
Model Driven Development of Distributed
Business Applications
Wolfgang Goerigk

b+m Informatik AG
Rotenhofer Weg 20, D-24109 Melsdorf, Germany
wolfgang.goerigk@bmiag.de

Abstract
The present paper presents a model driven generative approach to the design and implementation
of destributed business applications, which consequently and systematically implements many
years of MDSD experience for the software engineering of large application development projects
in an industrial context.

Keywords and phrases MDSD, Software Architecture, Modelling, Code Generation

Digital Object Identifier 10.4230/OASIcs.KiVS.2011.211

1 Introduction

MDSD (Model-Driven Software Development) is a generic term covering methods and
techniques used to automatically generate executable software or other software related
artefacts from formal models [4].

The MDSD platform b+m gear Java (gear) is the result of many years of experience
with enterprise application development using various MDSD tool chains. gear supports the
classical 3 tier architectural layers, i.e. entity, service and front end, and also a workflow
partition similar to the BPMN (Business Process Modeling Notation). gear focusses on
business software and in particular on client/server applications, and it is designed to support
several non functional and technical requirements like e.g. safe distributed transaction
handling or business driven historization. b+m gear Java is based on the Eclipse Modeling
Project [2] and the well known generator framework openArchitectureware [3], which has
originally been initiated and founded by the b+m Informatik AG. Since 2003 it is an open
source framework and it is now part of the Eclipse Modeling Project.

2 Model Driven Development Using b+m gear Java

A comprehensive description of MDSD can be found in [4]. In the talk we will discuss the
model driven software engineering approch and its maturity and state of the art in more
detail. In the paper we want to focus on modeling and some technical advantages of the
architecture centric generative software development process. Figure 1 depicts the so far
supported DSL partitions and underlying platforms of gear:

Entity is used to model the persistence layer. OR mappers (like e.g. Hibernate) are used to
generate database schemata and access code. The entity partition declaratively supports
historization (cf. below).

Service is used to model business services and entity access. The service partition guarantees
safe distributed transactions and uses the Java Transaction API (cf. below).

Frontend is used to model screen flows, which are coupled synchronously or asynchronously.
From screen flow models, JavaServer Faces (JSF) and Spring WebFlows are generated.

© Wolfgang Goerigk;
licensed under Creative Commons License NC-ND

17th GI/ITG Conference on Communication in Distributed Systems (KiVS’11).
Editors: Norbert Luttenberger, Hagen Peters; pp. 211–213

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62915988?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/OASIcs.KiVS.2011.211
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/


212 Model Driven Development of Distributed Business Applications

Workflow is used for business service orchestration. It also organizes persistent tasks
and their user and rôle assignments. For Workflow, the underlying jBPM platform is
supplemented by task management, distribution strategies and enhanced by concepts like
delegation, escalation, resubmission, task forward.

Figure 1 DSL partition map and underlying platforms in gear

Workflow and its formal and orthogonal modeling and generative support, as well as of
business rules and underlying rule engines, become increasingly important. gear supports
workflow. The present development for b+m gear Java aims at the BPMN 2 standard [1],
and the integration of a rule engine is planned in the future as well. Modeling is supported
by grafical editors within the Eclipse IDE; the syntax resembles UML (Unified Modelking
Language). However, for practical and pragmatical reasons we prefer a more light weight
approach using specifically tailored domain specific languages.

We want to illustrate technical advantages of the MDSD approch using some examples:
Historization is often used in order to guarantee, that software systems e.g. in the finance
or insurance domain are audit-proof – often required by law. Every transaction has to be
plotted, which requires additional history tables for entities, and complicated write access has
to be weaved horizontally into the entire code. In gear, historization is a simple annotation of
entity definitions, and weaved generatively. An equally prominent example is transaction
safety, necessary for distributed client/server applications with persistent data. In gear, the
service partition uses the Java Transaction API. In both cases, sophisticated and concise
architectural enhancements for DSL and generator support the mastery of potentially complex
horizontally weaved code aspects. Quality and implementation efficiency are improved.

References

1 Business Process Model and Notation (BPMN), Version 2.0. http://www.omg.org/spec/

http://www.omg.org/spec/BPMN/2.0


Wolfgang Goerigk 213

BPMN/2.0, 2010.
2 Eclipse Modeling Project. http://www.eclipse.org/modeling/, 2010.
3 openarchitectureware.org. http://www.openarchitectureware.org/, 2010.
4 T. Stahl, M. Völter, S. Efftinge, and A. Haase. Modellgetriebene Softwareentwicklung:

Techniken, Engineering, Management. dpunkt.verlag, 2 edition, 2007.

KiVS’11

http://www.omg.org/spec/BPMN/2.0
http://www.omg.org/spec/BPMN/2.0
http://www.eclipse.org/modeling/
http://www.openarchitectureware.org/

	Introduction
	Model Driven Development Using b+m gear Java

