methods, such as path-, tree-,
and hypertree decompositions. We have introduced a taxonomy of usages of treewidth for proving
tractability results, and illustrated each category by an example. In particular, we have shown
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that treewidth (or pathwidth) can be applied in two distinct main ways: Either to show that a
problem is efficiently solvable when a width parameter is fixed, or to prove that the unrestricted
(or some width-parameter free) version of a problem is tractable by using a width-notion as a
mathematical tool for directly solving the problem at hand.

As a show case for the latter usage we have reported on some recent results concerning
the Partner Units Problem, a type of configuration problem that was proposed to us by an
industrial partner. We have shown that, while the Pup is intractable in general, the notion of a
path decomposition can be used to obtain a polynomial algorithm for a highly relevant special
case. Our prototypical implementation of the respective DecidePup algorithm could solve many
previously unsolvable problem instances.

There is still significant work to be done on the Pup:
We need to analyze the cases with InterUnitCap = k and UnitCap = m for fixed constants
k > 2,m.
We would like to find better algorithms for the NP-hard general case (when InterUnitCap
and UnitCap are unbounded).
We have not yet exploited heuristics for the search.
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